博碩士論文 105323013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:3.142.255.150
姓名 張瑞峰(Rui-feng Chang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 空調壓縮機干涉配合應力分析
(Stress Analysis for Interference Fitting in Air- Conditioning Compressor)
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
★ MOCVD玻璃承載盤溫度場分析★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為
★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究★ AISI 347不銹鋼腐蝕疲勞行為
★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響★ AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用有限元素法建立一套應用於家用空調迴轉式壓縮機定子與外殼鋼管干涉配合組裝之電腦輔助工程分析技術。首先,建立一套模擬分析定子與外殼鋼管干涉配合相互作用之有限元素模型,並利用實驗驗證模擬分析之結果,確認該模型之有效性之後,再進一步建立其動態摔落模型,用來預測該組合件之可承受摔落高度。在該組合件之結構應力應變分析模擬中,將會探討定子與外殼間的干涉量及定子層數對組合件之應力分佈、定子內徑之徑向位移以及定子與外殼鋼管間之徑向內力的影響。
藉由比較實驗與模擬之定子與外殼鋼管間最大靜摩擦力來驗證該有限元素模型之有效性,發現模擬結果與實驗結果有一致的吻合。在實驗中發現,定子與外殼鋼管間的干涉量及定子的傾斜度為最大靜摩擦力之重要影響因素。在模擬分析中,接觸面稜角之等效應力、定子內徑之徑向變形以及定子與外殼鋼管間之徑向內力三項數值,在定子上下20層的模擬值變化劇烈,且不論其定子之總層數為多少,其數值相近。當定子層數超過40層時,中間層區各層之應力與變形模擬值十分相近。另外,最大徑向位移以及定子與外殼鋼管間的最大靜摩擦力與干涉量有著線性關係,此乃該組合件僅承受彈性變形之故。
進一步利用板殼元素取代中間層區定子之簡化模型進行模擬分析,其結果與原實體元素模型之差異於工程應用中為可接受的程度,且計算時間可從40至50小時縮短為8小時。在動態摔落分析中,考慮三種不同的摔落高度,分別為1、0.5和0.25公尺。於模擬結果發現,40層定子與外殼鋼管之0.5毫米干涉組合件的不分離最高可接受摔落高度為0.5公尺。
摘要(英) The objective of this study is using finite element method (FEM) to develop a computer-aided-engineering (CAE) technique for application in interference fitting of motor stator and outer shell of a rotary compressor used in household air conditioning. An FEM model is developed to simulate the reaction between the stator and outer shell under interference fit. After validation by mechanical test, the FEM modeling is applied to simulating dynamic falling and predicting the critical falling height. The effects of interference between stator and shell and number of stator layers on the deformation and stress in the stator/shell assembly are considered in the simulation. The inner radial deformation of stator, radial reaction force between stator and outer shell, and stress distribution in the stator are calculated and correlated with the given parameters.
The FEM model is validated by comparing with the simulation the maximum friction force between stator and outer shell measured in mechanical test. Good agreement is found between the simulation and experiment for the maximum friction force to move the stator. In mechanical test, it is found the slope of stator and the interference are the major factors in determining the maximum static friction force. It’s observed in simulation the value of von-Mises stress at the nodes of contact corners of stator, the radial displacement of inner surface of stator, and the internal radial force between stator layer and outer shell at the top 20 layers and bottom 20 layers vary significantly and are similar for all given total numbers of layers in stator. If the stator has more than 40 layers, the stress and deformation in the middle layers do not significantly change. In addition, the maximum radial displacement of stator and the maximum static friction force at the stator/shell interface have a linear relationship with the extent of interference due to elastic deformation.
The FEM model is simplified using plate elements in the middle layers and the difference in results between the original solid-element model the simplified plate-element model is acceptable in engineering application. The computational time is effectively reduced from 40-50 hours to 8 hours using the simplified plate-element model. In the dynamic falling simulation, there are three falling heights considered, namely 1, 0.5, and 0.25 m. A critical falling height of 0.5 m is predicted to separate the stator from the outer shell during falling, for a given 40-layer stator/shell assembly with 0.5-mm interference.
關鍵字(中) ★ 壓縮機
★ 干涉配合
★ 簡化模型
關鍵字(英) ★ Compressor
★ Interference Fitting
★ Simplified Model
論文目次 LIST OF TABLES VII
LIST OF FIGURES IX
1. INTRODUCTION 1
1.1 Rotary Compressor for Household Air Conditioning 1
1.2 Intreference Fit 3
1.3 Relationship Between Magnetic Permeability and Compressive Stress 4
1.4 Purpose 6
2. FINITE ELEMENT METHOD MODELING 7
2.1 Coefficient of Static Friction 7
2.2 Finite Element Model and Material Properties 8
2.2.1 FEM simulation of interference fit 8
2.2.2 FEM simulation of dynamic falling 9
3. VALIDATION EXPERIMENT 11
3.1 Measurement of Specimen Geometry and Dimensions 11
3.2 Experimental Setup of Mechanical Test 12
4. RESULTS AND DISCUSSION 13
4.1 Coefficient of static Friction 13
4.2 Measurements of Specimen Geometry and Dimensions 13
4.3 Simulations of Interference Fit Between Stator and Outer shell 14
4.4 Simulations of Interference Fit Between Stator and Outer shell Used in Validation Experiment 18
4.5 Mechanical Test Result 18
4.6 Simulations of Interference Fit Between Stator and Outer shell Using Plate/Shell Elements 20
4.7 Simulation of Dynamic Falling 22
5. CONCLUSIONS 26
REFERENCES 28
TABLES 30
FIGURES 46
參考文獻 1. Willis Carrier, Wikipedia, https://en.wikipedia.org/wiki/Willis_Carrier, accessed on December 25, 2017.
2. Air Compressor, Wikipedia, https://en.wikipedia.org/wiki/Air_compressor, accessed on December 25, 2017.
3. Types of Refrigeration and Air Conditioning Compressors, Bright Hub Engineering, https://www.brighthubengineering.com/hvac/51468-types-of-refrigeration-and-air-conditioning-compressors/#imgn_4, accessed on December 25, 2017.
4. Rechi Co. Ltd., Internal Technical Data, 2016.
5. Y. Hu, X. Zeng, and B. Chen, “Analysis and Optimization of Permanent Synchronous Motor With Shrink Fitting,” Journal of Micromotors, Vol. 49, No. 12, pp. 21-29, 2016. (In Chinese)
6. Z. Wang and M. Yu,“The Analysis of the Influence of Compressive Stress on the Permanent Magnet Synchronous Motor Iron Loss and Improvement,”Proceedings of China Household Electrical Application Association, pp. 669-674, 2016. (In Chinese)
7. N. Takahashi and D. Miyagi, “Effect of Stress on Iron Loss of Motor Core,” Proceedings of Electric Machines & Drives Conference (IEMDC), Niagara Falls, ON, Canada, pp. 469-474, 2011.
8. K. Fujisaki, R. Hirayama, T. Kawachi, S. Satou, C. Kaidou, M. Yabumoto, and T. Kubota, “Motor Core Iron Loss Analysis Evaluating Shrink Fitting and Stamping by Finite-Element Method,” IEEE Transcation on Magnetic, Vol. 43, No. 5, pp. 1950-1954 , 2007.
9. K. Yamazaki and Y. Kato, “Iron Loss Anaiysis of Interior Permanent Magnet Synchronous,” IEEE Transcation on Magnetic, Vol. 50, No. 2, pp. 909-912, 2014.
10. K. Jeong, Z. Ren, H. Yoon, and C. Koh, “Measurement of Stator Core Loss of an Induction Motor at Each Manufacturing Process,” Journal of Electrical Engineer Technology, Vol. 9, pp. 742-747, 2014.
11. K. Fujisaki and S. Satoh “Numerical Calculations of Electromagnetic Fields in Silicon Steel under Mechanical Stress,” IEEE Transcation on Magnetic, Vol. 40, No. 4, pp. 1820-1825, 2004.
12. Interference Fit, Wikipedia, https://en.wikipedia.org/wiki/Interference_fit, accessed on February 09, 2018.
13. Shrink Fit, Wikipedia, https://en.wikipedia.org/wiki/Shrink-fitting, accessed on February 09, 2018.
14. J. Zhuang and K. Chen, Tensile Test Report of Wo-600 and STKM13C, National Central University, Tao-Yuan, Taiwan, 2015.
15. Mechanical Properties, E-pipe, http://www.e-pipe.co.kr/EJIS/pipe-text/struct/3517-5.html, accessed on Nomenber 2, 2017.
16. SOLID185, Sharcnet, https://www.sharcnet.ca/Software/Ansys/16.2.3/en-us/help/ans_elem/Hlp_E_SOLID185.html, accessed on April 25, 2018.
17. F. Mazzolani, Urban Habitat Constructions under Catastrophic Events: Proceedings of the COST C26 Action Final Conference, Taylor & Francis, London, UK, 2010.
18. SHELL181, Sharcnet, https://www.sharcnet.ca/Software/Ansys/16.2.3/en-us/help/ans_elem/Hlp_E_SHELL181.html, accessed on June 21, 2018.
指導教授 林志光(Chin-Kuang Lin) 審核日期 2018-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明