參考文獻 |
[1] J. R. Davis, Aluminum and Aluminum Alloys, AMS International, Metals Park, Ohio, pp.33-34, 1993.
[2] J. R. E. Sanders, P. A. Hollinshead, and E.A. Simielli, “Industrial Development of Non-Heat Treatable Aluminum Alloys,” Materials Forum, Vol. 28, pp.53-64, 2004.
[3] J. E. Hatch, Aluminum Properties and Physical Metallurgy, ASM International, Metals Park, Ohio, pp.371-374, 1984.
[4] J. R. Davis, Corrosion of Aluminum and Aluminum Alloys, ASM International, Metals Park, Ohio, p.19, 1993.
[5] R. Schwarting, G. Ebel, and T. J. Dorsch, “Manufacturing Techniques and Process Challenges with CG47 Class Ship Aluminum Super- structures Modernization and Repairs,” Fleet Maintenance & Modernization Symposium 2011: Assessing Current & Future Maintenance Strategies, San Diego, U.S.A, pp.1-17, 2011.
[6] J. R. Davis, Aluminum and Aluminum Alloys, ASM International, Metals Park, Ohio, p.33, 1993.
[7] ASTM B928/B928M-09 Standard Specification for High Magnesium Aluminum-Alloy Sheet and Plate for Marine Service and Similar Environments.
[8] J. R. Davis, Corrosion of Aluminum and Aluminum Alloys, ASM International, Metals Park, Ohio, pp.28-29, 1999.
[9] F. S. Bovard, “Corrosion in marine and saltwater environments II, in D. A. Shifler, T. Tsuru, P. M. Natishan, S. Ito (Eds.),” Electrochemical Society Proceedings, Vol. 2004–14, pp.232–243, 2005.
[10] J. L. Searles, P. I. Gouma, and R. G. Buchheit, “Stress Corrosion Cracking of Sensitized AA5083(Al-4.5Mg-1.0Mn),” Metallurgical and Materials Transactions A, Vol. 32, pp.2859–2867, 2001.
[11] C. Meng, D. Zhang, C. Hua, J. Zhang, and L. Zhuang, “Effect of stabilizing treatment on the intergrangular corrosion behavior of high strength Al-Mg alloys,” Materials Science Forum, Vol.794-796, pp.253-258, 2014.
[12] R. Y. Chen, H. Y. Chu, C. C. Lai, and C. T. Wu, “Effects of annealing temperature on the mechanical properties and sensitization of 5083-H116 aluminum alloy,” Journal of Materials: Design and Applications, Vol 229, pp.339-346, 2015.
[13] C. H. Yen, C. T. Wu, Y. H. Chen, and S. L. Lee, “Effects of annealing temperature on stress corrosion susceptibility of AA5083-H15 alloys,” Journal of Materials Research, Vol 31, pp.1163-1170, 2016.
[14] R. Y. Chen and C. C. Lai, “Reversing sensitization of naturally exfoliated 5456-H116 aluminum alloys,” Journal of Marine Science and Technology, Vol 22, pp.450-454, 2014.
[15] M. Popovic and E. Romhanji, “Characterization of microstructural changes in an Al-6.8 wt.% Mg alloy by electrical resistivity measurements,” Materials Science and Engineering A, Vol.492, pp.460–467, 2008.
[16] D. Yang, X. Li, D. He, and H. Huang, “Effect of minor Er and Zr on microstructure and mechanical properties of Al–Mg–Mn alloy (5083) welded joints,” Materials Science & Engineering A, Vol.561, pp.226–231, 2013.
[17] Z. Yin, Q. Pan, Y. Zhang, and F. Jiang, “Effect of minor Sc and Zr on the microstructure and mechanical properties of Al–Mg based alloys,” Materials Science and Engineering A, Vol.280, pp.151–155, 2000.
[18] C. Meng, D. Zhang, C. Hua, J. Zhang, and L. Zhuang, “Mechanical properties, intergranlar corrosion behavior and microstructure of Zn modified Al-Mg alloys,” Journal of Alloys and Compounds, Vol.617, pp.925-932, 2014.
[19] C. Meng, D. Zhang, L. Zhuang, and J. Zhang, “Correlations between stress corrosion cracking, grain boundary precipitates and Zn content of Al-Mg-Zn alloys,” Journal of Alloys and Compounds, Vol 655, pp.178-187, 2016.
[20] R. A. Sielski, “Research Needs in Aluminum Structure,” Ships and Offshore Structure, Vol.3, NO.1, pp.57-65, 2008.
[21] ASTM G66, “Standard Test Method for Visual Assessment of Exfoliation Corrosion Susceptibility of 5XXX Series Aluminum Alloys (ASSET TEST),” ASTM Internation, West Conshohocken, PA, 1999.
[22] ASTM G67-04, “Standard Test Method for Determining the Susceptibility to Intergranular Corrosion of 5XXX Series Aluminum Alloys by Mass Loss After Exposure to Nitric Acid (NAMLT TEST),” ASTM Internation, West Conshohocken, PA, 1999.
[23] E.T. George and D. S. MacKenzie, Handbook of Aluminum Volume 1: Physical Metallurgy and Processes. Marcel Dekker Inc., New York, pp.93-94, 2003.
[24] W. D. Callister and D. G. Rethwisch, Materials Science and Engineering, John Wiley and Sons, 8th Edition, New York, p.212, 1997.
[25] T. B. Massalski, J. L. Murray, and L. H. Bennet, “Binary Alloy Phase Diagrams,” ASM International, Ohio, p.130, 1990.
[26] Y. Nakayama, T. Takaai, and D. Jin, “Precipitation behaviors of β-phase and changes in mechanical properties of Al-Mg system alloys,” Materials Science Forum, Vol.217-222, pp.1269-1274, 1996.
[27] L. F. Modolfo, Aluminum Alloys: Structure and Properties, Butterworths London, pp.806-808, 1976.
[28] M. A. Garcia-Bernal, R. S. Mishra, R. Verma, and D. Hernandez-Silva, “Hot deformation behavior of friction-stir processed strip-cast 5083 aluminum alloys with different Mn contents,” Materials Science and Engineering A, Vol.534, pp.186–192, 2012.
[29] Y. Liu, L. Ou, C. Han, L. Zhang, and Y. Zhoa, “The influence of Mn on the microstructure and mechanical properties of the Al-5Mg-Mn alloy solidified under near-rapid cooling,” Journal of Materials Research, Vol.31, pp.1153-1162, 2016.
[30] S. W. Lee and J. W. Yeh, “ Superplasticity of 5083 alloys with Zr and Mn additions produced by reciprocating extrusion,” Materials Science and Engineering A, Vol.460-461, pp.409-419, 2007.
[31] J. R. Davis, Corrosion of Aluminum and Aluminum Alloys, ASM International, Metals Park, Ohio, p.43-44, 1993.
[32] B. Hu and H Li., “Grain refinement og DIN 226S alloy at lower titanium and boron addition,” Journal of Materials Proccessing Technology, Vol.74, pp.56-60, 1998.
[33] Z. Liu, Z. Li, M. Wang, and Y. Weng, “Effect of complex alloying of Sc, Zr and Ti on the microstructure and mechanical properties of Al-5Mg alloys,” Materials Science and Engineering A, Vol.483-484, pp.120-122, 2008.
[34] K. E. Knipling, R. A. Karnesky, C. P. Lee, D. C. Dunand, and D. N. Seidman, “Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–0.1Zr (at.%) alloys during isochronal aging,” Acta Materialia, Vol. 58, pp. 5184- 5195, 2010.
[35] K. E. Knipling, D. N. Seidma, and D. C. Dunand, “Ambientand hightemperature mechanical properties of isochronally aged Al-0.06Sc, Al-0.06Zr and Al-0.06Sc-0.06Zr (at.%) alloys,” Acta Materialia, Vol. 59, pp. 943- 954, 2011.
[36] L. M. Wu, W. H. Wang, Y. F. Hsu, and S. Trong, “Effects of homogenization treatment on recrystallization behavior and dispersoid distribution in an Al-Zn-Mg-Sc-Zr alloy,” Journal of Alloys and Compounds, Vol.456, pp.163-169, 2008.
[37]R. D. Doherty, “Role of interfaces in kinetics of internal shape changes,” Metal Science, Vol.16, pp.1-13, 1982.
[38] S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita, and T. G. Langdon, “Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al-Mg alloys,” Acta Materialia, Vol.50, pp.553-564, 2002.
[39] V. G. Davydov, T. D. Rostova, V. V. Zakharov, Y. A. Filatov and V. I. Yelagin, “Scientific principles of making an alloying addition of scandium to aluminum alloys,” Materials Science and Engineering A, Vol. 280, pp.30-36, 2000.
[40] L. A. Bendersky, A. J. McAlister, and F. S. Biancaniello, “Phase Transformation during Annealing of Rapidly Solidified Al-Rich Al-Fe-Si Alloys,” Metallurgical Transactions A, Vol.19, No.12, pp.2893-2900, 1988.
[41] J. E. Hatch, “Aluminum: Properties and Physical Metallurgy,” ASM International Metals Park, Ohio, p.238, 1984.
[42] M. C. Carroll, P. I. Gouma, M. J. Mills, G. S. Daehn, and B. R. Dunbar, “Effects of Zn additions on the grain boundary precipitation and corrosion of Al 5083,” Scripta materialia, Vol.42, pp.335-340, 2002.
[43] F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier Oxford, pp.2-3, 2004.
[44] Y. B. Lee, D. H. Shin, K. T. Park, and W. J. Nam, “Effect of annealing temperature on microstructures and mechanical properties of a 5083 Al alloy deformed at cryogenic temperature,” Scripta Materialia, Vol.51, pp.355-359, 2004.
[45] M. Popovic and E. Romhanji, “Stress corrosion cracking susceptibility of Al-Mg alloy sheet with high Mg content,” Journal of Materials Processing Technology, Vol.125-126, pp.275-280, 2002.
[46] 廖?民, “鋁合金的腐蝕與防治,” 防蝕工程, Vol. 5, No. 4, pp. 29-40, 1991.
[47] N. Birbilis and R.G. Buchheit, “Electrochemical characteristics of intermetallic phases in aluminum alloys an experimental survey and discussion,” Journal of The Electrochemical Society, Vol.152, No.4, pp.B140-B151, 2005.
[48] J. Gunson, “Effect of sensitisation on the corrosion fatigue properties of AA5456-H116,” University of Birmingham, 2011
[49] 莊東漢, 材料破損分析, 五南圖書, pp.399, 2007.
[50] J. C. Chang and T. H. Chuang, “Stress corrosion cracking susceptibility of the Superplastically Formed 5083 Aluminum Alloy in 3.5Pct NaCl Solution,” METALLURGICAL AND MATERIALS TRANSACTION A, Vol.30A, pp.3191-3199, 1999.
[51] J. Gao, “Experiments to Explore the Mechanisms of Stress Corrosion Cracking,” University of Rochester, Rochester, New York, 2011.
[52] E. H. Dix Jr., W. A. Anderson and M. B. Shumaker, “Influence of service temperature on the resistance of wrought aluminum-magnesium alloys to corrosion,” Corrosion, Vol.15, pp. 19–26, 1959.
[53] R. K. Gupta, R. Zhang, C. H. J. Davies and N. Birbilis, “Influence of Mg Content on the Sensitization and Corrosion of Al-xMg(-Mn) Alloys,” Corrosion, Vol.69, No.11, pp.1081-1087, 2013.
[54] N. R. M. R. Bhargava, I. Samajdar, S. Ranganathan and M. K. Surappa, “Role of cold work and SiC reinforcements on the β′/β precipitation in Al-10 pct Mg alloy,” Metallurgical and Materials Transactions A, Vol.29, No.11, pp.2835-2842, 1998.
[55] R. Goswami, G. Spanos, P. S. Pao and R. L. Holtz, “Precipitation Behavior of the β Phase in Al-5083,” Materials Science and Engineering A, Vol.527, No.4–5, pp.1089-1095, 2010.
[56] F. S. Bovard, “Corrosion in marine and saltwater environments II, in D. A. Shifler, T. Tsuru, P. M. Natishan, S. Ito (Eds.),” Electrochemical Society Proceedings, Vol.2004–14, pp.232–243, 2005.
[57] I. N. A. Oguocha, O. J. Adigun and S. Yannacopoulos, “Effect of sensitization heat treatment on properties of Al–Mg alloy AA5083-H116,” Journal of Materials Science, Vol.43, No.12, pp. 4208-4214, 2008.
[58] M. L. C. Lim, J. R. Scully and R. G. Kelly, “Intergranular Corrosion Penetration in an Al-Mg Alloy as a Function of Electrochemical and Metallurgical Conditions,” Corrosion, Vol.69, No.1, pp.35-47, 2012.
[59] L. Tan and T. R. Allen, “Effect of thermomechanical treatment on the corrosion of AA5083,” Corrosion Science, Vol.52, pp.548-554, 2010.
[60] Kiryl A. Yasakau, Mikhail L. Zheludkevich, Sviatlan V. Lamakaa, Mario G. S. Ferreira, “Role of intermetallic phases in localized corrosion of AA5083,” Electrochimica Acta, Vol.52, pp.7651-7659, 2007.
[61] T. Y. Zeng, “Manufacturing method for Al-Mg alloy sheet with high strength and high corrosion resistance,” Taiwan Patent Publication Number:201235481, 2012.
[62] ASTM, ASTM 557-Standard Test Methods for Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products. ASTM Internation: West Conshohocken, PA.2010.
[63] ASTM, ASTM G129- Standard Practice for Slow Strain Rate Testing to Evaluate the Susceptibility of Metallic Materials to Environmentally Assisted Cracking. ASTM Internation: West Conshohocken, PA.2004.
[64] A. V. Mikhaylovskaya, A. G. Mochugovskiy, V. S. Levchenko, N. Y. Tabachkova, W. Mufalo and V. K. Portnoy, “Precipitation behavior of L12 Al3Zr phase Al-Mg alloy,” Materials Characterization, Vol.139, pp.30-37, 2018.
[65] H. Yukawa, Y. Murata, M. Morinaga, Y. Takahashi and H. Yoshida, “Heterogeneous distributions of magnesium atoms near the precipitate in Al-Mg based alloys,” Acta Metallurgica et Materialia, Vol.43, No.2, pp.681-688, 1995.
[66] S. D. Liu, W. J. Liu, Y. Zhang, X. M. Zhang and Y. L. Deng, “Effect of microstructure on the quench sensitivity of Al-Zn-Mg-Cu alloys,” Journal of Alloys and Compounds, Vol.507, pp. 53-61, 2010.
[67] S. D. Liu, Q. M. Zhong, Y. Zhang, W. J. Liu, X. M. Zhang and Y. L. Deng, “Investigation of quench sensitivity of high strength Al–Zn–Mg–Cu alloys by time–temperature-properties diagrams,” Materials and Design, Vol.31, pp.3116-3120, 2010.
[68] J. E. Hatch, “Aluminum: Properties and Physical Metallurgy,” ASM International Metals Park, Ohio, p.231, 1984.
[69] S. L. Lee and S. T. Wu, “Identification of dispersoids in Al-Mg alloys containing Mn,” Metallurgical Transactions A, Vol.18A pp.1353-1357, 1987.
[70] K. E. Knipling, David C. Dunand and David N. Seidman, “Precipitation evolution in Al-Zr and Al-Zr-Ti alloys during isothermal aging at 375-425 C,” Acta Materialia, Vol.56, pp.114-127, 2008.
[71] M. M. Sharma, J. D. Tomedi and T. J. Weigley, “Slow strain rate testing and stress corrosion cracking of ultra-fine grained and conventional Al-Mg alloy,” Materials Science and Engineering A, Vol.619, pp.35-46, 2014.
[72] Y. Shi, Q. Pan, M. Li, X. Huang and B. Li, “Influence of alloyed Sc and Zr, and heat treatment on microstructures and stress corrosion cracking of Al-Zn-Mg-Cu alloys,” Materials Science and Engineering A, Vol.621, pp.173-181, 2015. |