博碩士論文 105323062 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:18.117.183.150
姓名 宋冠賦(Kuan-Fu Sung)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 冷媒R-32在圓管內之兩相蒸發熱傳及壓降實驗分析
(Experimental study on flow boiling heat transfer and pressure drop of refrigerant R-32 in a horizontal tube)
相關論文
★ 冷卻水溫度與冰水溫度對離心式冰水主機性能影響之實驗分析★ 不同結構與幾何形狀對熱管性能之影響
★ 油冷卻器熱傳與壓降性能實驗分析★ 水對冷媒R22在板式熱交換器內之性能測試分析
★ 水對水在不同板片型式之板式熱交換器性能測試分析與比較★ 油冷卻器性能測試分析與比較
★ 空調機用水簾式暨光觸媒空氣清淨機 研製及測試★ 水對空氣在板式熱交換器之性能測試分析
★ 板片入出口及入出口管路壓降估計對板式熱交換器壓降性能影響分析★ 微熱交換器之設計與性能測試
★ 板式熱交換器之入出口壓降實驗分析★ 液體冷卻系統中之微熱交換器性能分析與改良
★ 直接模擬蒙地卡羅法於高低速流場之模擬★ 液體微熱交換器之熱傳增強研究
★ 冷媒R22在板式熱交換器內之凝結熱傳及壓降性能實驗分析★ 不同參數對燒結式熱管性能之影響研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 由於全球暖化效應之影響,全球變暖潛能值(GWP)較低之冷媒是目前工業及住宅空調使用上之趨勢。近年來,因冷媒R-32具有低GWP,充填量低且易回收等等之優點,目前已逐漸被許多空調製造商用來替代空調常用之冷媒R-410A。此外,冷媒R-32在空調上之性能研究也是近年來之重點項目。然而在目前相關文獻裡,冷媒R-32在飽和溫度10℃以下之兩相蒸發熱傳性能研究並不是很完全,且在冷凍系統(操作溫度在-20℃至-40℃)所使用之冷媒中,目前尚無人使用冷媒R-32來取代常用於冷凍系統之冷媒,如R404a等。因此,冷媒R-32在未來極有可能成為冷凍系統所使用之冷媒。在本實驗中,冷媒R-32在不同質量流率及熱通量之實驗條件下,進行圓管內兩相蒸發熱傳及壓降性能量測。測試段為套管式熱交換器,其內管管徑為5mm,操作溫度為10oC,並透過modified Wilson Plot方法先行計算冷媒R-32之單相傳熱係數及壓降,以確認本實驗系統之正確性。從實驗結果顯示,在不同質量流率及熱通量下,熱傳係數會隨著質量流率和熱通量的提升而提升,且在乾度大約為0.8時,因為管內部份乾涸而下降,顯示了在此實驗操作之溫度下,兩相蒸發熱傳性能與傳統兩相蒸發理論並無差異。同時,實驗結果也與傳統兩相熱傳經驗式相比,發現在不同質量流率下,因為各熱傳經驗式之沸騰模型或是其增強係數所考慮之參數有所差異,導致不同質量流率下所適用之熱傳關係式有所不同。此外,本實驗結果也將為下一步研究工作(冷媒R-32在圓管內之超低溫兩相蒸發熱傳及壓降性能測試)提供一個相關參考。
摘要(英) Due to the global warming effect considerations, refrigerants with lower value of the Global Warming Potential (GWP) will be the next generation refrigerants which are used in the industry and the residential air-conditioner. And now, a new developed refrigerant R-32, with GWP value of 675, has proposed to substitute refrigerant R-410A whose GPW value is 1975. Therefore, many major air-conditioning manufactures have determined refrigerant R-32 in their products and some studies have been discussed in recent years. However, the information of refrigerant R-32 on saturation temperature around 10°C is still insufficient, and the heat transfer performance of refrigeration system around -20°C to -40°C has not been clarified. In this study, two-phase heat transfer coefficient and pressure drops of refrigerant R-32 have been measured in a horizontal tube with 5.0mm inner diameter, and saturation temperature at 10°C with different heat flux and mass fluxes. The test section is a double pipe heat exchanger, where the refrigerant flows in the tube side and water flows in the annular side. Also by verifying the experimental rig worked well or not, modified Wilson Plot method were used to calculate the singe-phase heat transfer coefficient and pressure drops of refrigerant R-32. In this study, two-phase experiments were conducted at vapor qualities from 0.1 to 0.9 where mass fluxes from =200 kg/m2s to 600 kg/m2s and heat fluxes from = 26 kW/m2 to 46 kW/m2. The results show that the traditional two-phase knowledge works well and the correlations of Shah [2], Gungor and Winterton [3] and Liu and Winterton [4] had different accuracy in different flow conditions due to the enhancement factor in each flow boiling model are not the same. Besides, the results in this study can also be compared and discussed for the next step research of operating temperature go down at lower temperature.
關鍵字(中) ★ 流動沸騰
★ 熱傳係數
★ 壓降
★ R-32
關鍵字(英) ★ Flow boiling
★ Heat transfer coefficient
★ Pressure drop
★ R-32
論文目次 摘要 i
Abstract ii
Table of Contents iii
List of Figures vi
List of Tables viii
Nomenclature ix
English Symbols ix
Greek Symbols xvi
Subscripts xvi
Superscripts xviii
Chapter 1. Introduction 1
1.1  Background 1
1.2  Research Objective 3
Chapter 2. Literature Review 6
2.1  Flow Boiling Heat Transfer 6
2.1.1 Background 6
2.1.2 Single-Phase Heat Transfer in Horizontal Tube 6
2.1.3 Two-Phase Heat Transfer in Horizontal Tube 8
2.1.4 General Correlations for Saturated Flow Boiling in Tube 12
2.1.4.1 Superposition Model 12
2.1.4.2 Enhancement Model 16
2.1.4.2 Asymptotic Model 19
2.1.5 Experimental Studies for Refrigerant R-32 Inside a Tube 21
2.2  Pressure Drop 23
2.2.1 Background 23
2.2.2 Single-Phase Pressure Drop in Horizontal Tube 24
2.2.3 Two-Phase Pressure Drop in Horizontal Tube 25
2.2.3 General Correlations for Two-Phase Pressure Drop Inside a Tube 27
2.3  Conclusion 31
Chapter 3. Experimental Method 47
3.1  Introduction 47
3.2  Experimental System 47
3.2.1 Test Section 48
3.2.2 Refrigerant Loop 48
3.2.3 Heating Water Loop 49
3.2.4 Sub-Cooling Water Loop 49
3.3  Experimental Apparatus 49
3.3.1 Temperature Measurement 50
3.3.2 Pressure Measurement 50
3.3.3 Differential Pressure Measurement 50
3.3.4 Flow Measurement 50
3.4  Experimental Procedure 51
3.5  Data Reduction 52
3.6  Modified Wilson Plot 55
CHAPTER 4. Experimental Results and Discussion 65
4.1  Single-Phase Heat Transfer and Pressure Drop 65
4.2  Two-Phase Pressure Drop 65
4.3  Two-Phase Flow Boiling Heat Transfer 67
CHAPTER 5. Conclusion 94
Reference 95
Appendix 100
Appendix A  Uncertainty Analysis 100
(1) Uncertainty of Mass Flux on Refrigerant Side 100
(2) Uncertainty of Heat Transfer Rate 101
(3) Uncertainty of Total Thermal Resistance 102
(4) Uncertainty of Heat Transfer Coefficient on Water Side 102
(5) Uncertainty of Heat Transfer Coefficient on Refrigerant Side 103
(6) Uncertainty of Vapor Quality 103
參考文獻 [1] Molina, M. J., and Rowland, F. S., 1974, "Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone," Nature, 249(5460), pp. 810-812.
[2] Shah, M. M., 1982, "Chart correlation for saturated boiling heat transfer: equations and further study," Transactions of the ASME, 88(CONF-820112-).
[3] Gungor, K. E., and Winterton, R. H. S., 1986, "A general correlation for flow boiling in tubes and annuli," International Journal of Heat and Mass Transfer, 29(3), pp. 351-358.
[4] Liu, Z., and Winterton, R. H. S., 1991, "A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation," International Journal of Heat and Mass Transfer, 34(11), pp. 2759-2766.
[5] Marlowe, H., 2018, "Ozone layer declining over populated zones: study."
[6] Nusselt, W., 1915, "Das Grundgesetz des Warmeuberganges," Mitt. Forsch.-Arb. Ing.-Wes.(VDI-Forsch.-Heft), 38(89), pp. 477-482, 490-496.
[7] Dittus, F. W., and Boelter, L. M. K., 1930, "University of California publications on engineering," University of California publications in Engineering, 2, p. 371. quoted in : Webb, R, L., 1987, "Handbook of Single-Phase Heat Transfer," Chapter 4, Kakac, S., Shah, R. K., and Aung, Eds, W., John Wiley & Sons, New York.
[8] Petukhov, B. S., 1970, "Heat transfer and friction in turbulent pipe flow with variable physical properties," Advances in Heat transfer, Elsevier, pp. 503-564.
[9] Gnielinski, V., 1976, "New equations for heat and mass transfer in turbulent pipe and channel flow," International Chemical Engineering, 16(2), pp. 359-368.
[10] Chen, J. C., 1966, "Correlation for boiling heat transfer to saturated fluids in convective flow," Industrial & Engineering Chemistry Process Design and Development, 5(3), pp. 322-329.
[11] Gungor, K. E., and Winterton, R. H. S., 1987, "Simplified general correlation for saturated flow boiling and comparisons of correlations with data," Chemical Engineering Research and Design, 65(2), pp. 148-156.
[12] Kandlikar, S. G., 1990, "A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes," ASME Journal of Heat Transfer, 112(1), pp. 219-228.
[13] Steiner, D., and Taborek, J., 1992, "Flow boiling heat transfer in vertical tubes correlated by an asymptotic model," Heat Transfer Engineering, 13(2), pp. 43-69.
[14] Webb, R. L., and Gupte, N. S., 1992, "A critical review of correlations for convective vaporization in tubes and tube banks," Heat Transfer Engineering, 13(3), pp. 58-81.
[15] Rohsenow, W. M., 1951, "A method of correlating heat transfer data for surface boiling of liquids," Cambridge, Mass.: MIT Division of Industrial Cooporation, Transaction ASME.
[16] Bennett, D. L., and Chen, J. C., 1980, "Forced convective boiling in vertical tubes for saturated pure components and binary mixtures," AIChE Journal, 26(3), pp. 454-461.
[17] Forster, H. K., and Zuber, N., 1955, "Dynamics of vapor bubbles and boiling heat transfer," AIChE Journal, 1(4), pp. 531-535.
[18] Cooper, M. G., 1984, "Heat flow rates in saturated nucleate pool boiling-a wide-ranging examination using reduced properties," Advances in Heat Transfer, Elsevier, pp. 157-239.
[19] Shah, M. M., 1976, "A new correlation for heat transfer during boiling flow through pipes," Transactions ASME, 82(2), pp. 66-86.
[20] Schrock, V. E., and Grossman, L. M., 1959, "Flow convective boiling studies," Technical Report No. 73308-UCX 2182.
[21] Zhu, Y., Xiaomin, W., and Ran, Z., 2017, "R32 flow boiling in horizontal mini channels: Part II Flow-pattern based prediction methods for heat transfer and pressure drop," International Journal of Heat and Mass Transfer, 115, pp. 1233-1244.
[22] Jige, D., Sagawa, K., and Inoue, N., 2017, "Effect of tube diameter on boiling heat transfer and flow characteristic of refrigerant R32 in horizontal small-diameter tubes," International Journal of Refrigeration, 76, pp. 206-218.
[23] Chien, N. B., Vu, P. Q., Choi, K. I., and Oh, J. T., 2017, "Boiling heat transfer of R32, CO2 and R290 inside horizontal minichannel," Energy Procedia, 105, pp. 4822-4827.
[24] Tran, T. N., Wambsganss, M. W., and France, D. M., 1996, "Small circular-and rectangular-channel boiling with two refrigerants," International Journal of Multiphase Flow, 22(3), pp. 485-498.
[25] Bertsch, S. S., Groll, E. A., and Garimella, S. V., 2009, "A composite heat transfer correlation for saturated flow boiling in small channels," International Journal of Heat and Mass Transfer, 52(7-8), pp. 2110-2118.
[26] Matsuse, Y., Enoki, K., Mori, H., Kariya, K., and Hamamoto, Y., 2016, "Boiling heat transfer and pressure drop of a refrigerant R-32 flowing in a small horizontal tube," Heat Transfer Engineering, 37(7-8), pp. 668-678.
[27] Alberto, C., Davide, D. C., Marko, M., and Luisa, R., 2009, "Pressure drop during two-phase flow of R134a and R32 in a single minichannel," Journal of Heat transfer, 131(033107), pp. 1-8.
[28] Blasius, H., 1913, "Das Aehnlichkeitsgesetz bei Reibungsvorgangen in Flussigkeiten," Forschg. Arb. Ing. -Wes, pp. 131-137.
[29] Filonenko, G., 1954, "Hydraulic resistance in pipes," Teploenergetika, 1, pp. 40-44.
[30] Butterworth, D., 1975, "A comparison of some void-fraction relationships for co-current gas-liquid flow," International Journal of Multiphase Flow, 1(6), pp. 845-850.
[31] Zhang, M., and Webb, R. L., 2001, "Correlation of two-phase friction for refrigerants in small-diameter tubes," Experimental Thermal and Fluid Science, 25(3-4), pp. 131-139.
[32] Friedel, L., 1979, "Improved friction pressure drop correlations for horizontal and vertical two-phase pipe flow," European Two-Phase Flow Group Meeting.
[33] Muller-Steinhagen, H., and Heck, K., 1986, "A simple friction pressure drop correlation for two-phase flow in pipes," Chemical Engineering and Processing: Process Intensification, 20(6), pp. 297-308.
[34] Collier, J. G., and Thome, J. R., 1994, Convective boiling and condensation, Clarendon Press.
[35] Carey, V. P., 1992, "Liquid-vapor phase-change phenomena," Second Edition, CRC Press Company.
[36] Moody, L. F., 1944, "Friction factors for pipe flow," Transcation ASME, 66, pp. 671-684.
[37] Moffat, R. J., 1988, "Describing the uncertainties in experimental results," Experimental thermal and fluid science, 1(1), pp. 3-17.
[38] Kays, W. M., and London, A. L., 1984, "Compact heat exchangers," Third Edition, McGraw-Hill Book Company.
[39] Briggs, D. E., and Young, E. H., 1969, "Modified Wilson plot techniques for obtaining heat transfer correlations for shell and tube heat exchangers," Chemical Engineering Progress Symposium Series, AIChE, New York, NY, pp. 35-45.
[40] Lemmon, E. W., Huber, M. L., and McLinden, M. O., 2002, "NIST reference fluid thermodynamic and transport properties—REFPROP," NIST standard reference database, 23, p. v7.
[41] Sieder, E. N., and Tate, G. E., 1936, "Heat transfer and pressure drop of liquids in tubes," Industrial & Engineering Chemistry, 28(12), pp. 1429-1435.
指導教授 楊建裕(Chien-Yuh Yang) 審核日期 2018-8-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明