博碩士論文 100383004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:90 、訪客IP:3.137.164.43
姓名 顏俊宏(Chun-Hung Yen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 微量鋯與安定化處理對5383合金腐蝕與機械性質之影響
(Effect of minor Zr and stabilizing treatment on the corrosion and mechanical properties of AA5383 alloys)
相關論文
★ 非破壞性探討安定化熱處理對Al-7Mg鍛造合金微結構、機械與腐蝕性質之影響★ 非破壞性探討安定化熱處理對Al-10Mg鍛造合金微結構、機械與腐蝕性質之影響
★ 冷加工與熱處理對AA7055鍛造型鋁合金微結構與機械性質的影響★ 冷抽量對AA7055(Al-Zn-Mg-Cu)-T6態合金腐蝕性質和微結構之影響
★ 熱力微照射製作絕緣層矽晶材料之研究★ 分流擠型和微量Sc對Al-5.6Mg-0.7Mn合金微結構及熱加工性之影響
★ 銀對於鎂鎳儲氫合金吸放氫及電化學性質之研究★ 氧化物催化劑對亞共晶Mg-Ni合金之儲放氫特性研究
★ 熱處理對7050鋁合金應力腐蝕與含鈧鋁薄膜特性之影響研究★ Ti-V-Cr與Mg-Co基BCC儲氫合金性質研究
★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究★ 銅、鎂含量與熱處理對Al-14.5Si-Cu-Mg合金拉伸、熱穩定與磨耗性質之影響
★ 恆溫蒸發熔煉鑄造製程合成鎂基介金屬化合物及其氫化特性之研究★ 無電鍍鎳多壁奈米碳管對Mg-23.5wt.%Ni共晶合金儲放氫特性之影響
★ 微量Sc對A356鑄造鋁合金機械性質之影響★ 熱處理對車用鋁合金材料熱穩定性與表面性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究藉由微結構觀察、ASTM G67硝酸腐蝕重量損失測試、硬力腐蝕及機械性質測試(硬度、拉伸),探討鋯與安定化處理對AA5383合金機械及腐蝕性質之影響。
實驗結果顯示退火溫度是造成鋁鎂合金微結構改變及機械強度變化之主要因素。退火溫度低於250°C為回復結構,退火溫度高於250°C開始轉變為部分再結晶結構。其中,硬度與抗拉強度彼此間呈現正比關係。NAMLT(Nitric Acid Mass Loss Test)及SSRT( Slow Strain Rate Test)試驗結果顯示,β相腐蝕形態受退火結構影響,其中差排組織及再結晶結構,合金經敏化處理後易使β相沿晶界析出,敏化腐蝕後晶粒呈現剝落腐蝕情形。此外,鋁鎂合金在200~250°C退火,因組成相由α+β轉變成α相,再經敏化後β相析出較為分散且連續性較低,故所產生之晶間腐蝕敏感性及應力腐蝕敏感性均為最低。
添加微量鋯之鋁鎂合金因含有Al3Zr顆粒,具有細晶強化及散佈強化效果,使硬度較無添加鋯之合金高,並有效抑制差排滑移及晶粒成長,提升合金再結晶溫度。然而,冷輥及回復階段,因差排組織加速Al3Zr顆粒的粗化成為另一異質成核點,使β相除沿晶界析出外,易於Al3Zr顆粒析出造成材料抗腐蝕性變差。
摘要(英) This study explored the effects of zirconium and stabilization on the mechanical and corrosion properties of AA5383 alloys by microstructural observations, ASTM G67 nitric acid corrosion weight loss tests, hard corrosion, and mechanical property tests (hardness, drawing). The results show that the annealing temperature is the main factor to change the microstructure and mechanical strength of Al-Mg alloy. Annealing temperature is lower than 250°c for recovery structure, annealing temperature is higher than 250°c and begins to change into partial recrystallization structure. Among them, the hardness and tensile strength show a direct relationship with each other. The results of NAMLT and SSRT tests show that the β-phase corrosion morphology is affected by the annealing structure. Among them, the poorly-arranged microstructure and recrystallization structure make the β phase precipitate along the grain boundaries after sensitization of the alloy, and the grains exhibit exfoliation corrosion after sensitization and corrosion. In addition, when aluminum-magnesium alloy is annealed at 200-250°C, the composition phase changes from α+β to α-phase, and after sensitization, the β-phase precipitates more dispersed and less continuous, so the intergranular corrosion susceptibility is increased. And stress corrosion sensitivity is the lowest.
Aluminum-magnesium alloy containing trace amounts of zirconium contains Al3Zr particles, and has fine-grained strengthening and dispersion strengthening effects, which makes the hardness higher than that of alloys without added zirconium, and effectively inhibits differential row slip and grain growth, and raises the recrystallization temperature of alloys. However, in the chill roll and recovery stage, the coarsening of Al3Zr particles becomes a heterogeneous nucleation site due to the differential structure, so that the β phase is precipitated along the grain boundary, and the Al3Zr particles are easily precipitated and the corrosion resistance of the material deteriorates. After the annealing treatment at a relatively high temperature of 280°C, the aluminum-magnesium alloy containing Zr has the effect of inhibiting recrystallization, and the micro-fibrous structure of the microstructure and the partially recrystallized structure coexist, and the corrosion resistance of the alloy is superior to that of the Zr-free alloy.
關鍵字(中) ★ 退火
★ 鋁鎂合金
★ 敏化
★ 硝酸重量損失
★ Al3Mg2
★ Al3Zr
關鍵字(英) ★ annealing
★ Al-Mg alloy
★ sensitization
★ NAMLT
★ Al3Mg2
★ Al3Zr
論文目次 中文摘要………………………………………………………………Ⅰ
英文摘要………………………………………………………………II
誌 謝….………………………………………………………………IV
總 目 錄…………………………………………………………………V
表 目 錄………………………………………………………………IX
圖 目 錄………………………………………………………………IX
一、背景與目的 1
二、文獻回顧 3
2.1 鋁-鎂合金應用與介紹 3
2.2 鋁-鎂合金強化機制 4
2.3 金屬元素對鋁-鎂合金影響 6
2.3.1 鎂對鋁合金的影響 6
2.3.2 錳對鋁合金的影響 8
2.3.3 鈦對鋁合金的影響 10
2.3.4 鋯對鋁合金的影響 11
2.3.5 其他元素對鋁合金的影響 12
2.4 退火溫度對鋁鎂合金機械性質與顯微結構之的影響 13
2.4.1 回復 13
2.4.2 再結晶 14
2.4.3 晶粒成長 14
2.5 鋁鎂合金腐蝕簡介 16
2.5.1 鋁鎂合金腐蝕機制 16
2.6 影響鋁鎂合金β相析出之因素 22
2.6.1 鎂含量對β相析出之影響 23
2.6.2 冷加工量對β相析出之影響 24
2.6.3 退火溫度對β相析出之影響 26
2.6.4 敏化溫度與時間對β相析出之影響 27
2.7 介金屬化合物對鋁鎂合金腐蝕性質之影響 28
三、研究方法與程序 30
3.1 實驗目的及流程 30
3.2 合金熔配及成分分析 30
3.3 均質化、輥軋、退火處理 32
3.3.1 均質化處理 32
3.3.2輥軋 32
3.3.3安定化及敏化處理 32
3.4 顯微結構分析 33
3.4.1 光學顯微鏡(Optical Microscopy) 33
3.4.2 掃描式電子顯微鏡(Scanning Electron Microscopy) 34
3.4.3 穿透式電子顯微鏡(Transmission Electron Microscopy) 34
3.5 導電度量測(Electrical Conductivity, %IACS) 35
3.6 機械性質分析 35
3.6.1 硬度檢測(Hardness, HV) 35
3.6.2拉伸試驗(Tensile Test) 35
3.7 腐蝕性質分析 36
3.7.1 ASTM G67 Nitric Acid Mass Loss Test(NAMLT) 36
3.7.2慢速應變拉伸(Slow Strain Rate Test SSRT) 37
四、初步研究成果 39
4.1 熔配材料化學成分分析 39
4.2 微結構分析 39
4.2.1 製程道次顯微結構之變化 39
4.2.2 安定化處理對AA5383之β相析出形貌 45
4.2.3 敏化處理對AA5383顯微結構及β相析出之影響 48
4.2.4 導電度分析 59
4.3 機械性質分析 64
4.3.1 硬度測試 64
4.3.2 拉伸試驗分析 68
4.3.3 拉伸破斷面分析 69
4.4 腐蝕性質分析 72
4.4.1 沿晶腐蝕性質分析 72
4.4.2 應力腐蝕性質分析 82
五、結論 93
六、參考文獻 95

表目錄
表1.1 ASTM5383成分規範表 2
表2.1 鋁合金之分類 4
表2.2 退火及敏化處理對Al-6.8Mg鋁鎂合金電阻之差異變化 25
表2.3 鋁鎂合金內金屬間化合物腐蝕電位比較表 29
表3.1 熔配合金成分分析表 32
表4.1 熔配合金成分分析表 39
表4.2 AA5383於不同狀態下之硬度(HV) 66
表4.3 合金經不同熱處理之機械性質 69
圖目錄
圖2.1 合金元素在鋁合金中的固溶強化效果 5
圖2.2 冷加工對顯微組織之影響 6
圖2.3 鋁鎂二元相圖 7
圖2.4 Mg含量對鋁鎂合金強度之影響 7
圖2.5 MnAl6於晶粒及晶界上散布之TEM圖 9
圖2.6 錳對退火態鋁鎂合金機械性質之影響 9
圖2.7 鋁鈦二元相圖 10
圖2.8 Al3Zr析出之SEM圖 11
圖2.9元素對鋁鎂合金再結晶溫度之影響 12
圖2.10 不同鋅含量之鋁合金經135℃時效之拉伸性質 13
圖2.11 退火過程示意圖 14
圖2.12 AA5083鋁鎂合金經冷加工85%後,退火溫度與延伸率、強度關係 15
圖2.13 Al-6.8Mg合金之晶粒組織 16
圖2.14 (a)冷輥組織沿晶腐蝕;(b)再結晶組織沿晶腐蝕;(c)均勻腐蝕 18
圖2.15 ASTM G66孔蝕及層剝腐蝕程度 19
圖2.16 應力腐蝕破裂主要因子之維恩(Venn)關係圖 20
圖2.17 AA5083之慢速應變拉伸合金之破斷面 21
圖2.18 應力強度因子與應力腐蝕裂縫成長速率之關係 22
圖2.19 鋁鎂合金不同敏化程度之金相組織及NAMLT標準 23
圖2.20 Mg含量對鋁鎂合金敏化之影響 24
圖2.21 AA5083鋁鎂合金經175℃加熱10天後之TEM顯微組織 25
圖2.22 Al-6.8Mg經敏化處理β相析出OM圖 26
圖2.23 不同退火溫度之Al-6.8Mg合金經敏化處理之慢速應力拉伸圖 27
圖2.24 5083-H116於各敏化溫度之硝酸腐蝕重量損失 28
圖2.25 鋁鎂合金與其他介金屬化合物之還原電位比較 29
圖3.1 試驗流程圖 31
圖3.2 金屬模具示意圖 31
圖3.3 金相試片取樣位置 34
圖3.4 拉伸試片尺寸圖 36
圖3.5 拉伸試片與G67試片取樣方向 38
圖3.6 G67試片尺寸圖 38
圖4.1 AA5383合金鑄態顯微結構OM圖 40
圖4.2 AA5383合金經480℃/8H/WQ均質化熱處理顯微結構OM圖 40
圖4.3 AA5383合金經450℃熱輥之顯微結構OM圖 41
圖4.4 AA5383合金經400℃/1H/WQ退火處理之顯微結構OM圖 41
圖4.5 AA5383合金經50%冷加工之顯微結構OM圖 42
圖4.6 AA5383合金冷加工後施以220℃/3h/WQ 43
圖4.7 AA5383合金冷加工後施以220℃/6h/WQ 43
圖4.8 AA5383合金冷加工後施以250℃/1h+220℃/2h/WQ 44
圖4.9 AA5383合金冷加工後施以280℃/1h+220℃/2h/WQ 44
圖4.10 AA5383合金冷輥材β相析出OM圖 45
圖4.11 AA5383合金冷加工後施以220℃/3h/WQ 46
圖4.12 AA5383合金冷加工後施以220℃/6h/WQ 46
圖4.13 AA5383合金冷加工後施以250℃/1h+220℃/2h/WQ 47
圖4.14 AA5383合金冷加工後施以280℃/1h+220℃/2h/WQ 47
圖4.15合金經敏化處理後之顯微結構OM圖 48
圖4.16 AA5383合金經220℃/3h/WQ安定化處理後施以敏化處理後之顯微結構OM圖 48
圖4.17 AA5383合金經220℃/6h/WQ安定化處理後施以敏化處理後之顯微結構OM圖 49
圖4.18 AA5383合金經250℃/1h+220℃/2h/WQ安定化處理後施以敏化處理後之顯微結構OM圖 49
圖4.19 AA5383合金經280℃/1h+220℃/2h/WQ安定化處理後施以敏化處理後之顯微結構OM圖 50
圖4.20 AA5383合金冷輥材施以敏化處理後β相析出OM圖 50
圖4.21 AA5383合金經220℃/3h/WQ安定化處理後施以敏化處理後之β相析出OM圖 51
圖4.22 AA5383合金經220℃/6h/WQ安定化處理後施以敏化處理後之β相析出OM圖 52
圖4.23 AA5383合金經250℃/1h+220℃/2h/WQ安定化處理後施以敏化處理後之β相析出OM圖 52
圖4.24 AA5383合金經280℃/1h+220℃/2h/WQ安定化處理後施以敏化處理後之β相析出OM圖 53
圖4.25 A合金經不同製程處理後施以敏化處理之β相析出SEM圖 54
圖4.26 B合金經不同製程處理後施以敏化處理之β相析出SEM圖 55
圖4.27 AA5383 H15合金施以敏化處理後之TEM圖 57
圖4.28 AA5383合金經250℃/1h+220℃/2h/WQ安定化處理後施以敏化處理之TEM圖 57
圖4.29 AA5383合金經280℃/1h+220℃/2h/WQ安定化處理後施以敏化處理之TEM圖 58
圖4.30 AA5383合金不同微結構對β相析出影響之示意圖 59
圖4.31 Al-4.8Mg-0.8Mn-0.05Ti合金不同狀態下之導電度量測結果 60
圖4.32 AA5383合金經不同製程下敏化前、後導電度量測結果 61
圖4.33 A、B鋁鎂合金經過不同安定化處理後之相對導電度差異變化 62
圖4.34 A、B鋁鎂合金各種安定化處理敏化前後相對導電度差異變化 63
圖4.35 A、B鑄件在不同製程下之硬度量測 65
圖4.36 AA 5383-H15經不同安定化退火及敏化處理後之硬度(HV)測試 67
圖4.37 A合金經不同安定化處理後拉伸破斷面SEM圖 70
圖4.38 B合金經不同安定化處理後拉伸破斷面SEM圖 71
圖4.39 A、B合金H15經不同安定化處理後敏化前、後之NAMLT測試 74
圖4.40 AA5383合金冷輥材經G67試驗後LT-L表面腐蝕形貌SEM圖 76
圖4.41 AA5383合金冷輥材敏化處理後經G67試驗後LT-L表面腐蝕形貌SEM圖 76
圖4.42 AA5383合金施以220℃/3h/WQ安定化處理及敏化處理後經G67試驗後LT-L表面腐蝕形貌SEM圖 77
圖4.43 AA5383合金施以220℃/6h/WQ安定化處理及敏化處理後經G67試驗後LT-L表面腐蝕形貌SEM圖 77
圖4.44 AA5383合金施以250℃/1h+220℃/2h/WQ安定化處理及敏化處理後經G67試驗後LT-L表面腐蝕形貌SEM圖 78
圖4.45 AA5383合金施以280℃/1h+220℃/2h/WQ安定化處理及敏化處理後經G67試驗後LT-L表面腐蝕形貌SEM圖 78
圖4.46 AA5383合金冷輥材敏化處理後經G67試驗後ST-L表面腐蝕形貌OM圖 80
圖4.47 AA5383合金施以220℃/3h/WQ安定化處理及敏化處理後經G67試驗後ST-L表面腐蝕形貌OM圖 80
圖4.48 AA5383合金施以250℃/1h+220℃/2h/WQ安定化處理及敏化處理後經G67試驗後ST-L表面腐蝕形貌OM圖 81
圖4.49 AA5383合金施以280℃/1h+220℃/2h/WQ安定化處理及敏化處理後經G67試驗後ST-L表面腐蝕形貌OM圖 81
圖4.50 A、B合金經不同安定化處理後施以敏化處理之慢應變拉伸試驗 83
圖4.51 AA5383合金冷輥材敏化處理後 84
圖4.52 AA5383合金經220℃/3h/WQ安定化處理施以敏化處理後 85
圖4.53 AA5383合金經250℃/1h+220℃/2h/WQ安定化處理施以敏化處理後 86
圖4.54 AA5383合金經280℃/1h+220℃/2h/WQ安定化處理施以敏化處理後 87
圖4.55 AA5383合金冷輥材施以敏化處理後 89
圖4.56 AA5383合金冷輥材沿晶腐蝕(ICG)破壞 89
圖4.57 AA5383合金經220℃/3h/WQ安定化處理施以敏化處理後 90
圖4.58 AA5383合金經250℃/1h+220℃/2h/WQ安定化處理施以敏化處理後 91
圖4.59 AA5383合金經280℃/1h+220℃/2h/WQ安定化處理施以敏化處理後 92
參考文獻 [1] J. R. Davis, Aluminum and Aluminum Alloys, AMS International, Metals Park, Ohio, pp.33-34, 1993.
[2] J. R. E. Sanders, P. A. Hollinshead, and E.A. Simielli, “Industrial Development of Non-Heat Treatable Aluminum Alloys,” Materials Forum, Vol. 28, pp.53-64, 2004.
[3] J. E. Hatch, Aluminum Properties and Physical Metallurgy, ASM International, Metals Park, Ohio, pp.371-374, 1984.
[4] J. R. Davis, Corrosion of Aluminum and Aluminum Alloys, ASM International, Metals Park, Ohio, p.19, 1993.
[5] R. Schwarting, G. Ebel, and T. J. Dorsch, “Manufacturing Techniques and Process Challenges with CG47 Class Ship Aluminum Super- structures Modernization and Repairs,” Fleet Maintenance & Modernization Symposium 2011: Assessing Current & Future Maintenance Strategies, San Diego, U.S.A, pp.1-17, 2011.
[6] J. R. Davis, Aluminum and Aluminum Alloys, ASM International, Metals Park, Ohio, p.33, 1993.
[7] ASTM B928/B928M-09 Standard Specification for High Magnesium Aluminum-Alloy Sheet and Plate for Marine Service and Similar Environments.
[8] J. R. Davis, Corrosion of Aluminum and Aluminum Alloys, ASM International, Metals Park, Ohio, pp.28-29, 1999.
[9] F. S. Bovard, “Corrosion in marine and saltwater environments II, in D. A. Shifler, T. Tsuru, P. M. Natishan, S. Ito (Eds.),” Electrochemical Society Proceedings, Vol. 2004–14, pp.232–243, 2005.
[10] J. L. Searles, P. I. Gouma, and R. G. Buchheit, “Stress Corrosion Cracking of Sensitized AA5083(Al-4.5Mg-1.0Mn),” Metallurgical and Materials Transactions A, Vol. 32, pp.2859–2867, 2001.
[11] C. Meng, D. Zhang, C. Hua, J. Zhang, and L. Zhuang, “Effect of stabilizing treatment on the intergrangular corrosion behavior of high strength Al-Mg alloys,” Materials Science Forum, Vol.794-796, pp.253-258, 2014.
[12] R. Y. Chen, H. Y. Chu, C. C. Lai, and C. T. Wu, “Effects of annealing temperature on the mechanical properties and sensitization of 5083-H116 aluminum alloy,” Journal of Materials: Design and Applications, Vol 229, pp.339-346, 2015.
[13] C. H. Yen, C. T. Wu, Y. H. Chen, and S. L. Lee, “Effects of annealing temperature on stress corrosion susceptibility of AA5083-H15 alloys,” Journal of Materials Research, Vol 31, pp.1163-1170, 2016.
[14] R. Y. Chen and C. C. Lai, “Reversing sensitization of naturally exfoliated 5456-H116 aluminum alloys,” Journal of Marine Science and Technology, Vol 22, pp.450-454, 2014.
[15] M. Popovic and E. Romhanji, “Characterization of microstructural changes in an Al-6.8 wt.% Mg alloy by electrical resistivity measurements,” Materials Science and Engineering A, Vol.492, pp.460–467, 2008.
[16] D. Yang, X. Li, D. He, and H. Huang, “Effect of minor Er and Zr on microstructure and mechanical properties of Al–Mg–Mn alloy (5083) welded joints,” Materials Science & Engineering A, Vol.561, pp.226–231, 2013.
[17] Z. Yin, Q. Pan, Y. Zhang, and F. Jiang, “Effect of minor Sc and Zr on the microstructure and mechanical properties of Al–Mg based alloys,” Materials Science and Engineering A, Vol.280, pp.151–155, 2000.
[18] C. Meng, D. Zhang, C. Hua, J. Zhang, and L. Zhuang, “Mechanical properties, intergranlar corrosion behavior and microstructure of Zn modified Al-Mg alloys,” Journal of Alloys and Compounds, Vol.617, pp.925-932, 2014.
[19] C. Meng, D. Zhang, L. Zhuang, and J. Zhang, “Correlations between stress corrosion cracking, grain boundary precipitates and Zn content of Al-Mg-Zn alloys,” Journal of Alloys and Compounds, Vol 655, pp.178-187, 2016.
[20] R. A. Sielski, “Research Needs in Aluminum Structure,” Ships and Offshore Structure, Vol.3, NO.1, pp.57-65, 2008.
[21] ASTM G66, “Standard Test Method for Visual Assessment of Exfoliation Corrosion Susceptibility of 5XXX Series Aluminum Alloys (ASSET TEST),” ASTM Internation, West Conshohocken, PA, 1999.
[22] ASTM G67-04, “Standard Test Method for Determining the Susceptibility to Intergranular Corrosion of 5XXX Series Aluminum Alloys by Mass Loss After Exposure to Nitric Acid (NAMLT TEST),” ASTM Internation, West Conshohocken, PA, 1999.
[23] E.T. George and D. S. MacKenzie, Handbook of Aluminum Volume 1: Physical Metallurgy and Processes. Marcel Dekker Inc., New York, pp.93-94, 2003.
[24] W. D. Callister and D. G. Rethwisch, Materials Science and Engineering, John Wiley and Sons, 8th Edition, New York, p.212, 1997.
[25] T. B. Massalski, J. L. Murray, and L. H. Bennet, “Binary Alloy Phase Diagrams,” ASM International, Ohio, p.130, 1990.
[26] Y. Nakayama, T. Takaai, and D. Jin, “Precipitation behaviors of β-phase and changes in mechanical properties of Al-Mg system alloys,” Materials Science Forum, Vol.217-222, pp.1269-1274, 1996.
[27] L. F. Modolfo, Aluminum Alloys: Structure and Properties, Butterworths London, pp.806-808, 1976.
[28] M. A. Garcia-Bernal, R. S. Mishra, R. Verma, and D. Hernandez-Silva, “Hot deformation behavior of friction-stir processed strip-cast 5083 aluminum alloys with different Mn contents,” Materials Science and Engineering A, Vol.534, pp.186–192, 2012.
[29] Y. Liu, L. Ou, C. Han, L. Zhang, and Y. Zhoa, “The influence of Mn on the microstructure and mechanical properties of the Al-5Mg-Mn alloy solidified under near-rapid cooling,” Journal of Materials Research, Vol.31, pp.1153-1162, 2016.
[30] S. W. Lee and J. W. Yeh, “ Superplasticity of 5083 alloys with Zr and Mn additions produced by reciprocating extrusion,” Materials Science and Engineering A, Vol.460-461, pp.409-419, 2007.
[31] J. R. Davis, Corrosion of Aluminum and Aluminum Alloys, ASM International, Metals Park, Ohio, p.43-44, 1993.
[32] B. Hu and H Li., “Grain refinement og DIN 226S alloy at lower titanium and boron addition,” Journal of Materials Proccessing Technology, Vol.74, pp.56-60, 1998.
[33] Z. Liu, Z. Li, M. Wang, and Y. Weng, “Effect of complex alloying of Sc, Zr and Ti on the microstructure and mechanical properties of Al-5Mg alloys,” Materials Science and Engineering A, Vol.483-484, pp.120-122, 2008.
[34] K. E. Knipling, R. A. Karnesky, C. P. Lee, D. C. Dunand, and D. N. Seidman, “Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–0.1Zr (at.%) alloys during isochronal aging,” Acta Materialia, Vol. 58, pp. 5184- 5195, 2010.
[35] K. E. Knipling, D. N. Seidma, and D. C. Dunand, “Ambientand hightemperature mechanical properties of isochronally aged Al-0.06Sc, Al-0.06Zr and Al-0.06Sc-0.06Zr (at.%) alloys,” Acta Materialia, Vol. 59, pp. 943- 954, 2011.
[36] L. M. Wu, W. H. Wang, Y. F. Hsu, and S. Trong, “Effects of homogenization treatment on recrystallization behavior and dispersoid distribution in an Al-Zn-Mg-Sc-Zr alloy,” Journal of Alloys and Compounds, Vol.456, pp.163-169, 2008.
[37]R. D. Doherty, “Role of interfaces in kinetics of internal shape changes,” Metal Science, Vol.16, pp.1-13, 1982.
[38] S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita, and T. G. Langdon, “Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al-Mg alloys,” Acta Materialia, Vol.50, pp.553-564, 2002.
[39] V. G. Davydov, T. D. Rostova, V. V. Zakharov, Y. A. Filatov and V. I. Yelagin, “Scientific principles of making an alloying addition of scandium to aluminum alloys,” Materials Science and Engineering A, Vol. 280, pp.30-36, 2000.
[40] L. A. Bendersky, A. J. McAlister, and F. S. Biancaniello, “Phase Transformation during Annealing of Rapidly Solidified Al-Rich Al-Fe-Si Alloys,” Metallurgical Transactions A, Vol.19, No.12, pp.2893-2900, 1988.
[41] J. E. Hatch, “Aluminum: Properties and Physical Metallurgy,” ASM International Metals Park, Ohio, p.238, 1984.
[42] M. C. Carroll, P. I. Gouma, M. J. Mills, G. S. Daehn, and B. R. Dunbar, “Effects of Zn additions on the grain boundary precipitation and corrosion of Al 5083,” Scripta materialia, Vol.42, pp.335-340, 2002.
[43] F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier Oxford, pp.2-3, 2004.
[44] Y. B. Lee, D. H. Shin, K. T. Park, and W. J. Nam, “Effect of annealing temperature on microstructures and mechanical properties of a 5083 Al alloy deformed at cryogenic temperature,” Scripta Materialia, Vol.51, pp.355-359, 2004.
[45] M. Popovic and E. Romhanji, “Stress corrosion cracking susceptibility of Al-Mg alloy sheet with high Mg content,” Journal of Materials Processing Technology, Vol.125-126, pp.275-280, 2002.
[46] 廖?民, “鋁合金的腐蝕與防治,” 防蝕工程, Vol. 5, No. 4, pp. 29-40, 1991.
[47] N. Birbilis and R.G. Buchheit, “Electrochemical characteristics of intermetallic phases in aluminum alloys an experimental survey and discussion,” Journal of The Electrochemical Society, Vol.152, No.4, pp.B140-B151, 2005.
[48] J. Gunson, “Effect of sensitisation on the corrosion fatigue properties of AA5456-H116,” University of Birmingham, 2011
[49] 莊東漢, 材料破損分析, 五南圖書, pp.399, 2007.
[50] J. C. Chang and T. H. Chuang, “Stress corrosion cracking susceptibility of the Superplastically Formed 5083 Aluminum Alloy in 3.5Pct NaCl Solution,” METALLURGICAL AND MATERIALS TRANSACTION A, Vol.30A, pp.3191-3199, 1999.
[51] J. Gao, “Experiments to Explore the Mechanisms of Stress Corrosion Cracking,” University of Rochester, Rochester, New York, 2011.
[52] E. H. Dix Jr., W. A. Anderson and M. B. Shumaker, “Influence of service temperature on the resistance of wrought aluminum-magnesium alloys to corrosion,” Corrosion, Vol.15, pp. 19–26, 1959.
[53] R. K. Gupta, R. Zhang, C. H. J. Davies and N. Birbilis, “Influence of Mg Content on the Sensitization and Corrosion of Al-xMg(-Mn) Alloys,” Corrosion, Vol.69, No.11, pp.1081-1087, 2013.
[54] N. R. M. R. Bhargava, I. Samajdar, S. Ranganathan and M. K. Surappa, “Role of cold work and SiC reinforcements on the β′/β precipitation in Al-10 pct Mg alloy,” Metallurgical and Materials Transactions A, Vol.29, No.11, pp.2835-2842, 1998.
[55] R. Goswami, G. Spanos, P. S. Pao and R. L. Holtz, “Precipitation Behavior of the β Phase in Al-5083,” Materials Science and Engineering A, Vol.527, No.4–5, pp.1089-1095, 2010.
[56] F. S. Bovard, “Corrosion in marine and saltwater environments II, in D. A. Shifler, T. Tsuru, P. M. Natishan, S. Ito (Eds.),” Electrochemical Society Proceedings, Vol.2004–14, pp.232–243, 2005.
[57] I. N. A. Oguocha, O. J. Adigun and S. Yannacopoulos, “Effect of sensitization heat treatment on properties of Al–Mg alloy AA5083-H116,” Journal of Materials Science, Vol.43, No.12, pp. 4208-4214, 2008.
[58] M. L. C. Lim, J. R. Scully and R. G. Kelly, “Intergranular Corrosion Penetration in an Al-Mg Alloy as a Function of Electrochemical and Metallurgical Conditions,” Corrosion, Vol.69, No.1, pp.35-47, 2012.
[59] L. Tan and T. R. Allen, “Effect of thermomechanical treatment on the corrosion of AA5083,” Corrosion Science, Vol.52, pp.548-554, 2010.
[60] Kiryl A. Yasakau, Mikhail L. Zheludkevich, Sviatlan V. Lamakaa, Mario G. S. Ferreira, “Role of intermetallic phases in localized corrosion of AA5083,” Electrochimica Acta, Vol.52, pp.7651-7659, 2007.
[61] T. Y. Zeng, “Manufacturing method for Al-Mg alloy sheet with high strength and high corrosion resistance,” Taiwan Patent Publication Number:201235481, 2012.
[62] ASTM, ASTM 557-Standard Test Methods for Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products. ASTM Internation: West Conshohocken, PA.2010.
[63] ASTM, ASTM G129- Standard Practice for Slow Strain Rate Testing to Evaluate the Susceptibility of Metallic Materials to Environmentally Assisted Cracking. ASTM Internation: West Conshohocken, PA.2004.
[64] A. V. Mikhaylovskaya, A. G. Mochugovskiy, V. S. Levchenko, N. Y. Tabachkova, W. Mufalo and V. K. Portnoy, “Precipitation behavior of L12 Al3Zr phase Al-Mg alloy,” Materials Characterization, Vol.139, pp.30-37, 2018.
[65] H. Yukawa, Y. Murata, M. Morinaga, Y. Takahashi and H. Yoshida, “Heterogeneous distributions of magnesium atoms near the precipitate in Al-Mg based alloys,” Acta Metallurgica et Materialia, Vol.43, No.2, pp.681-688, 1995.
[66] S. D. Liu, W. J. Liu, Y. Zhang, X. M. Zhang and Y. L. Deng, “Effect of microstructure on the quench sensitivity of Al-Zn-Mg-Cu alloys,” Journal of Alloys and Compounds, Vol.507, pp. 53-61, 2010.
[67] S. D. Liu, Q. M. Zhong, Y. Zhang, W. J. Liu, X. M. Zhang and Y. L. Deng, “Investigation of quench sensitivity of high strength Al–Zn–Mg–Cu alloys by time–temperature-properties diagrams,” Materials and Design, Vol.31, pp.3116-3120, 2010.
[68] J. E. Hatch, “Aluminum: Properties and Physical Metallurgy,” ASM International Metals Park, Ohio, p.231, 1984.
[69] S. L. Lee and S. T. Wu, “Identification of dispersoids in Al-Mg alloys containing Mn,” Metallurgical Transactions A, Vol.18A pp.1353-1357, 1987.
[70] K. E. Knipling, David C. Dunand and David N. Seidman, “Precipitation evolution in Al-Zr and Al-Zr-Ti alloys during isothermal aging at 375-425 C,” Acta Materialia, Vol.56, pp.114-127, 2008.
[71] M. M. Sharma, J. D. Tomedi and T. J. Weigley, “Slow strain rate testing and stress corrosion cracking of ultra-fine grained and conventional Al-Mg alloy,” Materials Science and Engineering A, Vol.619, pp.35-46, 2014.
[72] Y. Shi, Q. Pan, M. Li, X. Huang and B. Li, “Influence of alloyed Sc and Zr, and heat treatment on microstructures and stress corrosion cracking of Al-Zn-Mg-Cu alloys,” Materials Science and Engineering A, Vol.621, pp.173-181, 2015.
指導教授 李勝隆(Sheng-Long Lee) 審核日期 2018-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明