博碩士論文 103323023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:70 、訪客IP:3.144.96.159
姓名 邱鈺婷(Yu-Ting Chiu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 相交軸螺旋錐形齒輪對移位嚙合設計與受載齒面接觸分析
(Profile-Shifted Transmission Design and Loaded Tooth Contact Analysis of Intersecting Helical Conical Gear Pairs)
相關論文
★ LED封裝點膠系統創新設計之研究★ 夾治具概念設計方法之研究
★ 葡萄糖檢測電極基材之化銅電鍍鎳金製程開發研究★ 印刷電路板蝕刻製程設計與可視化驗證實驗
★ 平行軸錐形齒輪齒根應力特性之研究★ 漸開線直齒錐形齒輪齒根應力之量測與分析
★ 單軸押出機減速機系列產品之計算機輔助開發模式之研究★ 漸開線直齒錐形齒輪齒根應力計算模型之初步研究
★ 非旋轉式表面電漿儀之創新設計與製作★ 電腦輔助單軸押出機減速機系列產品之開發
★ 單軸押出機減速機箱體系列化發展模式之研究★ 電腦輔助機械零件製造成本預估 – 以單軸押出機減速機為例
★ 直齒錐形齒輪齒根應力解析計算模式之研究★ 具點接觸型態之歪斜軸錐形齒輪對齒面疲勞破壞之初步研究
★ 粉末冶金齒輪齒根疲勞強度之研究★ 電腦輔助設計程式模組之建構-以齒輪減速機為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 漸開線螺旋錐形齒輪為漸開線圓柱齒輪之特殊型式,不僅加工容易,亦可以與各種漸開線圓柱齒輪形成多種可能空間齒輪對組合。由於錐形齒輪對組裝誤差敏感度低,而且可由調整錐形齒輪軸向位置來控制背隙,在漸開線圓柱齒輪中多應用在小軸交角場合。然而相交軸螺旋錐形齒輪對由於為點接觸型態,使得接觸應力過高而無法提高此類傳動機構之齒面承載能力。
本研究先從齒輪幾何設計著手,運用「移位嚙合設計」概念以控制接觸點位置在齒面寬中間,使接觸位置之曲率半徑加大,得以降低齒面接觸應力。另一方面為了使齒輪齒面數學模型符合實際加工狀況,本論文納入創成式蝸桿砂輪加工法,以直線邊做為蝸桿砂輪修整輪輪廓,推導出螺旋錐形齒輪齒面方程式。經與錐形齒輪理論漸開線齒面比較,發現兩者齒廓之偏差量極小。
由於齒輪對之齒面接觸情形會影響到傳動效能與接觸應力狀況,因此在本研究中分別建立出齒輪對無負載與受載下之齒面接觸分析模型。螺旋錐形齒輪對在無負載下的齒面接觸分析,係以兩齒輪齒面軸線以及接觸法線在具誤差下的空間關係式為基礎,藉由漸開線幾何特性發展出齒面接觸點幾何關係式,以簡化齒面接觸點位置的求解。在分析中比較標準設計和移位嚙合設計下的齒輪對在偏位、軸交角與軸向等組裝誤差以及偏心誤差狀況下,接觸點軌跡與傳動誤差變化;其中亦納入蝸桿砂輪加工錐形齒輪之分析。由分析結果可以看出移位嚙合設計下的接觸點軌跡確實較標準設計下的齒輪對偏往大端且落在齒面寬中間。而各種組裝誤差對接觸點軌跡的影響程度,以軸交角誤差的影響最大,軸向誤差最小。而在各種組裝誤差下,無論何種設計下皆無傳動誤差;僅有偏心誤差會產生正弦變化曲線型式的傳動誤差。而以直線邊修整輪為基礎所建立的蝸桿砂輪加工錐形齒輪對,分析得到的接觸點軌跡與理論漸開線錐形齒輪對的差異極小
本研究之受載齒面接觸分析模型係以影響係數法為基礎,並納入齒面赫茲接觸、輪齒撓曲、軸彎曲以及軸扭轉等各種變形影響,可求得嚙合齒面之接觸斑與應力分佈,以及變形位移。分析結果顯示,在以錐形齒輪為基準,右旋螺旋錐形齒輪對在右齒腹側接觸與左旋錐形齒輪對在左齒腹側接觸的應力分析結果是相同;另一旋向亦有類比關係。而右旋螺旋錐形齒輪對在左齒腹嚙合時,容易產生具邊緣應力集中之接觸型態,反之在右齒腹嚙合狀況下,齒面負載情形較佳。而以右旋--右齒腹之組合來比較標準設計與移位嚙合設計齒輪對接觸狀況,可以見到移位嚙合設計下的齒輪對由於接觸斑偏向大端,最大應力值較標準設計下齒輪對為低,同時受載傳動誤差高低變化值也較小。而在組裝誤差影響下,若接觸斑偏往大端時,應力值會下降,反之亦然。
經由分析結果可驗證本研究針對相交軸螺旋錐形齒輪對所建立之移位嚙合設計的方法、齒輪對的嚙合分析模型以及齒面接觸應力計算模型,確實可做為螺旋錐形齒輪對移位嚙合設計與接觸分析之工具,以提高傳動機構之齒面承載能力。
摘要(英) Helical conical involute gear as a special type of cylindrical involute gear is not only easily manufactured, but also is able to apply for various spatial gear pair with any cylindrical involute gear. Conical involute gears are often used in the application of the drives with a small shaft angle because of low sensitivity to assembly error, and the controllable backlash by adjusting the axial position of the conical gear. However, the intersecting helical conical gear has high contact stress due to point contact. Consequently, the surface durability cannot be increased for heavy power transmission.
The concept of profile-shifted transmission is at first applied for geometrical design, in order to locate the contact point on the middle of tooth width. The contact stress on flanks can be therefore reduced due to increasing the radius of curvature on contact position. On the other hand, a mathematical model for the tooth surface of the conical gears is established considering the actual manufacturing condition. The tooth surfaces of the helical conical gear are generated by using the grinding worm, which is formed by a dressing conical disc with straight line. Comparing the calculated tooth surface from this model with the theoretical involute flank, the profile error is very small.
Because the tooth contact condition of gear pairs influences the performance of the transmission and the contact stress, tooth contact analysis (TCA) model under unloaded condition and loaded tooth contact analysis (LTCA) model are established in the paper one after another. Based on the properties of involute gearing, the spatial relations with two axes of the gear tooth surfaces and the common contact normal line are established in order to simplify the calculation. The locus of contact points and the transmission error of the gear pair which are influenced by the error of the offset, shaft angle, axial mounting and eccentric errors are compared for design with standard and profile-shifted transmission respectively. From the results, the locus of contact points of the gear pair with profile-shifted transmission is close to the heel of the conical gear and indeed as expected locates on the middle of the tooth width. Among the various errors, the shaft angle error has the largest influence on the performances, and the axial mounting error has the less influence. The eccentric error causes the transmission error to perform as a sinus curve. The locus of contact points of the gear pair manufactured by continuous gear grinding has little difference from that of the gear pair with theoretical involute surface.
LTCA model in the study is based on the influence coefficient method with considering the deformation of Hertzian contact, tooth bending deflection, shaft bending and shaft torsion. The corresponding contact patterns, the contact stress distribution and the angular displacement due to deformation of the engaged teeth can be simulated. The result of LTCA for the working flank on right side of gears with right hand helix angle (with respect to the conical gear) and that for the left flank of gears with left hand helix angle are the same, vice versa. Considering the conical gear with right hand helix angle, the tooth contact on right flank side is better than on left flank side because the concentrated stress on the edge occurs easily on the left flank. The contact stress of the gear drives with profile-shifted transmission is better than with the standard design because the contact patterns is close to the heel and the contact stress is reduced. And the same condition is also valid for the loaded transmission error where the peak-to-peak value with profile-shifted transmission is smaller.
It can be verified from the analysis result that the proposed approach for profile-shifted transmission, tooth contact analysis and load tooth contact analysis in this thesis is indeed an efficient design tool for helical conical gear drives with intersecting axes to increase the tooth surface durability.
關鍵字(中) ★ 螺旋錐形齒輪
★ 漸開線齒輪
★ 蝸桿砂輪加工
★ 移位嚙合設計
★ 組裝誤差
★ 偏心誤差
★ 受載齒面接觸分析
★ 傳動誤差
關鍵字(英) ★ helical conical gear
★ involute gear
★ threaded grinding wheel
★ profile-shifted transmission
★ assembly error
★ eccentric error
★ load tooth contact analysis
★ transmission error
論文目次 摘要 i
Abstract iii
謝誌 vi
目錄 vii
圖目錄 xi
表目錄 xvii
符號說明 xviii
第1章 前言 1
1.1 研究背景 1
1.2 文獻回顧 7
1.2.1 基本幾何特性 7
1.2.2 齒面數學模型 7
1.2.3 點接觸情形之改良方法 8
1.2.4 齒面接觸分析 9
1.2.5 齒面受載接觸分析 9
1.3 研究目的 10
1.4 論文架構 11
第2章 螺旋錐形齒輪齒面數學模型 13
2.1 漸開線螺旋錐形齒輪之基本幾何特性 13
2.1.1 漸開線齒輪與基準齒條之關係 13
2.1.2 漸開線齒面特點 15
2.1.3 齒面寬的幾何限制 16
2.2 漸開線螺旋錐形齒輪理論齒面方程式 18
2.3 創成式蝸桿砂輪加工之齒輪齒面數學模型 22
2.3.1 機台介紹 23
2.3.2 蝸桿砂輪齒面數學模型 24
2.3.3 機台設定 28
2.3.4 蝸桿砂輪加工之齒輪齒面方程式 32
2.3.5 齒形偏差量 36
第3章 螺旋錐形齒輪對移位嚙合設計 39
3.1 基本嚙合關係 39
3.1.1 作用線特性 39
3.1.2 齒輪對誤差下齒面軸線關係 41
3.1.3 接觸點決定 46
3.2 移位嚙合齒輪對齒輪設計參數決定 48
3.2.1 齒面寬預期接觸點位置之規劃 48
3.2.2 作用線空間位置 49
3.2.3 螺旋錐形齒輪基圓相關參數關係建立 52
3.2.4 螺旋錐形齒輪軸向位置 53
3.3 接觸率 53
第4章 受載齒面接觸分析模型 56
4.1 基本分析模型 56
4.1.1 齒對接觸應力模型 56
4.1.2 齒面接觸赫茲變形影響係數 58
4.2 輪齒懸臂梁撓曲影響係數 59
4.2.1 彎曲變形撓度 60
4.2.2 剪切變形撓度 61
4.2.3 Lagrange多項式曲線擬合 62
4.2.4 撓曲影響函數定義 62
4.3 軸彎曲變形影響係數 71
4.3.1 奇異函數 71
4.3.2 軸變形對齒面變形之影響 72
4.4 軸扭轉變形影響係數 74
4.4.1 軸扭轉變形定義 74
4.4.2 齒面變形之影響係數 76
4.5 螺旋錐形齒輪對齒面間距 77
4.6 傳動誤差定義 80
第5章 螺旋錐形齒輪對分析案例 81
第6章 嚙合齒對接觸分析 85
6.1 無誤差 85
6.1.1 不同案例之漸開線螺旋錐形齒輪對 85
6.1.2 蝸桿砂輪加工之螺旋錐形齒輪對 88
6.2 偏位誤差 88
6.3 軸交角誤差 90
6.4 軸向誤差 92
6.5 偏心誤差 94
第7章 嚙合齒對齒面受載接觸分析 99
7.1 螺旋旋向與工作齒腹側對受載接觸之影響 99
7.1.1 嚙合過程之齒面接觸斑變化 99
7.1.2 嚙合過程之負載分配率 106
7.1.3 嚙合過程之最大應力變化 108
7.2 誤差對嚙合過程之齒面接觸斑之影響 110
7.2.1 一般齒面寬設計之接觸斑 110
7.2.2 無誤差 113
7.2.3 軸交角誤差 116
7.3 嚙合過程之負載分配率 117
7.3.1 無誤差 117
7.3.2 軸交角誤差 118
7.4 嚙合過程之最大應力變化 120
7.4.1 無誤差 120
7.4.2 軸交角誤差 122
7.5 受載傳動誤差 125
7.5.1 無誤差 125
7.5.2 軸交角誤差 126
第8章 結論與展望 128
8.1 結論 128
8.2 未來展望 133
參考文獻 134
附錄 140
參考文獻 [1] K. Roth, Zahnradtechnik - Evolventen-Sonderverzahnungen zur Getriebeverbesserung. Berlin, Springer-Verlag, 1998.
[2] K. Hori, I. Hayashi and N. Iwatsuki, “The Ideal Tooth Profiles of Conical-External and-Internal Gears Meshing with Cylindrical-Involute Gears over the Entire Tooth Width”, JSME International Journal, Ser. C, Vol. 41, No. 4, pp. 901-911, 1998.
[3] 李塊賢,吳俊飛,李敏華,祁勇,林少芬和陳秀捷,「平行軸內嚙合漸開線變厚齒輪的設計與計算」,中國機械工程,第11卷,第8期,886-889頁,2000。
[4] B. Burkle, S. Gandbhir and F-J. Joachim, “Conical Gear for Power Transmission”, (in German), VDI-Berichte 1056, pp. 95-110, 1993.
[5] J. Bo?rner, K. Humm, F. Joachim and H. Yakaria, “Application, Design, and Manufacturing of Conical Involute Gears for Power Transmissions”, VDI Berichte 1904, pp. 125-144, 2005.
[6] J. Bo?rner, K. Humm and F. Joachim, “Development of Conical Involute Gears (Beveloids) for Vehicle Transmissions”, Gear Technology, November/December 2005.
[7] J. Looman, Zahnradgetriebe. Berlin, Springer-Verlag, 1996
[8] A. S. Beam, “Beveloid Gearing”, Machine Design, Vol.26, pp.220-238, December 1954.
[9] H.E. Merritt, Gears, 3rd ed., Issac Pitman and Sons, 1954.
[10] S. C. Purkiss, “Conical Involute Gears”, Machinery, Vol. 89, pp. 1413-1420, 1456-1467, 1956
[11] K. Mitome, “Conical Involute Gear. Part 1: Design and Production System; Part 2: Design and Production System of Involute Pinion-Type Cutter”, Bulletin of JSME, Vol. 26, No. 212, pp. 299-305, 306-312, 1983.
[12] K. Mitome, “Conical Involute Gear. 4th Report, Gear Grinding, (in Japanisch), Transactions of JSME, Vol. 53, No.245, pp. 2757-2764, 1987.
[13] T. Ohmachi and K. Mitome, “Tooth Surface Measurement of Involute Pinion-Type Cutter by Cnc Gear-Measuring Machine”, Transactions of JSME, Series C, Vol. 65, No. 629, pp. 307-313, 1999.
[14] K. Mitome, “Conical Involute Gear. Part 3: Tooth Action of a Pair of Gears”, Bulletin of JSME, Vol. 28, No. 245, pp. 2757-2764, 1985.
[15] K. Mitome, “Conical Involute Gear. 5th Report, Design of Nonintersecting-Nonparallel-Axis Conical Involute Gears”, JSME International Journal, Vol. 34, Series III, No.2, pp. 265-270, 1991.
[16] K. Mitome, Y. Matsuo and Y. kajima, “Design of a Pair of Intersecting-Axis Straight Conical Involute Gears for Obtaining Better Tooth Bearing” Transactions of JSME, Series C, Vol. 58, No. 553, pp. 2787-2792, 1992.
[17] K. Mitome and K. Tatebe, “Development of over-Ball Measurement of Helical Conical Involute Gear”, Transactions of JSME, Series C, Vol. 57, No. 538, pp. 2138-2143, 1991.
[18] K. Mitome, “Development of over-Ball Measurement of Straight Conical Involute Gear”, Transactions of JSME, Series C, Vol. 57, No. 536, pp. 1329-1334, 1991.
[19] K. Saiki, H. Komatsubara, M. Saito, K. Mitome and T. Omachi, “the Profile Shifted Conical Involute Gear with Deep Tooth Depth. 1st Report: Design Method Based on the Theory of Non-Intersecting Bevel Gear”, Proceedings of MPT2004, No. 04-17, pp. 258-261, 2004.
[20] K. Mitome, A. Uchino, H. Komatsubara, K. Saiki, T. Ohmachi and M. Saito, “the Profile Shifted Conical Gear with Deep Tooth Depth. 2nd Report: Design and Production of Test Gears and Tooth Bearing Tests”, Proceedings of MPT2004, No. 04-17, pp.262-265, 2004.
[21] T. Ohmachi, K. Saiki, M. Saito, H. Komatsubara, A. Uchino, T. Murata and K. Mitome, “the Profile Sifted Conical Gear with Deep Tooth Depth. 3rd Report: Production System of Gears”, The Machine Design and Tribology Division meeting in JSME, No.06-6, pp.247-250, 2006.
[22] A. Uchino, K. Saiki, M. Saito, T. Ohmachi, H. Komatsubara, T. Murata and K. Mitome, “the Profile Shifted Conical Gear with Deep Tooth Depth. 4th Report: Tooth Bearing Tests of a Pair of Crossed Gears”, The Machine Design and Tribology Division meeting in JSME, No. 06-6, pp.251-254, 2006.
[23] T. Soma, Y. Ohinata, T. Ohmachi, M. Saito, K. Saiki and K. Mitome, “the Profile Shifted Conical Gear with Deep Tooth Depth. 5th Report: Tooth Bearing Tests of the Conical Gear Mating with the Helical Gear”, The Proceedings of Autumn Conference of Tohoku Branch, Vol. 44, No. 2008-2, pp.145-146, 2008.
[24] T. Tsuchiya, K. Sato, T. Ohmachi, H. Komatsubara and K. Mitome, “the Profile Shifted Conical Involute Gear with Deep Tooth Depth. 6th Report: Mounting Dimensions and Backlash”, The Proceedings of Autumn Conference of Tohoku Branch, Vol. 46, No. 2010-2, pp. 73-74, 2010.
[25] K. Mitome and T. Yamazaki, “Design of Conical Involute Gear Engaged with Profile Shifted Spur Gear on Intersecting Shafts”, Transactions of JSME, Series C, Vol. 62, No. 598, pp. 350-355, 1996.
[26] H. Komatsubara, K. Mitome and T. Ohmachi, “Development of Concave Conical Gear Used for Marine Transmissions. 1st Report: Principle of Generating Helical Concave Conical Gear; 2nd Report: Principal Normal Radii of Concave Conical Gear and Design of a Pair of Gears”, JSME International Journal, Series C, Vol. 45, No. 1, pp.371-377, 543-550, 2002.
[27] H. Komatsubara, H. Kumakura, K. Goto, T. Ohmachi and K. Mitome, “Development of Hyper Conical Gear Used for Marine Transmissions. 1st Report: Generating Method of Hyper Conical Gear; 2nd Report, Design and Production System of a Pair of Intersecting Axis Hyper Conical Gears”, Proceedings of the JSME annual meeting, No. 10-1, pp. 87-88, 89-90, 2010.
[28] K. Roth, Stirnrad-Evolventenverzahnungen. Berlin, Springer-Verlag, 2001.
[29] S. Tsai, Unified System of Involute Gears (in German), Dissertation of TU Braunschweig, Germany, 1997.
[30] K. Mitome, “Concave Conical Gear (Basic Theory of a New Tooth Surface and Design of a Pair of Gears)”, Proceedings of JSME International Conference on Motion and Powertransmissions, Hiroshima, pp. 601-606, 1991.
[31] 劉家彰,「漸開線錐形齒輪對之特性研究」,國立交通大學機械工程學系博士論文,2001。
[32] 鍾禮隆,「凹面錐形齒輪修整設計模式之研究」,國立中央大學機械工程學系碩士論文,2009。
[33] K. Mitome, “Table Sliding Taper Hobbing of Conical Gear Using Cylindrical Hob, Part 1: Theoretical Analysis of Table Sliding Taper Hobbing; Part 2: Hobbing of Conical Involute Gear”, Trans. ASME Journal of Engineering for Industry, Vol. 103, pp. 446-451, 452-455, 1981.
[34] K. Mitome, “Inclining Work-Arbor Taper Hobbing of Conical Gear Using Cylindrical Hob”, Trans. ASME Journal of Engineering for Industry, Vol. 108, pp. 135-141, 1986.
[35] 郭寶安和吳序堂,「漸開線錐形齒輪的數控連續展成磨削」,機械傳動,第25卷,第3期,25-27頁,2001。.
[36] V.-T. Tran, R.-H. Hsu and C.-B. Tsay, “Study on the Anti-Twist Helical Gear Tooth Flank with Longitudinal Tooth Crowning”, Journal of Mechanical Design, Vol. 136, No. 6, pp. 061007-01-10, 2014.
[37] Z.-H. Fong and G.-H. Chen, “Gear Flank Modification Using a Variable Lead Grinding Worm Method on a Computer Numerical Control Gear Grinding Machine”, Journal of Mechanical Design, Vol. 138, No. 8, pp. 083302-1-10, 2016.
[38] S. Wu and S. Tsai, “Contact Stress Analysis of Concave Conical Gear Drives”, Proceedings of the First IFToMM Asian Conference Mechanism and Machine Science, 2010.
[39] V. Gavrilenko and V. Bezrukov, “The Geometrical Design of Gear Transmissions Comprising Involute Bevel Gears”, Russian Engineering Journal (English translation of Vestnik Mashinostroeniya), Vol. 56, No. 9, pp.34-38, 1976.
[40] S. Tsai and S. Wu, “Geometrical Design of Conical Gear Drives with Profile-Shifted Transmission”, 12th IFToMM World Congress, 2007.
[41] F. L. Litvin, Gear Geometry and Applied Theory, Prentice-Hall, Englewood Cliffs, NJ, 1994.
[42] C.-C. Liu and C.-B. Tsay, “Contact Characteristics of Beveloid Gears”, Mechanism and Machine Theory, Vol. 37, No. 4, pp. 333-350, 2002.
[43] 吳思漢,「近似線接觸型態之歪斜軸漸開線錐形齒輪對齒面接觸強度之研究」,國立中央大學機械工程學系博士論文,2009。
[44] 李哲仰,「修整型球面漸開線直傘齒輪對受軸變形與誤差影響之齒面接觸分析」,國立中央大學機械工程學系碩士論文,2017。
[45] Y.-C. Chen and C.-B. Tsay, “Stress Analysis of a Helical Gear Set with Localized Bearing Contact”, Finite Elements in Analysis and Design, Vol.38, No. 8, pp. 707-723, 2002.
[46] C.-C. Liu, Y.-C. Chen and S.-H. Lin, “Contact Stress Analysis of Straight Concave Conical Involute Gear Pairs with Small Intersected Angles”, Proceedings of the International MultiConference of Engineers and Computer Scientists, Hong Kong, 2010.
[47] Y.-C. Chen and C.-C. Liu, “Contact Stress Analysis of Concave Conical Involute Gear Pairs with Non-Parallel Axes”, Finite Elements in Analysis and Design, Vol. 47, No. 4, pp.443-452, 2011.
[48] M. Beck, Analyse der Belastung und Beanspruchung von konischen Stirnradern in kreuzender Achslage (in German), Dissertation of University Stuttgart, Germany, 2015.
[49] 邱雅靖,「軸變形影響下之修整型螺旋齒輪對接觸特性探討」,國立中央大學機械工程學系碩士論文,2016。
指導教授 蔡錫錚(Shyi-Jeng Tsai) 審核日期 2018-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明