參考文獻 |
1. S. Tekoglu, G. Hernandez-Sosa, E. Kluge, U. Lemmer, and N. Mechau, “Gravure Printed Flexible Small-Molecule Organic Light Emitting Diodes,” Organic Electronics, Vol. 14, pp. 3493-3499, 2013.
2. J. Shi, M. B. Chan-Park, and C. M. Li, “Bottom Gate Organic Thin-Film Transistors Fabricated by Ultraviolet Transfer Embossing with Improved Device Performance,” Organic Electronics, Vol. 10, pp. 396-401, 2009.
3. X. Yu, Z. Wang, S. Yu, D. Ma, and Y. Han, “Micropatterning and Transferring of Polymeric Semiconductor Thin Films by Hot Lift-Off and Polymer Bonding Lithography in Fabrication of Organic Field Effect Transistors (OFETS) on Flexible Substrate,” Applied Surface Science, Vol. 257, pp. 9264-9268, 2011.
4. C. Koidis, S. Logothetidis, A. Ioakeimidis, A. Laskarakis, and C. Kapnopoulos, “Key Factors to Improve the Efficiency of Roll-To-Roll Printed Organic Photovoltaics,” Organic Electronics, Vol. 14, pp. 1744-1748, 2013.
5. S. Choi, Y. Zhou, W. Haske, J. W. Shim, and C. Fuentes-Hernandez, “ITO-Free Large-Area Flexible Organic Solar Cells with an Embedded Metal Grid,” Organic Electronics, Vol. 17, pp. 349-354, 2015.
6. C. Zhan, G. Yu, Y. Lu, L. Wang, E. Wujcik, and S. Wei, “Conductive Polymer Nanocomposites: a Critical Review of Modern Advanced Devices,” Journal of Materials Chemistry C, Vol. 5, pp. 1569-1585, 2017.
7. J. Yun, Y. H. Park, T. S. Bae, S. Lee, and G. H. Lee, “Fabrication of a Completely Transparent and Highly Flexible ITO Nanoparticle Electrode at Room Temperature,” ACS Applied Materials & Interfaces, Vol. 5, pp. 164-172, 2012.
8. S. S. Kim, S. Y. Choi, C. G. Park, and H. W. Jin, “Transparent Conductive ITO Thin Films Through the Sol-Gel Process Using Metal Salts,” Thin Solid Films, Vol. 347, pp. 155-160, 1999.
9. I. Rauf, “Low Resistivity and High Mobility Tin-Doped Indium Oxide Films,” Materials Letters, Vol. 18, pp. 123-127, 1993.
10. N. Kim, “Fabrication and Characterization of Thin-Film Encapsulation for Organic Electronics,” Ph.D. Thesis, Georgia Institute of Technology, Atlanta, United States, December 2009.
11. M. Sibi?ski, K. Znajdek, S. Walczak, M. S?oma, M. Gorski, and A. Cenian, “Comparison of ZnO: Al, ITO and Carbon Nanotube Transparent Conductive Layers in Flexible Solar Cells Applications,” Materials Science and Engineering: B, Vol. 177, pp. 1292-1298, 2012.
12. N. Grossiord, J. M. Kroon, R. Andriessen, and P. W. Blom, “Degradation Mechanisms in Organic Photovoltaic Devices,” Organic Electronics, Vol. 13, pp. 432-456, 2012.
13. P. C. Wang and A. G. MacDiarmid, “Integration of Polymer-Dispersed Liquid Crystal Composites with Conducting Polymer Thin Films Toward the Fabrication of Flexible Display Devices,” Displays, Vol. 28, pp. 101-104, 2007.
14. J. H. Kim and J. W. Park, “Improving the Flexibility of Large-Area Transparent Conductive Oxide Electrodes on Polymer Substrates for Flexible Organic Light Emitting Diodes by Introducing Surface Roughness,” Organic Electronics, Vol. 14, pp. 3444-3452, 2013.
15. S. F. Tseng, W. T. Hsiao, K. C. Huang, D. Chiang, M. F. Chen, and C. P. Chou, “Laser Scribing of Indium Tin Oxide (ITO) Thin Films Deposited on Various Substrates for Touch Panels,” Applied Surface Science, Vol. 257, pp. 1487-1494, 2010.
16. M. Xi, X. Wang, Y. Zhao, Q. Feng, F. Zheng, Z. Zhu, and H. Fong, “Mechanically Flexible Hybrid Mat Consisting of TiO2 And SiO2 Nanofibers Electrospun via Dual Spinnerets for Photo-Detector,” Materials Letters, Vol. 120, pp. 219-223, 2014.
17. L. Do, E. Han, Y. Niidome, M. Fujihira, T. Kanno, S. Yoshida, A. Maeda, and A. Ikushima, “Observation of Degradation Processes of Al Electrodes in Organic Electroluminescence Devices by Electroluminescence Microscopy, Atomic Force Microscopy, Scanning Electron Microscopy, and Auger Electron Spectroscopy,” Journal of Applied Physics, Vol. 76, pp. 5118-5121, 1994.
18. S. F. Lim, W. Wang, and S. J. Chua, “Degradation of Organic Light-Emitting Devices Due to Formation and Growth of Dark Spots,” Materials Science and Engineering: B, Vol. 85, pp. 154-159, 2001.
19. P. Burrows, V. Bulovic, S. Forrest, L. S. Sapochak, D. McCarty, and M. Thompson, “Reliability and Degradation of Organic Light Emitting Devices,” Applied Physics Letters, Vol. 65, pp. 2922-2924, 1994.
20. J. S. Park, H. Chae, H. K. Chung, and S. I. Lee, “Thin Film Encapsulation for Flexible AM-OLED: a Review,” Semiconductor Science and Technology, Vol. 26, pp. 034001-1-9, 2011.
21. T. B. Harvey III, S. Q. Shi, and F. So, “Passivated Organic Device Having Alternating Layers of Polymer and Dielectric,” US Patent, No. 5,757,126, May 26, 1998.
22. T. B. Harvey III, S. Q. Shi, and F. So, “Passivation of Organic Devices,” US Patent, No. 5,686,360 A, Nov 11, 1997.
23. E. H. Kim, C. W. Yang, and J. W. Park, “Improving the Delamination Resistance of Indium Tin Oxide (ITO) Coatings on Polymeric Substrates by O2 Plasma Surface Treatment,” Current Applied Physics, Vol. 10, pp. S510-S514, 2010.
24. T. Hauger, A. Zeberoff, B. Worfolk, A. Elias, and K. Harris, “Real-Time Resistance, Transmission and Figure-Of-Merit Analysis for Transparent Conductors under Stretching-Mode Strain,” Solar Energy Materials and Solar Cells, Vol. 124, pp. 247-255, 2014.
25. Y. Leterrier, L. Medico, F. Demarco, J.-A. Manson, U. Betz, M. Escola, M. K. Olsson, and F. Atamny, “Mechanical Integrity of Transparent Conductive Oxide Films for Flexible Polymer-Based Displays,” Thin Solid Films, Vol. 460, pp. 156-166, 2004.
26. C. Peng, Z. Jia, H. Neilson, T. Li, and J. Lou, “In Situ Electro-Mechanical Experiments and Mechanics Modeling of Fracture in Indium Tin Oxide-Based Multilayer Electrodes,” Advanced Engineering Materials, Vol. 15, pp. 250-256, 2013.
27. O. van der Sluis, A. Abdallah, P. Bouten, P. Timmermans, J. den Toonder, and G. de With, “Effect of a Hard Coat Layer on Buckle Delamination of Thin ITO Layers on a Compliant Elasto-Plastic Substrate: an Experimental–Numerical Approach,” Engineering Fracture Mechanics, Vol. 78, pp. 877-889, 2011.
28. M. N. Saleh and G. Lubineau, “Understanding the Mechanisms that Change the Conductivity of Damaged ITO-Coated Polymeric Films: a Micro-Mechanical Investigation,” Solar Energy Materials and Solar Cells, Vol. 130, pp. 199-207, 2014.
29. D. Neerinck and T. Vink, “Depth Profiling of Thin ITO Films by Grazing Incidence X-Ray Diffraction,” Thin Solid Films, Vol. 278, pp. 12-17, 1996.
30. R. C. Chang, F. T. Tsai, and C. H. Tu, “A Direct Method to Measure the Fracture Toughness of Indium Tin Oxide Thin Films on Flexible Polymer Substrates,” Thin Solid Films, Vol. 540, pp. 118-124, 2013.
31. S. Jung, K. Lim, J. W. Kang, J. K. Kim, S. I. Oh, K. Eun, D. G. Kim, and S. H. Choa, “Electromechanical Properties of Indium–Tin–Oxide/Poly (3, 4-Ethylenedioxythiophene): Poly (Styrenesulfonate) Hybrid Electrodes for Flexible Transparent Electrodes,” Thin Solid Films, Vol. 550, pp. 435-443, 2014.
32. C. K. Cho, W. J. Hwang, K. Eun, S. H. Choa, S. I. Na, and H. K. Kim, “Mechanical Flexibility of Transparent PEDOT: PSS Electrodes Prepared by Gravure Printing for Flexible Organic Solar Cells,” Solar Energy Materials and Solar Cells, Vol. 95, pp. 3269-3275, 2011.
33. C. W. Yang and J. W. Park, “The Cohesive Crack and Buckle Delamination Resistances of Indium Tin Oxide (ITO) Films on Polymeric Substrates with Ductile Metal Interlayers,” Surface and Coatings Technology, Vol. 204, pp. 2761-2766, 2010.
34. M. M. Hamasha, K. Alzoubi, S. Lu, and S. B. Desu, “Durability Study on Sputtered Indium Tin Oxide Thin Film on Poly Ethylene Terephthalate Substrate,” Thin Solid Films, Vol. 519, pp. 6033-6038, 2011.
35. Y. S. Kim, W. J. Hwang, K. T. Eun, and S. H. Choa, “Mechanical Reliability of Transparent Conducting IZTO Film Electrodes for Flexible Panel Displays,” Applied Surface Science, Vol. 257, pp. 8134-8138, 2011.
36. J. M. Park, G. Y. Gu, Z. J. Wang, D. J. Kwon, and K. L. DeVries, “Interfacial Durability and Electrical Properties of CNT or ITO/PVDF Nanocomposites for Self-Sensor and Micro Actuator Applications,” Applied Surface Science, Vol. 287, pp. 75-83, 2013.
37. J. M. Park, Z. J. Wang, D. J. Kwon, G. Y. Gu, and K. L. DeVries, “Electrical Properties of Transparent CNT and ITO Coatings on PET Substrate Including Nano-Structural Aspects,” Solid-State Electronics, Vol. 79, pp. 147-151, 2013.
38. T. C. Li, C. F. Han, K. T. Chen, and J. F. Lin, “Fatigue Life Study of ITO/PET Specimens in Terms of Electrical Resistance and Stress/Strain via Cyclic Bending Tests,” Journal of Display Technology, Vol. 9, pp. 577-585, 2013.
39. T. C. Li and J. F. Lin, “Fatigue Life Study of ITO/PET Specimens in Cyclic Bending Tests,” Journal of Materials Science: Materials in Electronics, Vol. 26, pp. 250-261, 2015.
40. T. C. Li, C. J. Chung, C. F. Han, P. T. Hsieh, K. J. Chen, and J. F. Lin, “Effects of Prestrain Applied to Poly (Ethylene Terephthalate) Substrate before Coating of Indium–Tin–Oxide Film on Film Quality and Optical, Electrical, and Mechanical Properties,” Ceramics International, Vol. 40, pp. 591-603, 2014.
41. Y.-C. Lin, W.-Q. Shi, and Z.-Z. Chen, “Effect of Deflection on the Mechanical and Optoelectronic Properties of Indium Tin Oxide Films Deposited on Polyethylene Terephthalate Substrates by Pulse Magnetron Sputtering,” Thin Solid Films, Vol. 517, pp. 1701-1705, 2009.
42. K. Sierros, D. Hecht, D. Banerjee, N. Morris, L. Hu, G. Irvin, R. Lee, and D. Cairns, “Durable Transparent Carbon Nanotube Films for Flexible Device Components,” Thin Solid Films, Vol. 518, pp. 6977-6983, 2010.
43. Y. Lan, W. Peng, Y. Lo, and J. He, “Durability under Mechanical Bending of the Indium Tin Oxide Films Deposited on Polymer Substrate by Thermionically Enhanced Sputtering,” Organic Electronics, Vol. 11, pp. 670-676, 2010.
44. Z. Yu, Y. Li, F. Xia, Z. Zhao, and W. Xue, “Properties of Indium Tin Oxide Films Deposited on Unheated Polymer Substrates by Ion Beam Assisted Deposition,” Thin Solid Films, Vol. 51, pp. 7 5395-5398, 2009.
45. P.-T. Hsieh, T.-C. Li, B.-H. Wu, C.-J. Chung, and J.-F. Lin, “Structural and Mechanical Properties of Pre-Strained Transparent Conducting Oxide Films on Flexible Substrate,” Surface and Coatings Technology, Vol. 231, pp. 443-446, 2013.
46. K. A. Sierros, N. J. Morris, K. Ramji, and D. R. Cairns, “Stress–Corrosion Cracking of Indium Tin Oxide Coated Polyethylene Terephthalate for Flexible Optoelectronic Devices,” Thin Solid Films, Vol. 517, pp. 2590-2595, 2009.
47. T. Bejitual, N. Morris, S. Cronin, D. Cairns, and K. Sierros, “Mechano-Chemical Degradation of Flexible Electrodes for Optoelectronic Device Applications,” Thin Solid Films, Vol. 549, pp. 251-257, 2013.
48. D. R. Cairns and G. P. Crawford, “Electromechanical Properties of Transparent Conducting Substrates for Flexible Electronic Displays,” Proceedings of the IEEE, Vol. 93, pp. 1451-1458, 2005.
49. T. Bejitual, D. Compton, K. Sierros, D. Cairns, and S. Kukureka, “Electromechanical Reliability of Flexible Transparent Electrodes During and after Exposure to Acrylic Acid,” Thin Solid Films, Vol. 528, pp. 229-236, 2013.
50. K. Leppanen, B. Augustine, J. Saarela, R. Myllyla, and T. Fabritius, “Breaking Mechanism of Indium Tin Oxide and its Effect on Organic Photovoltaic Cells,” Solar Energy Materials and Solar Cells, Vol. 117, pp. 512-518, 2013.
51. A. Abdallah, P. Bouten, J. Den Toonder, and G. de With, “Buckle Initiation and Delamination of Patterned ITO Layers on a Polymer Substrate,” Surface and Coatings Technology, Vol. 205, pp. 3103-3111, 2011.
52. Z. Chen, B. Cotterell, W. Wang, E. Guenther, and S.-J. Chua, “A Mechanical Assessment of Flexible Optoelectronic Devices,” Thin Solid Films, Vol. 394, pp. 201-205, 2001.
53. X. Xue, S. Wang, C. Zeng, H. Bai, L. Li, and Z. Wang, “Buckling-Delamination and Cracking of Thin Titanium Films under Compression: Experimental and Numerical Studies,” Surface and Coatings Technology, Vol. 244, pp. 151-157, 2012.
54. C. Peng, Z. Jia, H. Neilson, T. Li, and J. Lou, “In Situ Electro?Mechanical Experiments and Mechanics Modeling of Fracture in Indium Tin Oxide?Based Multilayer Electrodes,” Advanced Engineering Materials, Vol. 15, pp. 250-256, 2013.
55. O. van der Sluis, R. Engelen, P. Timmermans, and G. Zhang, “Numerical Analysis of Delamination and Cracking Phenomena in Multi-Layered Flexible Electronics,” Microelectronics Reliability, Vol. 49, pp. 853-860, 2009.
56. Z. Jia, C. Peng, J. Lou, and T. Li, “A Map of Competing Buckling-Driven Failure Modes of Substrate-Supported Thin Brittle Films,” Thin Solid Films, Vol. 520, pp. 6576-6580, 2012.
57. C. C. Lee, “Modeling and Validation of Mechanical Stress in Indium Tin Oxide Layer Integrated in Highly Flexible Stacked Thin Films,” Thin Solid Films, Vol. 544, pp. 443-447, 2013.
58. C. J. Chiang, C. Winscom, S. Bull, and A. Monkman, “Mechanical Modeling of Flexible OLED Devices,” Organic Electronics, Vol. 10, pp. 1268-1274, 2009.
59. Y. M. Kang, D. Y. Lee, J. R. Lee, G. H. Lee, Y. R. Cho, and P. K. Song, “Effect of Tin Concentrations on Properties of Indium Tin Oxide Films Deposited on PET Substrate under Various Conditions,” Current Applied Physics, Vol. 9, pp. S266-S271, 2009.
60. R. R. Sondergaard, M. Hosel, and F. C. Krebs, “Roll-To-Roll Fabrication of Large Area Functional Organic Materials,” Journal of Polymer Science Part B: Polymer Physics, Vol. 51, pp. 16-34, 2013.
61. ASTM-E96-00, “Standard Test Methods for Water Vapor Transmission of Materials,” ASTM International, West Conshohocken, PA, USA, 2000.
62. J. A. Hauch, P. Schilinsky, S. A. Choulis, S. Rajoelson, and C. J. Brabec, “The Impact of Water Vapor Transmission Rate on the Lifetime of Flexible Polymer Solar Cells,” Applied Physics Letters, Vol. 93, pp. 103306-1-3, 2008.
63. S. Cros, R. De Bettignies, S. Berson, S. Bailly, P. Maisse, N. Lemaitre, and S. Guillerez, “Definition of Encapsulation Barrier Requirements: a Method Applied to Organic Solar Cells,” Solar Energy Materials and Solar Cells, Vol. 95, pp. S65-S69, 2011.
64. M. Weaver, L. Michalski, K. Rajan, M. Rothman, J. Silvernail, J. J. Brown, P. E. Burrows, G. L. Graff, M. E. Gross, and P. M. Martin, “Organic Light-Emitting Devices with Extended Operating Lifetimes on Plastic Substrates,” Applied Physics Letters, Vol. 81, 2929-2931, 2002.
65. X. Chu, C. S. Suen, and R. J. Visser, “Method for Encapsulating Environmentally Sensitive Devices,” US Patent, No. 20,100,330,748, Aug 7, 2008.
66. T. N. Chen, D. S. Wu, C. C. Wu, C. C. Chiang, Y. P. Chen, and R. H. Horng, “Improvements of Permeation Barrier Coatings Using Encapsulated Parylene Interlayers for Flexible Electronic Applications,” Plasma Processes and Polymers, Vol. 4, pp. 180–185, 2007.
67. N. Kim, W. J. Potscavage Jr, A. Sundaramoothi, C. Henderson, B. Kippelen, and S. Graham, “A Correlation Study between Barrier Film Performance and Shelf Lifetime of Encapsulated Organic Solar Cells,” Solar Energy Materials and Solar Cells, Vol. 101, pp. 140-146, 2012.
68. S.-M. Lee, J. H. Kwon, S. Kwon, and K. C. Choi, “A Review of Flexible OLEDs Toward Highly Durable Unusual Displays,” IEEE Transactions on Electron Devices, Vol. 64, pp. 1922-1931, 2017.
69. A. A. Dameron, S. D. Davidson, B. B. Burton, P. F. Carcia, R. S. McLean, and S. M. George, “Gas Diffusion Barriers on Polymers Using Multilayers Fabricated by Al2O3 and Rapid SiO2 Atomic Layer Deposition,” The Journal of Physical Chemistry C, Vol. 112, pp. 4573-4580, 2008.
70. M. Paggi, I. Berardone, A. Infuso, and M. Corrado, “Fatigue Degradation and Electric Recovery in Silicon Solar Cells Embedded in Photovoltaic Modules,” Scientific Reports, Vol. 4, pp. 4560-1-7, 2014.
71. S. Majee, M. F. Cerqueira, D. Tondelier, B. Geffroy, Y. Bonnassieux, P. Alpuim, and J. E. Bouree, “Flexible Organic–Inorganic Hybrid Layer Encapsulation for Organic Optoelectronic Devices,” Progress in Organic Coatings, Vol. 80, pp. 27-32, 2015.
72. F. C. Krebs, “Fabrication and Processing of Polymer Solar Cells: a Review of Printing and Coating Techniques,” Solar Energy Materials and Solar Cells, Vol. 93, pp. 394-412, 2009.
73. S.-W. Seo, E. Jung, H. Chae, S.-J. Seo, H.-K. Chung, and S.-M. Cho, “Bending Properties of Organic–Inorganic Multilayer Moisture Barriers,” Thin Solid Films, Vol. 550, pp. 742-746, 2014.
74. J. Lewis, “Material Challenge for Flexible Organic Devices,” Material Today, Vol. 9, pp. 38-45, 2006.
75. E. Kim, Y. Han, W. Kim, K.-C. Choi, H.-G. Im, and B.-S. Bae, “Thin Film Encapsulation for Organic Light Emitting Diodes Using a Multi-Barrier Composed of MgO Prepared by Atomic Layer Deposition and Hybrid Materials,” Organic Electronics, Vol. 14, pp. 1737-1743, 2013.
76. S. Majee, M. F. Cerqueira, D. Tondelier, J. C. Vanel, B. Geffroy, Y. Bonnassieux, P. Alpuim, and J. E. Bouree, “Permeation Barrier Performance of Hot Wire-CVD Grown Silicon-Nitride Films Treated by Argon Plasma,” Thin Solid Films, Vol. 575, pp. 72-75, 2015.
77. Z. Jia, M. B. Tucker, and T. Li, “Failure Mechanics of Organic–Inorganic Multilayer Permeation Barriers in Flexible Electronics,” Composites Science and Technology, Vol. 71, pp. 365-372, 2011.
78. S. Lee, H. Choi, S. Shin, J. Park, G. Ham, H. Jung, and H. Jeon, “Permeation Barrier Properties of an Al2O3/ZrO2 Multilayer Deposited by Remote Plasma Atomic Layer Deposition,” Current Applied Physics, Vol. 14, pp. 552-557, 2014.
79. N. Kim and S. Graham, “Development of Highly Flexible and Ultra-Low Permeation Rate Thin-Film Barrier Structure for Organic Electronics,” Thin Solid Films, Vol. 547, pp. 57-62, 2013.
80. S.-W. Seo, E. Jung, S.-J. Seo, H. Chae, H.-K. Chung, and S.-M. Cho, “Toward Fully Flexible Multilayer Moisture-Barriers for Organic Light-Emitting Diodes,” Journal of Applied Physics, Vol. 114, pp. 143505-1-7, 2013.
81. Y.-C. Han, E. Kim, W. Kim, H.-G. Im, B.-S. Bae, and K.-C. Choi, “A Flexible Moisture Barrier Comprised of A SiO2-Embedded Organic–Inorganic Hybrid Nanocomposite and Al2O3 for Thin-Film Encapsulation of OLEDs,” Organic Electronics, Vol. 14, pp. 1435-1440, 2013.
82. T. Izumi, W. Iwaya, T. Furuya, T. Ohashi, K. Nishijima, S. Naganawa, K. Nagamoto, and T. Kondo, “Novel Gas Barrier Films Prepared by Transfer Printing Method,” CPMT Symposium Japan (ICSJ), 2016 IEEE, IEEE, pp. 67-70, 2016.
83. K. Nishijima, S. Naganawa, and E. Fuchi, “Adhesive Agent Composition, Adhesive Sheet, and Electronic Device and Production Method Therefor,” U.S Patent, No. 20,150,299,519, October 22, 2015.
84. M. Ramamurthi, J. S. Lee, S. H. Yang, and Y. S. Kim, “Delamination Characterization of Bonded Interface in Polymer Coated Steel Using Surface Based Cohesive Model,” International Journal of Precision Engineering and Manufacturing, Vol. 14, pp. 1755-1765, 2013.
85. ABAQUS Analysis User’s Manual, Vol. IV: Elements, Version 6.5, ABAQUS Inc., Providence, RI, USA, pp. 18.5.6-4-18, 2004.
86. H. D. Baehr and K. Stephan, Heat and Mass Transfer, 3rd Ed., Springer-Verlag Berlin Heidelberg, Germany, 2011.
87. J. Crank, The Mathematics of Diffusion, 2nd Ed., Oxford University Press, UK, 1975.
88. E. Pons, B. Yrieix, L. Heymans, F. Dubelley, and E. Planes, “Permeation of Water Vapor Through High Performance Laminates for VIPs and Physical Characterization of Sorption and Diffusion Phenomena,” Energy and Buildings, Vol. 85, pp. 604-616, 2014.
89. H. Park, “Characterization of Moisture Diffusion into Polymeric Thin Film,” Experimental Mechanics, Vol. 53, pp.1693-1703, 2013.
90. G. L. Graff, R. E. Williford, and P. E. Burrows, “Mechanisms of Vapor Permeation Through Multilayer Barrier Films: Lag Time versus Equilibrium Permeation,” Journal of Applied Physics, Vol. 96, pp. 1840-1849, 2004.
91. B. Visweswaran, P. Mandlik, S. H. Mohan, J. A. Silvernail, R. Ma, J. C. Sturm, and S. Wagner, “Diffusion of Water into Permeation Barrier Layers,” Journal of Vacuum Science and Technology, Vol. 33, pp. 031513-1-13, 2015.
92. S. Marais, M. Metayer, T. Nguyen, M. Labbe, L. Perrin, and J. Saiter, “Permeametric and Microgravimetric Studies of Sorption and Diffusion of Water Vapor in an Unsaturated Polyester,” Polymer, Vol. 41, pp. 2667-2676, 2000.
93. M. Metayer, M. Labbe, S. Marais, D. Langevin, C. Chappey, F. Dreux, M. Brainville, and P. Belliard, “Diffusion of Water Through Various Polymer Films: a New High Performance Method of Characterization,” Polymer Testing, Vol. 18, pp. 533–549, 1999.
94. R. Ash, R. Barrer, and D. Palmer, “Diffusion in Multiple Laminates,” British Journal of Applied Physics, Vol. 16, pp. 873-884, 1965.
95. G. Garnier, S. Marouani, B. Yrieix, C. Pompeo, M. Chauvois, L. Flandin, and Y. Brechet, “Interest and Durability of Multilayers: from Model Films to Complex Films,” Polymers for Advanced Technologies, Vol. 22, pp. 847-856, 2011.
96. J. Crank and G. S. Park, Diffusion in Polymers, Academic Press, Cambridge, Massachusetts, USA, 1968.
97. J. Busfield, A. Thomas, and K. Yamaguchi, “Electrical and Mechanical Behavior of Filled Rubber. III. Dynamic Loading and the Rate of Recovery,” Journal of Polymer Science Part B: Polymer Physics, Vol. 43 , pp. 1649-1661, 2005.
98. K. Yamaguchi, J. Busfield, and A. Thomas, “Electrical and Mechanical Behavior of Filled Elastomers. I. The Effect of Strain,” Journal of Polymer Science Part B: Polymer Physics, Vol. 41, pp. 2079-2089, 2003.
99. P. C. Bouten and M. A. van Gils, “Buckling Failure of Compressive Loaded Hard Layers in Flexible Devices,” in MRS Proceedings, Cambridge University Press, Vol. 843, pp. T4.9.1-T4.9.6, 2004.
100. D. Rittel, “An Investigation of the Heat Generated during Cyclic Loading of Two Glassy Polymers. Part I: Experimental,” Mechanics of Materials, Vol. 32, pp. 131-147, 2000.
101. M. Boehme and C. Charton, “Properties of ITO on PET Film in Dependence on the Coating Conditions and Thermal Processing,” Surface and Coatings Technology, Vol. 200, pp. 932-935, 2005.
102. A. Kulkarni, K. Schulz, T.-S. Lim, and M. Khan, “Electrical, Optical and Structural Characteristics of Indium-Tin-Oxide Thin Films Deposited on Glass and Polymer Substrates,” Thin Solid Films, Vol. 308, pp. 1-7, 1997.
103. P. Scherrer, “Bestimmung Der Grosse und Der Inneren Struktur Von Kolloidteilchen Mittels Rontgenstrahlen,” Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen. Vol. 26, pp. 98-100, 1918.
104. Peccell Product Information, Peccell Technologies, Inc., http://www.hs-kr.com/pds/peccell_products_en.pdf, accessed on April 28, 2016.
105. M. Bonnet, K.-D. Rogausch, and J. Petermann, “The Endothermic “Annealing Peak” of Poly (Phenylene Sulphide) and Poly (Ethylene Terephthalate),” Colloid and Polymer Science, Vol. 277, pp. 513-518, 1999.
106. K. A. Williams, A. J. Boydston, and C. W. Bielawski, “Towards Electrically Conductive, Self-Healing Materials,” Journal of The Royal Society Interface, Vol. 4, pp. 359-362, 2007.
107. C. Japu, A. M. de Ilarduya, A. Alla, M. G. Garcia-Martin, J. A. Galbis, S. Munoz-Guerra, “D-Glucose-Derived PET Copolyesters with Enhanced Tg,” Polymer Chemistry, Vol. 4, pp. 3524-3536, 2013.
108. S.-W. Seo, E. Jung, H. Chae, and S.-M. Cho, “Optimization of Al2O3/ZrO2 Nanolaminate Structure for Thin-Film Encapsulation of OLEDs,” Organic Electronics, Vol. 13, pp. 2436-2441, 2012.
109. M. Kempe, A. Dameron, and M. Reese, “Calcium Based Test Method for Evaluation of Photovoltaic Edge-Seal Materials,” NREL, www.nrel.gov/docs/fy11osti/50839.pdf, accessed on August 2, 2016.
110. S. Majee, B. Geffroy, Y. Bonnassieux, and J.-E. Bouree, “Interface Effects on the Moisture Barrier Properties of SiNx/PMMA/SiNx Hybrid Structure,” Surface and Coatings Technology, Vol. 254, pp. 429-432, 2014.
111. M. O. Reese, A. A. Dameron, and M. D. Kempe, “Quantitative Calcium Resistivity Based Method for Accurate and Scalable Water Vapor Transmission Rate Measurement,” Review of Scientific Instruments, Vol. 82, pp. 085101-1-10, 2011.
112. A. Roberts, B. Henry, A. Sutton, C. Grovenor, G. Briggs, T. Miyamoto, M. Kano, Y. Tsukahara, and M. Yanaka, “Gas Permeation in Silicon-Oxide/Polymer (SiOx/PET) Barrier Films: Role of the Oxide Lattice, Nano-Defects and Macro-Defects,” Journal of Membrane Science, Vol. 208, pp. 75-88, 2002. |