以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:47 、訪客IP:18.222.113.145
姓名 阮富生(NGUYEN PHU SINH) 查詢紙本館藏 畢業系所 機械工程學系 論文名稱 新型機電整合之多色3-D列印機
(Mechatronic Design of a Novel 3-D Printer with Multicolor Filaments)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 積層製造技術又被稱之為三維列印,這是一種將數位模型直接製造而成的新穎方式之一。由於此新穎的技術可應用在各種不同的領域上,因此近年來引起了廣泛的注意。然而,三維列印技術卻難以在單一模型上進行多色或者是多種材料列印。目前有很多問題已經有了解決方案,有的是用特別的方法研發出新機台;有的是設計出附加機構可以被安裝在單一噴嘴上。雖然市售上有一些桌上型三維列印機台已經可以進行多色列印,但是它仍然面臨到一些具有挑戰性的問題,如:線材滲漏、機台材料成本昂貴或者機台的操作複雜等。
本研究將設計出一種可以在一個複雜幾何形狀的模型上列印多種顏色的熔融沉積成型的三維列印機台。目前市面的多色三維列印機台通常需要搭配多個噴嘴提供給不同顏色的線材使用,而每個擠出噴頭都需要一個獨立的步進馬達來將線材推入噴嘴加熱,讓線材成為熔融的狀態。本研究提出一種線材轉換的新穎機構,此機構僅使用一個步進馬達來驅動多種不同顏色的線材的切換。其驅動原理與傳統的單色列印機台相同,使用步進馬達傳力動力到齒輪傳動系統,使滾齒螺栓夾住線材,使線材可以轉動向下。然而,由於齒輪傳動裝置上有一個特殊球型移動裝置,當步進馬達轉動時,只讓一個滾齒螺栓可以轉動線材。球型移動機構具有將軸與正齒輪之間有聯結或分離的運動功能。為了可以變換線材,有一個直流馬達帶動凸輪盤來釋放或按壓推桿來定位球型移動機構上的球。在本研究中,多色線材變換機構被設計成一個模組化的設備來添加到市售的三維列印機台上。此外,本研究開發之多色三維列印機台的噴嘴將設計成5進1出的噴嘴型式,此噴嘴型式可以分別將導入直徑為1.75mm的5種不同顏色線材,讓線材在噴嘴機構內進行加熱後,在0.4mm的噴嘴孔徑產生熔融狀態的細絲。這樣的機構型式也可以應用在多個噴嘴的三維列印機台上。
本研究所開發之多色三維列印機其控制器主要是修改Ramp1.4電路板與開放軟體Marlin,因此此多色三維列印機台可以使用G碼並且與Ulitmaker Cura兼容。最後,本研究進行多色模型的列印製造與測試。透過實驗結果顯示,球型移動機構可以順利將線材進行切換。雖然透過本研究所開發之機台列印之模型,其準確性仍受到一些技術問題的影響,但列印的模型結果是可以被接受的,其表面品質仍可以與市售三維機台進行競爭摘要(英) Three-dimensional (3D) printing or Additive Manufacturing (AM) is one of the novel method of manufacturing parts directly from digital models. It has attracted a massive attention in recent years due to its potential use in various applications. However, one obstacle is the difficulty printing physical objects in several colors and materials. Many different solutions have been addressed, some have gone into developing a new printer with special methods; others have developed add-ons devices that can be integrated into the single color printer. Although a few of desktop multicolor 3D printers have been introduced and commercialized in the market, it is still facing extremely challenging issues such as oozing, expensive material or complex operation.
The aim of this project is to design a multicolor Fused Deposition Model (FDM)/Fused Filament Fabrication (FFF) printer that can create complex geometry objects with multiple colors. Most of multicolor 3D printers are generally equipped multiple extruders to drive different color filaments. Each extruder requires an individual stepper motor to push the filament into the hot-end for melting. This study proposes a novel filament shifting mechanism that uses only one stepper motors to drive multiple filaments of different colors. As same as other single color 3D printing extruders, the stepper motor power is transmitted through a gear system to the hobbed bolts that bite into the filaments to force it downward. However, only one of the hobbed bolts could be rotated for feeding one filament when the stepper motor turns due to the special design of ball shifting mechanisms of the gear transmission. The ball shifting mechanisms have the function of coupling or decoupling the motion between the shafts and the spur gears. In order to change the filament, there is a cam disk that is driven by a Direct Current (DC) motor to release or press pushing rods for positioning balls of the ball shifting mechanism. In this research, this multicolor filament shifting mechanism is designed as a modular device that is added to a commercial 3D printer. Also, its nozzle is replaced by a Diamond “5 in 1 out” nozzle that has five filament inputs for 1.75mm filament and a common 0.4mm nozzle orifice. This implementation could be also integrated into multiple nozzles 3D printer.
The controller of this multicolor printer was also developed by modifying Ramp 1.4 board schematic and Marlin open source firmware so that it is compatible to a free G-code generation software, Ultimaker Cura. Finally, the proposed multicolor printer was manufactured and tested by printing a number of real multicolor products. The experiments show that the filament switching mechanism works perfectly without major problems. Although the accuracy of the final printed objects is still affected by some technical issues, these results are acceptable as they can compete with other commercial 3D printers in terms of accuracy關鍵字(中) ★ 多色三維列印
★ 熔融沉積製造
★ 熔融沉積成形
★ 機構設計
★ 機電整合
★ 傳動設計關鍵字(英) ★ Multicolor 3D printer
★ Fused Filament Fabrication
★ Fused Deposition Model
★ Mechanical Design
★ Mechatronic Integration
★ Transmission論文目次 摘 要 i
English Abstract iii
Acknowledgments v
Table of Contents vi
List of Figures ix
List of Tables xiv
Explanations of Symbols xv
1. Introduction 1
1-1. An overview of Additive Manufacturing 1
1-1-1. VAT Photo polymerization 1
1-1-2. Fused Deposition Modeling (FDM) - Material Extrusion 4
1-1-3. Powder Bed Fusion 5
1-1-4. Sheet Lamination 8
1-1-5. Material Jetting (MJ) 10
1-1-6. Binder Jetting (BJ) 11
1-1-7. Directed Energy Deposition (DED) 12
1-2. Introduction to multiple color 3D printing 14
1-2-1. Dual, triple, and quadruple extrusion 17
1-2-2. The Diamond single nozzle hot-end 17
1-2-3. Multicolor 3D Printing with Palette Filament Splicer 19
1-2-4. Dual filaments switching mechanism 21
1-2-5. Multi nozzles switching extruder 23
1-2-6. Coloring the object by the 3D printer 24
1-2-7. Pro-Feeder (Dual-Filament Feeder) 25
1-2-8. Multicolor filaments shifter – Patents of Autodesk 26
2. Mechanism Design 31
2-1. Introduction to the proposed multicolor 3D printer 31
2-2. Selection of 3D printer frame 33
2-3. Design the multicolor filaments switching mechanism 39
2-3-1. Mechanical concept 39
2-3-2. Design the filament feeder 41
2-3-3. Design the ball shifting mechanism 43
2-3-4. Design the transmission 48
2-4. Multicolor nozzle 51
2-5. Design and manufacture 54
3. Mechatronic Integration and Programming 56
3-1. Block diagram of the electronic control board 56
3-2. Mechatronic integration of the 3D printer functions 58
3-2-1. Arduino Mega 2560 58
3-2-2. Print head motion control 60
3-2-3. Heated bed and nozzle heater cartridge drivers 62
3-2-4. Filament color selection 63
3-2-5. Temperature monitoring 64
3-2-6. Limitation of the 3D printer motions. 65
3-2-7. Information display 66
3-3. Programming 69
4. Experimental Results and Discussion 75
4.1. Experimental adjustment 75
4-2. Result and discussion 79
4-2-1. Single color testing. 79
4-2-2. Multicolor printing test 81
Conclusions 85
Appendix A 90
Appendix B 100
參考文獻 [1] M. Baumers, C. Tuck, R. Wildman, I. Ashcroft, R. Hague, “Energy inputs to additive manufacturing: does capacity utilization matter?”, Solid Freedom Fabrication Proceedings, pp 30-40, Austin, 2011.
[2] Standard Terminology for Additive Manufacturing Technologies, ASTM International, 2013.
[3] Ian Gibson, David Rosen, Brent Stucker, “Additive Manufacturing Technologies – 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing”, Springer.
[4] Charles W. Hull, “Apparatus for production of three-dimensional objects by stereolithography”, US Patent No. US4575330A.
[5] 3D HUBS, https://www.3Dhubs.com/
[6] Sculpteo Company, https://www.sculpteo.com/en/
[7] 3D Printing from scratch, http://3Dprintingfromscratch.com/
[8] 3D printers Explained, http://apm-designs.com/
[9] Design Spark, https://www.rs-online.com/designspark/home
[10] Larry J. Hornbeck, “Digital Light Processing and MEMS: Timely Convergence for a Bright Future”, Proceeding SPIE, Vol. 2639, p.2, Micromachining and Microfabrication Process Technology, 1995.
[11] Think 3D, https://www.think3D.in/
[12] EnvisionTec , “Advanced DLP for superior 3D printing”.
[13] J. Wallace et al, “Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package”, Biofabrication 6 (14pp), IOP Publishing, 2014.
[14] S. Scott Crump, “Apparatus and method for creating three-dimensional objects”, US Patent No. US5121329A.
[15] 3D Printer Chat, https://3Dprinterchat.com
[16] Additive Manufacturing Research Group, http://www.lboro.ac.uk.
[17] Joseph J. Beaman, Carl R. Deckard, “Selective laser sintering with assisted powder handling”, US Patent No. US4938816A.
[18] C. Y. Yap, et al, “Review of selective laser melting: Materials and applications”, Applied physics reviews 2, 041101, American Institute of Physics Publishing.
[19] Aniwaa, https://www.aniwaa.com/.
[20] Fabricating Metal Working, www.fabricatingandmetalworking.com
[21] Sciaky Inc., http://www.sciaky.com/
[22] Azad Singh, “An analystical review of metal printing”, International Journal of Engineering Sciences and Research Technology (IJESRT), p756-760, 2017.
[23] TOHOKU University, http://www.rpip.tohoku.ac.jp/
[24] Engineering Garage, https://www.engineersgarage.com/
[25] Bernhard Mueller, Detlef Kochan, “Laminated object manufacturing for rapid tooling and partternmaking in foundry industry”, Computers In Industry 39, p 47-53, 1999.
[26] Drawn R. White, “Ultrasonic consolidation of aluminum tooling”, Advanced Materials and Processes, p64-65, January 2003
[27] MCOR Technology, http://www.mcortechnologies.com/
[28] Fabrisonic LLC, https://fabrisonic.com/
[29] SYS System, http://www.sys-uk.com/
[30] XJET, http://xjet3D.com/
[31] 3DPrint.com, https://3Dprint.com
[32] Simon Meteyer, Xin Xu, Nicolas Perry, Yaoyao Fiona Zhao, “Energy and Material Flow Analysis of Biner-Jetting Additive Manufacturing Processes ”, 21st CIRP Conference on Life Cycle Engineering, Procedia CIRP 15, p.19-25, Elsevier, 2014.
[33] Pillsbury, http://sourcingspeak.com
[34] ExOne, http://www.exone.com/
[35] Jan Sylwester Witowski, 3D – Printed anatomical models for tactile teaching visually – impaired student. Bio-Printing World, http://bioprintingworld.com
[36] Ruchi Kholyia, “3D printing: The Face of Future Fashion”, International Journal of Recent Research Aspects, Vol.3, Issue 3, pp. 80-85, 2016.
[37] 3DERS, https://www.3Ders.org/
[38] ORD Solutions, https://www.ordsolutions.com/
[39] RepRap, http://reprap.org
[40] MOSAIC Manufacturing, https://www.mosaicmanufacturing.com/
[41] 3D Printing.Com, https://3Dprinting.com/
[42] KickStarter, https://www.kickstarter.com
[43] Geoffrey Stahl, Howard A. Miller, “Method and Apparatus For Three-Dimensional Printing of Colored Objects”, US Patent No. US 2015/0343704 A1.
[44] DisTech Automation, https://www.distechautomation.com/
[45] TOBECA La 3D A Votre Dimension, http://www.tobeca.fr/
[46] Make Parts Fast, https://www.makepartsfast.com/
[47] AliExpress, https://www.aliexpress.com/
[48] Schmitt et al, “A Comparative Study of Cartesian and Delta 3D Printers on Producing PLA Parts ”, Material Research, pp. 883 – 886, 2017.
[49] FLEXIBOWL, http://www.flexibowl.com/.
[50] TOM’Guide, https://www.tomsguide.com
[51] Helix Linear Technologies, “How are lead screws used in a 3D printer?”, 2013.
[52] Vinland Corporation, http://www.vinland.com
[53] 3D Printer Power, http://3Dprinterpower.com
[54] Fabbaloo, http://www.fabbaloo.com/
[55] Sublime Layer, http://www.sublimelayers.com/
[56] Marlin, http://marlinfw.org/
[57] Arduino, https://www.arduino.cc/
[58] PoLoLu Robotics & Electronics, https://www.pololu.com
[59] Datasheet STP55NF06L/ STB55NF06L/ STB55NF06L-1, www.st.com
[60] Datasheer DUAL FULL-BRIDGE DRIVER L298, http://www.st.com
[61] Slic3r, http://slic3r.org指導教授 伊泰龍(Terence Essomba) 審核日期 2018-6-4 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare