參考文獻 |
[1] A. Zervos, Renewables 2016 global status report 2016. 2016.
[2] A. Zhou and E. Thomson, “The development of biofuels in Asia,” Appl. Energy, vol. 86, no. SUPPL. 1, pp. S11–S20, 2009.
[3] P. Basu, Biomass Gasification and Pyrolysis Handbook. 2010.
[4] H. B. Goyal, D. Seal, and R. C. Saxena, “Bio-fuels from thermochemical conversion of renewable resources: A review,” Renew. Sustain. Energy Rev., vol. 12, no. 2, pp. 504–517, 2008.
[5] M. Syamsiro, H. Saptoadi, T. Norsujianto, P. Noviasari, S. Cheng, Z. Alimuddin, K. Yoshikawa., “Fuel oil production from municipal plastic wastes in sequential pyrolysis and catalytic reforming reactors,” Energy Procedia, vol. 47, pp. 180–188, 2014.
[6] N. Sasaki, K. Wolfgang, D. R. David, E. Hiroko, N. Hiroshi, C. Sengtha, K. Sophanarith, S. Sengxi., “Woody biomass and bioenergy potentials in Southeast Asia between 1990 and 2020,” Appl. Energy, vol. 86, no. SUPPL. 1, pp. S140–S150, 2009.
[7] “Plastics – the Facts 2016. An analysis of European plastics production, demand and Data;2016, Waste,” 2016.
[8] G. M. Hasan, “Knowledge Management,” no. January, 2003.
[9] S. Kumagai, J. Alvares, P. H. Blanco, C. Wu, T. Yoshioka, M. Olazar, P. T. Williams., “Novel Ni–Mg–Al–Ca catalyst for enhanced hydrogen production for the pyrolysis – gasification of a biomass / plastic mixture,” J. Anal. Appl. Pyrolysis, vol. 113, pp. 15–21, 2015.
[10] B. G. Diehl, N. R. Brown, C. W. Frantz, M. R. Lumadue, and F. Cannon, “Effects of pyrolysis temperature on the chemical composition of refined softwood and hardwood lignins,” Carbon N. Y., vol. 60, pp. 531–537, 2013.
[11] E. P?rp?ri??, M. T. Nistor, M. C. Popescu, and C. Vasile, “TG/FT-IR/MS study on thermal decomposition of polypropylene/biomass composites,” Polym. Degrad. Stab., vol. 109, pp. 13–20, 2014.
[12] K. Azizi, M. Keshavarz Moraveji, and H. Abedini Najafabadi, “Characteristics and kinetics study of simultaneous pyrolysis of microalgae Chlorella vulgaris, wood and polypropylene through TGA,” Bioresour. Technol., vol. 243, pp. 481–491, 2017.
[13] M. Kumar, R. C. Gupta, and T. Sharma, “Effects of carbonisation conditions on the yield and chemical composition of Acacia and Eucalyptus wood chars,” Biomass and Bioenergy, vol. 3, no. 6, pp. 411–417, 1992.
[14] R. Garg, N. Anand, and D. Kumar, “Pyrolysis of babool seeds (Acacia nilotica) in a fixed bed reactor and bio-oil characterization,” Renew. Energy, vol. 96, pp. 167–171, 2016.
[15] M. S. Abbas-Abadi, M. N. Haghighi, H. Yeganeh, and A. G. McDonald, “Evaluation of pyrolysis process parameters on polypropylene degradation products,” J. Anal. Appl. Pyrolysis, vol. 109, pp. 272–277, 2014.
[16] T. M. Majka, O. Bartyzel, K. N. Raftopoulos, J. Pagacz, A. Leszczy?ska, and K. Pielichowski, “Recycling of polypropylene/montmorillonite nanocomposites by pyrolysis,” J. Anal. Appl. Pyrolysis, vol. 119, pp. 1–7, 2016.
[17] I. Kalargaris, G. Tian, and S. Gu, “Experimental characterisation of a diesel engine running on polypropylene oils produced at different pyrolysis temperatures,” Fuel, vol. 211, no. July 2017, pp. 797–803, 2018.
[18] S. M. Al-Salem, A. Antelava, A. Constantinou, G. Manos, and A. Dutta, “A review on thermal and catalytic pyrolysis of plastic solid waste (PSW),” J. Environ. Manage., vol. 197, no. 1408, pp. 177–198, 2017.
[19] A. Demirbas, “Biorefineries: Current activities and future developments,” Energy Convers. Manag., vol. 50, no. 11, pp. 2782–2801, 2009.
[20] D. Mohan, C. U. Pittman, and P. H. Steele, “Pyrolysis of Wood / Biomass for Bio-oil?: A Critical Review,” Energy & Fuesl, vol. 20, no. 4, pp. 848–889, 2006.
[21] A. Alcala and A. V. Bridgwater, “Upgrading fast pyrolysis liquids: Blends of biodiesel and pyrolysis oil,” Fuel, vol. 109, pp. 417–426, 2013.
[22] A. V. Bridgwater and G. V. C. Peacocke, “Fast pyrolysis processes for biomass,” Renew. Sustain. energy Rev., vol. 4, no. 1, pp. 1–73, 2000.
[23] M. K. Bahng, C. Mukarakate, D. J. Robichaud, and M. R. Nimlos, “Current technologies for analysis of biomass thermochemical processing: A review,” Anal. Chim. Acta, vol. 651, no. 2, pp. 117–138, 2009.
[24] D. Gidaspow, Multiphase flow and fluidization, vol. 55, no. 2. 1994.
[25] C. T. Crowe, Multiphase Flow Handbook, vol. 1218, no. 36. 2006.
[26] A. Demirbas, “Combustion characteristics of different biomass fuels,” Prog. Energy Combust. Sci., vol. 30, no. 2, pp. 219–230, 2004.
[27] L. Sorum, M. G. Gronli, and J. E. I. Hustad, “Pyrolysis characteristics and kinetics of municipal solid wastes,” Fuel, vol. 80, no. 9, pp. 1217–1227, 2001.
[28] C. Zhou, G. Liu, T. Fang, P. Kwan, and S. Lam, “Bioresource Technology Investigation on thermal and trace element characteristics during co-combustion biomass with coal gangue,” Bioresour. Technol., vol. 175, pp. 454–462, 2015.
[29] S. S. Kim, H. V. Ly, J. Kim, J. H. Choi, and H. C. Woo, “Thermogravimetric characteristics and pyrolysis kinetics of Alga Sagarssum sp. biomass,” Bioresour. Technol., vol. 139, pp. 242–248, 2013.
[30] W. Charusiri and N. Numcharoenpinij, “Characterization of the optimal catalytic pyrolysis conditions for bio-oil production from brown salwood (Acacia mangium Willd) residues,” Biomass and Bioenergy, vol. 106, pp. 127–136, 2017.
[31] A. Ahmed, M. S. Abu Bakar, A. K. Azad, R. S. Sukri, and T. M. I. Mahlia, “Potential thermochemical conversion of bioenergy from Acacia species in Brunei Darussalam: A review,” Renew. Sustain. Energy Rev., vol. 82, no. October 2016, pp. 3060–3076, 2018.
[32] H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, “Characteristics of hemicellulose, cellulose and lignin pyrolysis,” Fuel, vol. 86, no. 12–13, pp. 1781–1788, 2007.
[33] M. Brebu and C. Vasile, “Thermal degradation of Lignin - A review,” Cellul. Chem. Technol., vol. 44, no. 9, pp. 353–363, 2010.
[34] H. Yang, R. Yan, H. Chen, C. Zheng, D. H. Lee, and D. T. Liang, “In-depth investigation of biomass pyrolysis based on three major components: hemicelluloses, cellulose and lignin,” Energy and Fuels, vol. 20, no. 17, pp. 388–393, 2006.
[35] M. Brebu and I. Spiridon, “Thermal degradation of various lignins by TG-MS/FTIR and Py-GC-MS,” Therm. Degrad. Var. lignins by TG-MS/FTIR Py-GC-MS, vol. 91, no. 2, pp. 288–295, 2011.
[36] J. Yu, N. Paterson, J. Blamey, and M. Millan, “Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass,” Fuel, vol. 191, pp. 140–149, 2017.
[37] Z. Ma, Q. Sun, J. Ye, Q. Yao, and C. Zhao, “Study on the thermal degradation behaviors and kinetics of alkali lignin for production of phenolic-rich bio-oil using TGA-FTIR and Py-GC/MS,” J. Anal. Appl. Pyrolysis, vol. 117, pp. 116–124, 2016.
[38] J. Jamradloedluk and C. Lertsatitthanakorn, “Characterization and utilization of char derived from fast pyrolysis of plastic wastes,” Procedia Eng., vol. 69, pp. 1437–1442, 2014.
[39] W. Cai and R. Liu, “Performance of a commercial-scale biomass fast pyrolysis plant for bio-oil production,” Fuel, vol. 182, pp. 677–686, 2016.
[40] H. Raclavska, A. Corsaro, D. Juchelkova, V. Sassmanova, and J. Frantik, “Effect of temperature on the enrichment and volatility of 18 elements during pyrolysis of biomass, coal, and tires,” Fuel Process. Technol., vol. 131, pp. 330–337, 2015.
[41] A. A. Boateng, D. E. Daugaard, N. M. Goldberg, and K. B. Hicks, “Bench-scale fluidized-bed pyrolysis of switchgrass for bio-oil production,” Ind. Eng. Chem. Res., vol. 46, no. 7, pp. 1891–1897, 2007.
[42] K. H. Kim, J. Y. Kim, T. S. Cho, and J. W. Choi, “Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida),” Bioresour. Technol., vol. 118, pp. 158–162, 2012.
[43] M. Ringer, V. Putsche, and J. Scahill, “Large-Scale Pyrolysis Oil Production: A Technology Assessment and Economic Analysis,” Nrel/Tp-510-37779, no. November, pp. 1–93, 2006.
[44] C. Zhao, E. Jiang, and A. Chen, “Volatile production from pyrolysis of cellulose, hemicellulose and lignin,” J. Energy Inst., vol. 90, no. 6, pp. 902–913, 2017.
[45] T. J. Hilbers, J. Wang, B. Pecha, R. J. M. Westerhof, S. R. A. Kersten, M. R. P. Samaniego, M. G. P. Manuel., “Cellulose-Lignin interactions during slow and fast pyrolysis,” J. Anal. Appl. Pyrolysis, vol. 114, pp. 197–207, 2015.
[46] J. V. Ortega, A. M. Renehan, M. W. Liberatore, and A. M. Herring, “Physical and chemical characteristics of aging pyrolysis oils produced from hardwood and softwood feedstocks,” J. Anal. Appl. Pyrolysis, vol. 91, no. 1, pp. 190–198, 2011.
[47] J. Zhao, W. Xiuwen, J. Hu, Q. Liu, D. Shen, and R. Xiao, “Thermal degradation of softwood lignin and hardwood lignin by TG-FTIR and Py-GC/MS,” Polym. Degrad. Stab., vol. 108, pp. 133–138, 2014.
[48] Y. Xue, S. Zhou, R. C. Brown, A. Kelkar, and X. Bai, “Fast pyrolysis of biomass and waste plastic in a fluidized bed reactor,” Fuel, vol. 156, no. April 2016, pp. 40–46, 2015.
[49] A. Demirbas, “The influence of temperature on the yields of compounds existing in bio-oils obtained from biomass samples via pyrolysis,” Fuel Process. Technol., vol. 88, no. 6, pp. 591–597, 2007. |