博碩士論文 102383602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:108 、訪客IP:18.219.76.156
姓名 覃鑫富(Dinh-Phuc Tran)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 可撓曲光電元件薄膜撓曲疲勞性質研究
(Flexural Fatigue Properties of Flexible Thin Films for Use in Optoelectronic Devices)
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
★ MOCVD玻璃承載盤溫度場分析★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為
★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究★ AISI 347不銹鋼腐蝕疲勞行為
★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響★ AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究目的在探討可撓曲光電元件之薄膜撓曲疲勞性質。在第一部分,探討聚對苯二甲酸(PET)基板上沉積氧化銦錫(ITO)的薄膜,其導電性受反覆撓曲變形作用及退火處理之影響,ITO/PET薄膜於室溫中承受不同的循環動態及靜態撓曲負載,並同步量測其導電性質的變化。實驗結果顯示,隨著變形程度的提高,其達到一定電阻改變量的疲勞壽命會隨之下降。不同循環負載模式伴隨靜態撓曲的組合會大大影響ITO/PET薄膜之疲勞性質,循環撓曲結合靜態張力撓曲比起其結合靜態壓力撓曲、中性持時或純循環撓曲會造成更大的損傷以及降低疲勞壽命。當承受較小撓曲疲勞負載時,ITO/PET薄膜之導電耐久性將會隨退火溫度的升高而增加,然而,退火溫度對承受大撓曲變形之ITO/PET薄膜的疲勞壽命影響有限。本研究亦建構一個三維有限元素分析模型,用以分析介面脫層及層狀挫曲破損機制與ITO/PET薄膜導電性改變之間的關聯性。數值模擬分析結果顯示,承受張力負載之ITO/PET薄膜的挫曲量明顯高於其承受壓應力負載時之挫曲量,提供了介面脫層及層狀挫曲破損機制造成ITO/PET薄膜導電性改變的證據。另外,當ITO厚度及既存缺陷尺寸變大時,ITO/PET薄膜承受張應力之挫曲量將會明顯地提升。ITO/PET薄膜受拉伸負載的方向與橢圓形裂紋長軸之間的夾為0°時,挫曲量將會小於其他負載角度。當橢圓裂紋的長短軸比增加時,ITO/PET薄膜的挫曲量亦會增加。
在第二部分,主要探討純循環撓曲以及循環結合靜態撓曲作用對封裝薄膜之阻絕能力的影響,封裝薄膜在承受循環撓曲作用後,透過鈣測試法量測其水氣滲透率。實驗結果顯示,在承受一定次數之循環撓曲後,封裝薄膜會產生微裂縫,這些微裂縫會提升封裝薄膜之水氣滲透率。在同一撓曲半徑下,撓曲作用次數愈多,會對封裝薄膜造成更多傷害進而造成更大程度的溼氣侵入。在較少循環撓曲作用次數時(? 104週期),愈小的撓曲半徑將會對封裝薄膜帶來較大的傷害。然而,在承受105次循環撓曲作用後,撓曲負載對封裝薄膜帶來的傷害和曲率半徑的大小無關。本研究亦建構一個簡化的三維有限元素數值分析模型,用來分析溼氣在封裝薄膜內部的擴散情形。數值模擬分析結果顯示,在有裂紋以及介面脫層存在的情況下,水氣滲透率明顯上升。實驗結果之水氣滲透率與模擬結果之水氣滲透率有良好的一致性,證明撓曲作用產生的損傷與裂紋及介面脫層有關,說明此有限元素分析模型可有效預測撓曲損傷封裝薄膜之水氣滲透率。在結合循環與靜態撓曲負載的作用下,較短的靜態撓曲作用時間對封裝薄膜的損傷影響有限,循環撓曲對封裝薄膜之傷害較為明顯。然而,當撓曲半徑較小時,靜態撓曲作用時間拉長之後,靜態撓曲亦會對封裝薄膜造成明顯的損傷。再者,於循環撓曲結合靜態撓曲作用下,小曲率半徑對封裝薄膜所造成之傷害大於大曲率半徑對封裝薄膜所造成之傷害。
摘要(英) The aim of this work is to investigate the long-term durability of highly flexible thin film components for use in flexible optoelectronic devices. In the first phase, effects of cyclic deformation and annealing treatment on conductive durability of indium tin oxide (ITO) thin film deposited on polyethylene terephthalate (PET) substrate are investigated. In-situ electrical and mechanical tests of ITO/PET sheet under various combinations of cyclic and static loadings are conducted at room temperature. Experimental results show that the number of cycles to failure is significantly decreased with an increase in displacement amplitude, given a specific extent of electrical resistance change of ITO/PET sheet. A static holding period of 1000 s in various loading modes plays a role in influencing the failure of ITO/PET sheet. Cyclic bending combined with a static tensile holding generally generates more damage and a smaller number of cycles to failure than does that combined with a compressive holding, neutral holding, or no holding. Under a small fatigue loading, the conductive durability of ITO/PET sheet is increased with an increase in annealing temperature. However, there is little effect of annealing temperature on ITO/PET fatigue life under a larger displacement amplitude of fatigue loading. Using a surface-based cohesive modeling technique, a simplified three-dimensional (3D) finite element analysis (FEA) micromodel subjected to tensile and compressive loadings is numerically analyzed to clarify the failure mechanism of interfacial and buckling-like delamination which governs the change in electrical conductivity of ITO/PET sheet. Modeling results indicate that buckle height of the ITO/PET micromodel subjected to tensile loading is significantly greater than that of compressive loading, providing more evidence of the aforementioned effect of loading mode. In addition, buckle height of the ITO/PET micromodel subjected to tensile loading is significantly increased with an increase in ITO thickness and size of preexisting crack. Buckle height of the ITO/PET micromodel subjected to an angle of 0° between tensile loading and major axis of an elliptical crack is much smaller than that of other loading directions. Buckle height is also increased with an increase in aspect ratio of elliptical crack.
In the second phase, effects of pure cyclic and combined cyclic-static bending on the encapsulation properties of a barrier thin film are investigated. Water vapor transmission rate (WVTR) of the given barrier film is measured after variously cyclic bending conditions using a calcium (Ca) corrosion test technique. Experimental results show that microcracks in the barrier thin film are found after applying a certain number of bending cycles. They are responsible for an increase in WVTR. Given a bending radius, a greater number of bending cycles leads to a larger amount of damage, and consequently a greater extent of moisture ingress. A smaller bending radius produces a greater amount of damage than a larger one, in a short period of loading time (? 104 cycles). However, after 105 cycles of cyclic bending, the amount of damage reaches a saturated level regardless of bending radius, as all the WVTR values become comparable. A simplified 3D FEA model is established in microscale to analyze the moisture diffusion mechanism. Numerical results show that, with the presence of cracking and delamination, the WVTR value increases significantly. Good agreement between the simulation and experimental measurements on WVTR confirms that the failure mechanism involves cracking and delamination under cyclic bending. The 3D FEA modeling developed could offer a method to predict the change of WVTR in correlation with cracking and delamination in the barrier thin film. For a short holding period of static bending in the combined cyclic-static case, there is no obvious effect of static bending on barrier performance. Cyclic bending takes a main role in damaging the given barrier film. However, given a longer holding period of static bending, the contribution of static bending to deterioration in the encapsulation performance of barrier thin film is clear for a smaller bending radius. Moreover, a cyclic bending combined with static holding under a smaller bending radius generates a larger amount of damage than that of a larger bending radius.
關鍵字(中) ★ 可撓曲光電元件薄膜撓曲疲勞性質研究 關鍵字(英) ★ Fatigue
★  Flexible Thin Films
論文目次 ABSTRACT I
LIST OF TABLES IX
LIST OF FIGURES X
LIST OF ABBRIVIATIONS XIV
1. INTRODUCTION 1
1.1 Background 1
1.2 Literature Review 2
1.2.1 Indium tin oxide thin film 2
1.2.2 Encapsulation thin film 4
1.3 Purpose and Scope 7
2. EXPERIMENTAL PROCEDURES 9
2.1 Material and Specimen Preparation 9
2.2 Mechanical Testing 10
2.2.1 Indium tin oxide thin film 10
2.2.2 Barrier thin film 11
2.3 In-situ Electrical Resistance Measurement of Indium tin oxide Thin Film 12
2.4 Calcium Corrosion Measurement of Water Vapor Transmission Rate 13
2.5 Microstructural Analysis 14
3. FINITE ELEMENT ANALYSIS 15
3.1 Indium Tin Oxide Thin Film 15
3.1.1 Finite element model 15
3.1.2 Cohesive interface model 16
3.2 Barrier Thin Film 17
4. RESULTS AND DISCUSSION 22
4.1 Cyclic Bending Effect on the Electrical Conductance of Indium Tin Oxide Thin Film 22
4.1.1 Effect of displacement amplitude 22
4.1.2 Effect of loading mode 25
4.1.3 Effect of annealing temperature 29
4.1.4 Numerical analysis 33
4.2 Bending Effect on the Encapsulation Performance of Barrier Thin Film 36
4.2.1 Cyclic bending effect 36
4.2.2 Microstructural and fractography analyses 40
4.2.3 Finite element simulation 42
4.2.4 Combined cyclic-static bending effect 45
5. CONCLUSIONS 47
REFERENCES 52
TABLES 63
FIGURES 67
PUBLICATIONS 116
參考文獻 1. S. Tekoglu, G. Hernandez-Sosa, E. Kluge, U. Lemmer, and N. Mechau, “Gravure Printed Flexible Small-Molecule Organic Light Emitting Diodes,” Organic Electronics, Vol. 14, pp. 3493-3499, 2013.
2. J. Shi, M. B. Chan-Park, and C. M. Li, “Bottom Gate Organic Thin-Film Transistors Fabricated by Ultraviolet Transfer Embossing with Improved Device Performance,” Organic Electronics, Vol. 10, pp. 396-401, 2009.
3. X. Yu, Z. Wang, S. Yu, D. Ma, and Y. Han, “Micropatterning and Transferring of Polymeric Semiconductor Thin Films by Hot Lift-Off and Polymer Bonding Lithography in Fabrication of Organic Field Effect Transistors (OFETS) on Flexible Substrate,” Applied Surface Science, Vol. 257, pp. 9264-9268, 2011.
4. C. Koidis, S. Logothetidis, A. Ioakeimidis, A. Laskarakis, and C. Kapnopoulos, “Key Factors to Improve the Efficiency of Roll-To-Roll Printed Organic Photovoltaics,” Organic Electronics, Vol. 14, pp. 1744-1748, 2013.
5. S. Choi, Y. Zhou, W. Haske, J. W. Shim, and C. Fuentes-Hernandez, “ITO-Free Large-Area Flexible Organic Solar Cells with an Embedded Metal Grid,” Organic Electronics, Vol. 17, pp. 349-354, 2015.
6. C. Zhan, G. Yu, Y. Lu, L. Wang, E. Wujcik, and S. Wei, “Conductive Polymer Nanocomposites: a Critical Review of Modern Advanced Devices,” Journal of Materials Chemistry C, Vol. 5, pp. 1569-1585, 2017.
7. J. Yun, Y. H. Park, T. S. Bae, S. Lee, and G. H. Lee, “Fabrication of a Completely Transparent and Highly Flexible ITO Nanoparticle Electrode at Room Temperature,” ACS Applied Materials & Interfaces, Vol. 5, pp. 164-172, 2012.
8. S. S. Kim, S. Y. Choi, C. G. Park, and H. W. Jin, “Transparent Conductive ITO Thin Films Through the Sol-Gel Process Using Metal Salts,” Thin Solid Films, Vol. 347, pp. 155-160, 1999.
9. I. Rauf, “Low Resistivity and High Mobility Tin-Doped Indium Oxide Films,” Materials Letters, Vol. 18, pp. 123-127, 1993.
10. N. Kim, “Fabrication and Characterization of Thin-Film Encapsulation for Organic Electronics,” Ph.D. Thesis, Georgia Institute of Technology, Atlanta, United States, December 2009.
11. M. Sibi?ski, K. Znajdek, S. Walczak, M. S?oma, M. Gorski, and A. Cenian, “Comparison of ZnO: Al, ITO and Carbon Nanotube Transparent Conductive Layers in Flexible Solar Cells Applications,” Materials Science and Engineering: B, Vol. 177, pp. 1292-1298, 2012.
12. N. Grossiord, J. M. Kroon, R. Andriessen, and P. W. Blom, “Degradation Mechanisms in Organic Photovoltaic Devices,” Organic Electronics, Vol. 13, pp. 432-456, 2012.
13. P. C. Wang and A. G. MacDiarmid, “Integration of Polymer-Dispersed Liquid Crystal Composites with Conducting Polymer Thin Films Toward the Fabrication of Flexible Display Devices,” Displays, Vol. 28, pp. 101-104, 2007.
14. J. H. Kim and J. W. Park, “Improving the Flexibility of Large-Area Transparent Conductive Oxide Electrodes on Polymer Substrates for Flexible Organic Light Emitting Diodes by Introducing Surface Roughness,” Organic Electronics, Vol. 14, pp. 3444-3452, 2013.
15. S. F. Tseng, W. T. Hsiao, K. C. Huang, D. Chiang, M. F. Chen, and C. P. Chou, “Laser Scribing of Indium Tin Oxide (ITO) Thin Films Deposited on Various Substrates for Touch Panels,” Applied Surface Science, Vol. 257, pp. 1487-1494, 2010.
16. M. Xi, X. Wang, Y. Zhao, Q. Feng, F. Zheng, Z. Zhu, and H. Fong, “Mechanically Flexible Hybrid Mat Consisting of TiO2 And SiO2 Nanofibers Electrospun via Dual Spinnerets for Photo-Detector,” Materials Letters, Vol. 120, pp. 219-223, 2014.
17. L. Do, E. Han, Y. Niidome, M. Fujihira, T. Kanno, S. Yoshida, A. Maeda, and A. Ikushima, “Observation of Degradation Processes of Al Electrodes in Organic Electroluminescence Devices by Electroluminescence Microscopy, Atomic Force Microscopy, Scanning Electron Microscopy, and Auger Electron Spectroscopy,” Journal of Applied Physics, Vol. 76, pp. 5118-5121, 1994.
18. S. F. Lim, W. Wang, and S. J. Chua, “Degradation of Organic Light-Emitting Devices Due to Formation and Growth of Dark Spots,” Materials Science and Engineering: B, Vol. 85, pp. 154-159, 2001.
19. P. Burrows, V. Bulovic, S. Forrest, L. S. Sapochak, D. McCarty, and M. Thompson, “Reliability and Degradation of Organic Light Emitting Devices,” Applied Physics Letters, Vol. 65, pp. 2922-2924, 1994.
20. J. S. Park, H. Chae, H. K. Chung, and S. I. Lee, “Thin Film Encapsulation for Flexible AM-OLED: a Review,” Semiconductor Science and Technology, Vol. 26, pp. 034001-1-9, 2011.
21. T. B. Harvey III, S. Q. Shi, and F. So, “Passivated Organic Device Having Alternating Layers of Polymer and Dielectric,” US Patent, No. 5,757,126, May 26, 1998.
22. T. B. Harvey III, S. Q. Shi, and F. So, “Passivation of Organic Devices,” US Patent, No. 5,686,360 A, Nov 11, 1997.
23. E. H. Kim, C. W. Yang, and J. W. Park, “Improving the Delamination Resistance of Indium Tin Oxide (ITO) Coatings on Polymeric Substrates by O2 Plasma Surface Treatment,” Current Applied Physics, Vol. 10, pp. S510-S514, 2010.
24. T. Hauger, A. Zeberoff, B. Worfolk, A. Elias, and K. Harris, “Real-Time Resistance, Transmission and Figure-Of-Merit Analysis for Transparent Conductors under Stretching-Mode Strain,” Solar Energy Materials and Solar Cells, Vol. 124, pp. 247-255, 2014.
25. Y. Leterrier, L. Medico, F. Demarco, J.-A. Manson, U. Betz, M. Escola, M. K. Olsson, and F. Atamny, “Mechanical Integrity of Transparent Conductive Oxide Films for Flexible Polymer-Based Displays,” Thin Solid Films, Vol. 460, pp. 156-166, 2004.
26. C. Peng, Z. Jia, H. Neilson, T. Li, and J. Lou, “In Situ Electro-Mechanical Experiments and Mechanics Modeling of Fracture in Indium Tin Oxide-Based Multilayer Electrodes,” Advanced Engineering Materials, Vol. 15, pp. 250-256, 2013.
27. O. van der Sluis, A. Abdallah, P. Bouten, P. Timmermans, J. den Toonder, and G. de With, “Effect of a Hard Coat Layer on Buckle Delamination of Thin ITO Layers on a Compliant Elasto-Plastic Substrate: an Experimental–Numerical Approach,” Engineering Fracture Mechanics, Vol. 78, pp. 877-889, 2011.
28. M. N. Saleh and G. Lubineau, “Understanding the Mechanisms that Change the Conductivity of Damaged ITO-Coated Polymeric Films: a Micro-Mechanical Investigation,” Solar Energy Materials and Solar Cells, Vol. 130, pp. 199-207, 2014.
29. D. Neerinck and T. Vink, “Depth Profiling of Thin ITO Films by Grazing Incidence X-Ray Diffraction,” Thin Solid Films, Vol. 278, pp. 12-17, 1996.
30. R. C. Chang, F. T. Tsai, and C. H. Tu, “A Direct Method to Measure the Fracture Toughness of Indium Tin Oxide Thin Films on Flexible Polymer Substrates,” Thin Solid Films, Vol. 540, pp. 118-124, 2013.
31. S. Jung, K. Lim, J. W. Kang, J. K. Kim, S. I. Oh, K. Eun, D. G. Kim, and S. H. Choa, “Electromechanical Properties of Indium–Tin–Oxide/Poly (3, 4-Ethylenedioxythiophene): Poly (Styrenesulfonate) Hybrid Electrodes for Flexible Transparent Electrodes,” Thin Solid Films, Vol. 550, pp. 435-443, 2014.
32. C. K. Cho, W. J. Hwang, K. Eun, S. H. Choa, S. I. Na, and H. K. Kim, “Mechanical Flexibility of Transparent PEDOT: PSS Electrodes Prepared by Gravure Printing for Flexible Organic Solar Cells,” Solar Energy Materials and Solar Cells, Vol. 95, pp. 3269-3275, 2011.
33. C. W. Yang and J. W. Park, “The Cohesive Crack and Buckle Delamination Resistances of Indium Tin Oxide (ITO) Films on Polymeric Substrates with Ductile Metal Interlayers,” Surface and Coatings Technology, Vol. 204, pp. 2761-2766, 2010.
34. M. M. Hamasha, K. Alzoubi, S. Lu, and S. B. Desu, “Durability Study on Sputtered Indium Tin Oxide Thin Film on Poly Ethylene Terephthalate Substrate,” Thin Solid Films, Vol. 519, pp. 6033-6038, 2011.
35. Y. S. Kim, W. J. Hwang, K. T. Eun, and S. H. Choa, “Mechanical Reliability of Transparent Conducting IZTO Film Electrodes for Flexible Panel Displays,” Applied Surface Science, Vol. 257, pp. 8134-8138, 2011.
36. J. M. Park, G. Y. Gu, Z. J. Wang, D. J. Kwon, and K. L. DeVries, “Interfacial Durability and Electrical Properties of CNT or ITO/PVDF Nanocomposites for Self-Sensor and Micro Actuator Applications,” Applied Surface Science, Vol. 287, pp. 75-83, 2013.
37. J. M. Park, Z. J. Wang, D. J. Kwon, G. Y. Gu, and K. L. DeVries, “Electrical Properties of Transparent CNT and ITO Coatings on PET Substrate Including Nano-Structural Aspects,” Solid-State Electronics, Vol. 79, pp. 147-151, 2013.
38. T. C. Li, C. F. Han, K. T. Chen, and J. F. Lin, “Fatigue Life Study of ITO/PET Specimens in Terms of Electrical Resistance and Stress/Strain via Cyclic Bending Tests,” Journal of Display Technology, Vol. 9, pp. 577-585, 2013.
39. T. C. Li and J. F. Lin, “Fatigue Life Study of ITO/PET Specimens in Cyclic Bending Tests,” Journal of Materials Science: Materials in Electronics, Vol. 26, pp. 250-261, 2015.
40. T. C. Li, C. J. Chung, C. F. Han, P. T. Hsieh, K. J. Chen, and J. F. Lin, “Effects of Prestrain Applied to Poly (Ethylene Terephthalate) Substrate before Coating of Indium–Tin–Oxide Film on Film Quality and Optical, Electrical, and Mechanical Properties,” Ceramics International, Vol. 40, pp. 591-603, 2014.
41. Y.-C. Lin, W.-Q. Shi, and Z.-Z. Chen, “Effect of Deflection on the Mechanical and Optoelectronic Properties of Indium Tin Oxide Films Deposited on Polyethylene Terephthalate Substrates by Pulse Magnetron Sputtering,” Thin Solid Films, Vol. 517, pp. 1701-1705, 2009.
42. K. Sierros, D. Hecht, D. Banerjee, N. Morris, L. Hu, G. Irvin, R. Lee, and D. Cairns, “Durable Transparent Carbon Nanotube Films for Flexible Device Components,” Thin Solid Films, Vol. 518, pp. 6977-6983, 2010.
43. Y. Lan, W. Peng, Y. Lo, and J. He, “Durability under Mechanical Bending of the Indium Tin Oxide Films Deposited on Polymer Substrate by Thermionically Enhanced Sputtering,” Organic Electronics, Vol. 11, pp. 670-676, 2010.
44. Z. Yu, Y. Li, F. Xia, Z. Zhao, and W. Xue, “Properties of Indium Tin Oxide Films Deposited on Unheated Polymer Substrates by Ion Beam Assisted Deposition,” Thin Solid Films, Vol. 51, pp. 7 5395-5398, 2009.
45. P.-T. Hsieh, T.-C. Li, B.-H. Wu, C.-J. Chung, and J.-F. Lin, “Structural and Mechanical Properties of Pre-Strained Transparent Conducting Oxide Films on Flexible Substrate,” Surface and Coatings Technology, Vol. 231, pp. 443-446, 2013.
46. K. A. Sierros, N. J. Morris, K. Ramji, and D. R. Cairns, “Stress–Corrosion Cracking of Indium Tin Oxide Coated Polyethylene Terephthalate for Flexible Optoelectronic Devices,” Thin Solid Films, Vol. 517, pp. 2590-2595, 2009.
47. T. Bejitual, N. Morris, S. Cronin, D. Cairns, and K. Sierros, “Mechano-Chemical Degradation of Flexible Electrodes for Optoelectronic Device Applications,” Thin Solid Films, Vol. 549, pp. 251-257, 2013.
48. D. R. Cairns and G. P. Crawford, “Electromechanical Properties of Transparent Conducting Substrates for Flexible Electronic Displays,” Proceedings of the IEEE, Vol. 93, pp. 1451-1458, 2005.
49. T. Bejitual, D. Compton, K. Sierros, D. Cairns, and S. Kukureka, “Electromechanical Reliability of Flexible Transparent Electrodes During and after Exposure to Acrylic Acid,” Thin Solid Films, Vol. 528, pp. 229-236, 2013.
50. K. Leppanen, B. Augustine, J. Saarela, R. Myllyla, and T. Fabritius, “Breaking Mechanism of Indium Tin Oxide and its Effect on Organic Photovoltaic Cells,” Solar Energy Materials and Solar Cells, Vol. 117, pp. 512-518, 2013.
51. A. Abdallah, P. Bouten, J. Den Toonder, and G. de With, “Buckle Initiation and Delamination of Patterned ITO Layers on a Polymer Substrate,” Surface and Coatings Technology, Vol. 205, pp. 3103-3111, 2011.
52. Z. Chen, B. Cotterell, W. Wang, E. Guenther, and S.-J. Chua, “A Mechanical Assessment of Flexible Optoelectronic Devices,” Thin Solid Films, Vol. 394, pp. 201-205, 2001.
53. X. Xue, S. Wang, C. Zeng, H. Bai, L. Li, and Z. Wang, “Buckling-Delamination and Cracking of Thin Titanium Films under Compression: Experimental and Numerical Studies,” Surface and Coatings Technology, Vol. 244, pp. 151-157, 2012.
54. C. Peng, Z. Jia, H. Neilson, T. Li, and J. Lou, “In Situ Electro?Mechanical Experiments and Mechanics Modeling of Fracture in Indium Tin Oxide?Based Multilayer Electrodes,” Advanced Engineering Materials, Vol. 15, pp. 250-256, 2013.
55. O. van der Sluis, R. Engelen, P. Timmermans, and G. Zhang, “Numerical Analysis of Delamination and Cracking Phenomena in Multi-Layered Flexible Electronics,” Microelectronics Reliability, Vol. 49, pp. 853-860, 2009.
56. Z. Jia, C. Peng, J. Lou, and T. Li, “A Map of Competing Buckling-Driven Failure Modes of Substrate-Supported Thin Brittle Films,” Thin Solid Films, Vol. 520, pp. 6576-6580, 2012.
57. C. C. Lee, “Modeling and Validation of Mechanical Stress in Indium Tin Oxide Layer Integrated in Highly Flexible Stacked Thin Films,” Thin Solid Films, Vol. 544, pp. 443-447, 2013.
58. C. J. Chiang, C. Winscom, S. Bull, and A. Monkman, “Mechanical Modeling of Flexible OLED Devices,” Organic Electronics, Vol. 10, pp. 1268-1274, 2009.
59. Y. M. Kang, D. Y. Lee, J. R. Lee, G. H. Lee, Y. R. Cho, and P. K. Song, “Effect of Tin Concentrations on Properties of Indium Tin Oxide Films Deposited on PET Substrate under Various Conditions,” Current Applied Physics, Vol. 9, pp. S266-S271, 2009.
60. R. R. Sondergaard, M. Hosel, and F. C. Krebs, “Roll-To-Roll Fabrication of Large Area Functional Organic Materials,” Journal of Polymer Science Part B: Polymer Physics, Vol. 51, pp. 16-34, 2013.
61. ASTM-E96-00, “Standard Test Methods for Water Vapor Transmission of Materials,” ASTM International, West Conshohocken, PA, USA, 2000.
62. J. A. Hauch, P. Schilinsky, S. A. Choulis, S. Rajoelson, and C. J. Brabec, “The Impact of Water Vapor Transmission Rate on the Lifetime of Flexible Polymer Solar Cells,” Applied Physics Letters, Vol. 93, pp. 103306-1-3, 2008.
63. S. Cros, R. De Bettignies, S. Berson, S. Bailly, P. Maisse, N. Lemaitre, and S. Guillerez, “Definition of Encapsulation Barrier Requirements: a Method Applied to Organic Solar Cells,” Solar Energy Materials and Solar Cells, Vol. 95, pp. S65-S69, 2011.
64. M. Weaver, L. Michalski, K. Rajan, M. Rothman, J. Silvernail, J. J. Brown, P. E. Burrows, G. L. Graff, M. E. Gross, and P. M. Martin, “Organic Light-Emitting Devices with Extended Operating Lifetimes on Plastic Substrates,” Applied Physics Letters, Vol. 81, 2929-2931, 2002.
65. X. Chu, C. S. Suen, and R. J. Visser, “Method for Encapsulating Environmentally Sensitive Devices,” US Patent, No. 20,100,330,748, Aug 7, 2008.
66. T. N. Chen, D. S. Wu, C. C. Wu, C. C. Chiang, Y. P. Chen, and R. H. Horng, “Improvements of Permeation Barrier Coatings Using Encapsulated Parylene Interlayers for Flexible Electronic Applications,” Plasma Processes and Polymers, Vol. 4, pp. 180–185, 2007.
67. N. Kim, W. J. Potscavage Jr, A. Sundaramoothi, C. Henderson, B. Kippelen, and S. Graham, “A Correlation Study between Barrier Film Performance and Shelf Lifetime of Encapsulated Organic Solar Cells,” Solar Energy Materials and Solar Cells, Vol. 101, pp. 140-146, 2012.
68. S.-M. Lee, J. H. Kwon, S. Kwon, and K. C. Choi, “A Review of Flexible OLEDs Toward Highly Durable Unusual Displays,” IEEE Transactions on Electron Devices, Vol. 64, pp. 1922-1931, 2017.
69. A. A. Dameron, S. D. Davidson, B. B. Burton, P. F. Carcia, R. S. McLean, and S. M. George, “Gas Diffusion Barriers on Polymers Using Multilayers Fabricated by Al2O3 and Rapid SiO2 Atomic Layer Deposition,” The Journal of Physical Chemistry C, Vol. 112, pp. 4573-4580, 2008.
70. M. Paggi, I. Berardone, A. Infuso, and M. Corrado, “Fatigue Degradation and Electric Recovery in Silicon Solar Cells Embedded in Photovoltaic Modules,” Scientific Reports, Vol. 4, pp. 4560-1-7, 2014.
71. S. Majee, M. F. Cerqueira, D. Tondelier, B. Geffroy, Y. Bonnassieux, P. Alpuim, and J. E. Bouree, “Flexible Organic–Inorganic Hybrid Layer Encapsulation for Organic Optoelectronic Devices,” Progress in Organic Coatings, Vol. 80, pp. 27-32, 2015.
72. F. C. Krebs, “Fabrication and Processing of Polymer Solar Cells: a Review of Printing and Coating Techniques,” Solar Energy Materials and Solar Cells, Vol. 93, pp. 394-412, 2009.
73. S.-W. Seo, E. Jung, H. Chae, S.-J. Seo, H.-K. Chung, and S.-M. Cho, “Bending Properties of Organic–Inorganic Multilayer Moisture Barriers,” Thin Solid Films, Vol. 550, pp. 742-746, 2014.
74. J. Lewis, “Material Challenge for Flexible Organic Devices,” Material Today, Vol. 9, pp. 38-45, 2006.
75. E. Kim, Y. Han, W. Kim, K.-C. Choi, H.-G. Im, and B.-S. Bae, “Thin Film Encapsulation for Organic Light Emitting Diodes Using a Multi-Barrier Composed of MgO Prepared by Atomic Layer Deposition and Hybrid Materials,” Organic Electronics, Vol. 14, pp. 1737-1743, 2013.
76. S. Majee, M. F. Cerqueira, D. Tondelier, J. C. Vanel, B. Geffroy, Y. Bonnassieux, P. Alpuim, and J. E. Bouree, “Permeation Barrier Performance of Hot Wire-CVD Grown Silicon-Nitride Films Treated by Argon Plasma,” Thin Solid Films, Vol. 575, pp. 72-75, 2015.
77. Z. Jia, M. B. Tucker, and T. Li, “Failure Mechanics of Organic–Inorganic Multilayer Permeation Barriers in Flexible Electronics,” Composites Science and Technology, Vol. 71, pp. 365-372, 2011.
78. S. Lee, H. Choi, S. Shin, J. Park, G. Ham, H. Jung, and H. Jeon, “Permeation Barrier Properties of an Al2O3/ZrO2 Multilayer Deposited by Remote Plasma Atomic Layer Deposition,” Current Applied Physics, Vol. 14, pp. 552-557, 2014.
79. N. Kim and S. Graham, “Development of Highly Flexible and Ultra-Low Permeation Rate Thin-Film Barrier Structure for Organic Electronics,” Thin Solid Films, Vol. 547, pp. 57-62, 2013.
80. S.-W. Seo, E. Jung, S.-J. Seo, H. Chae, H.-K. Chung, and S.-M. Cho, “Toward Fully Flexible Multilayer Moisture-Barriers for Organic Light-Emitting Diodes,” Journal of Applied Physics, Vol. 114, pp. 143505-1-7, 2013.
81. Y.-C. Han, E. Kim, W. Kim, H.-G. Im, B.-S. Bae, and K.-C. Choi, “A Flexible Moisture Barrier Comprised of A SiO2-Embedded Organic–Inorganic Hybrid Nanocomposite and Al2O3 for Thin-Film Encapsulation of OLEDs,” Organic Electronics, Vol. 14, pp. 1435-1440, 2013.
82. T. Izumi, W. Iwaya, T. Furuya, T. Ohashi, K. Nishijima, S. Naganawa, K. Nagamoto, and T. Kondo, “Novel Gas Barrier Films Prepared by Transfer Printing Method,” CPMT Symposium Japan (ICSJ), 2016 IEEE, IEEE, pp. 67-70, 2016.
83. K. Nishijima, S. Naganawa, and E. Fuchi, “Adhesive Agent Composition, Adhesive Sheet, and Electronic Device and Production Method Therefor,” U.S Patent, No. 20,150,299,519, October 22, 2015.
84. M. Ramamurthi, J. S. Lee, S. H. Yang, and Y. S. Kim, “Delamination Characterization of Bonded Interface in Polymer Coated Steel Using Surface Based Cohesive Model,” International Journal of Precision Engineering and Manufacturing, Vol. 14, pp. 1755-1765, 2013.
85. ABAQUS Analysis User’s Manual, Vol. IV: Elements, Version 6.5, ABAQUS Inc., Providence, RI, USA, pp. 18.5.6-4-18, 2004.
86. H. D. Baehr and K. Stephan, Heat and Mass Transfer, 3rd Ed., Springer-Verlag Berlin Heidelberg, Germany, 2011.
87. J. Crank, The Mathematics of Diffusion, 2nd Ed., Oxford University Press, UK, 1975.
88. E. Pons, B. Yrieix, L. Heymans, F. Dubelley, and E. Planes, “Permeation of Water Vapor Through High Performance Laminates for VIPs and Physical Characterization of Sorption and Diffusion Phenomena,” Energy and Buildings, Vol. 85, pp. 604-616, 2014.
89. H. Park, “Characterization of Moisture Diffusion into Polymeric Thin Film,” Experimental Mechanics, Vol. 53, pp.1693-1703, 2013.
90. G. L. Graff, R. E. Williford, and P. E. Burrows, “Mechanisms of Vapor Permeation Through Multilayer Barrier Films: Lag Time versus Equilibrium Permeation,” Journal of Applied Physics, Vol. 96, pp. 1840-1849, 2004.
91. B. Visweswaran, P. Mandlik, S. H. Mohan, J. A. Silvernail, R. Ma, J. C. Sturm, and S. Wagner, “Diffusion of Water into Permeation Barrier Layers,” Journal of Vacuum Science and Technology, Vol. 33, pp. 031513-1-13, 2015.
92. S. Marais, M. Metayer, T. Nguyen, M. Labbe, L. Perrin, and J. Saiter, “Permeametric and Microgravimetric Studies of Sorption and Diffusion of Water Vapor in an Unsaturated Polyester,” Polymer, Vol. 41, pp. 2667-2676, 2000.
93. M. Metayer, M. Labbe, S. Marais, D. Langevin, C. Chappey, F. Dreux, M. Brainville, and P. Belliard, “Diffusion of Water Through Various Polymer Films: a New High Performance Method of Characterization,” Polymer Testing, Vol. 18, pp. 533–549, 1999.
94. R. Ash, R. Barrer, and D. Palmer, “Diffusion in Multiple Laminates,” British Journal of Applied Physics, Vol. 16, pp. 873-884, 1965.
95. G. Garnier, S. Marouani, B. Yrieix, C. Pompeo, M. Chauvois, L. Flandin, and Y. Brechet, “Interest and Durability of Multilayers: from Model Films to Complex Films,” Polymers for Advanced Technologies, Vol. 22, pp. 847-856, 2011.
96. J. Crank and G. S. Park, Diffusion in Polymers, Academic Press, Cambridge, Massachusetts, USA, 1968.
97. J. Busfield, A. Thomas, and K. Yamaguchi, “Electrical and Mechanical Behavior of Filled Rubber. III. Dynamic Loading and the Rate of Recovery,” Journal of Polymer Science Part B: Polymer Physics, Vol. 43 , pp. 1649-1661, 2005.
98. K. Yamaguchi, J. Busfield, and A. Thomas, “Electrical and Mechanical Behavior of Filled Elastomers. I. The Effect of Strain,” Journal of Polymer Science Part B: Polymer Physics, Vol. 41, pp. 2079-2089, 2003.
99. P. C. Bouten and M. A. van Gils, “Buckling Failure of Compressive Loaded Hard Layers in Flexible Devices,” in MRS Proceedings, Cambridge University Press, Vol. 843, pp. T4.9.1-T4.9.6, 2004.
100. D. Rittel, “An Investigation of the Heat Generated during Cyclic Loading of Two Glassy Polymers. Part I: Experimental,” Mechanics of Materials, Vol. 32, pp. 131-147, 2000.
101. M. Boehme and C. Charton, “Properties of ITO on PET Film in Dependence on the Coating Conditions and Thermal Processing,” Surface and Coatings Technology, Vol. 200, pp. 932-935, 2005.
102. A. Kulkarni, K. Schulz, T.-S. Lim, and M. Khan, “Electrical, Optical and Structural Characteristics of Indium-Tin-Oxide Thin Films Deposited on Glass and Polymer Substrates,” Thin Solid Films, Vol. 308, pp. 1-7, 1997.
103. P. Scherrer, “Bestimmung Der Grosse und Der Inneren Struktur Von Kolloidteilchen Mittels Rontgenstrahlen,” Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen. Vol. 26, pp. 98-100, 1918.
104. Peccell Product Information, Peccell Technologies, Inc., http://www.hs-kr.com/pds/peccell_products_en.pdf, accessed on April 28, 2016.
105. M. Bonnet, K.-D. Rogausch, and J. Petermann, “The Endothermic “Annealing Peak” of Poly (Phenylene Sulphide) and Poly (Ethylene Terephthalate),” Colloid and Polymer Science, Vol. 277, pp. 513-518, 1999.
106. K. A. Williams, A. J. Boydston, and C. W. Bielawski, “Towards Electrically Conductive, Self-Healing Materials,” Journal of The Royal Society Interface, Vol. 4, pp. 359-362, 2007.
107. C. Japu, A. M. de Ilarduya, A. Alla, M. G. Garcia-Martin, J. A. Galbis, S. Munoz-Guerra, “D-Glucose-Derived PET Copolyesters with Enhanced Tg,” Polymer Chemistry, Vol. 4, pp. 3524-3536, 2013.
108. S.-W. Seo, E. Jung, H. Chae, and S.-M. Cho, “Optimization of Al2O3/ZrO2 Nanolaminate Structure for Thin-Film Encapsulation of OLEDs,” Organic Electronics, Vol. 13, pp. 2436-2441, 2012.
109. M. Kempe, A. Dameron, and M. Reese, “Calcium Based Test Method for Evaluation of Photovoltaic Edge-Seal Materials,” NREL, www.nrel.gov/docs/fy11osti/50839.pdf, accessed on August 2, 2016.
110. S. Majee, B. Geffroy, Y. Bonnassieux, and J.-E. Bouree, “Interface Effects on the Moisture Barrier Properties of SiNx/PMMA/SiNx Hybrid Structure,” Surface and Coatings Technology, Vol. 254, pp. 429-432, 2014.
111. M. O. Reese, A. A. Dameron, and M. D. Kempe, “Quantitative Calcium Resistivity Based Method for Accurate and Scalable Water Vapor Transmission Rate Measurement,” Review of Scientific Instruments, Vol. 82, pp. 085101-1-10, 2011.
112. A. Roberts, B. Henry, A. Sutton, C. Grovenor, G. Briggs, T. Miyamoto, M. Kano, Y. Tsukahara, and M. Yanaka, “Gas Permeation in Silicon-Oxide/Polymer (SiOx/PET) Barrier Films: Role of the Oxide Lattice, Nano-Defects and Macro-Defects,” Journal of Membrane Science, Vol. 208, pp. 75-88, 2002.
指導教授 林志光(Chih-Kuang Lin) 審核日期 2018-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明