博碩士論文 105323091 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.144.113.30
姓名 劉倉榮(Cang-Rong Liu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 天然氣固態氧化物燃料電池複合系統與二氧化碳排放之分析
(Analysis of Natural gas Fed Solid Oxide Fuel Cell Hybrid Systems with CO2 emission)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 矽相關半導體材料光學模式之實驗量測儀器發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究針對中溫質子傳導型固態氧化物燃料電池複合系統分析。根據理論利用Matlab計算出燃料電池不同溫度下之性能曲線,並應用於商用軟體Thermolib進行不同系統配置各元件熱力學性質變化情形。本文建立四種不同燃料電池複合系統系統,入口端燃料為固態氧化物燃料電池常見的天然氣,其中,系統A為渦輪機複合系統,系統B、C、D為甲醇合成複合系統,藉由甲醇合成反應取代傳統之渦輪機配置,以達到減少系統碳排放及增加系統周邊效益。各系統之系統配置有些許不同,並且在相同操作條件下進行比較,操作條件為燃料當量比1.2~1.5、空氣當量比2~4並且單電池電壓固定在0.68~0.72 V。
結果顯示,系統A因有渦輪機輔助發電,故擁有最高之系統淨輸出功率;系統B之甲醇產率較差,故系統淨發電與合併產甲醇效率為最低;系統C加入水分離器於系統中,在甲醇合成反應前先行將水氣過濾並同時將熱回收,因甲醇產率大幅提升,故擁有最高的熱電效率;系統D則是在系統中增加氫氣傳輸膜元件、水氣轉移重組器與碳捕捉,將一氧化碳重組出成純氫,並與碳捕捉元件捕捉到的二氧化碳合成甲醇,擁有最高產甲醇效率及系統減碳比率。
摘要(英) In this research, the performance of intermediate-temperature proton-conducting solid oxide fuel cell hybrid systems is investigated. It is analyzed by using Matlab/Simulink/Thermolib. There are four different fuel cell hybrid systems. System A is combined with micro gas turbine. System B, C, D are combined with methanol synthesis reactor. In order to decrease carbon emissions and increase system economic benefits, traditional turbine configuration is replaced by methanol synthesis reactor. The configuration of each system is slightly different, but is analyzed under the same operating conditions. Flow rates of hydrogen and air are controlled by assigning different stoichiometric ratio, which are 1.4 ~ 1.7 and 2 ~ 4 respectively.
Results show that, due to micro gas turbine auxiliary power, System A has the highest net power. The poor methanol production of System B leads to the lowest system efficiency. System C with the water separator and the heat exchanger filters the water and recovers heat before the gas flows into methanol synthesis reactor. The methanol production increases significantly, therefore system C has the highest combined heat and power efficiency. In system D, the water separator, water gas shift reformer and carbon capture are added, and the water gas shift reformer can produce pure hydrogen from carbon monoxide and combine with carbon dioxide from carbon capture into methanol, then system D has the highest methanol production efficiency and carbon reduction ratio.
關鍵字(中) ★ 固態氧化物燃料電池
★ 渦輪機
★ 甲醇合成反應
★ 碳捕捉再利用
關鍵字(英) ★ Intermediate-temperature
★ Proton-conducting
★ Solid oxide fuel cell
★ Micro gas turbine
★ Methanol synthesis reaction
★ Carbon capture and reuse
論文目次 中文摘要 I
ABSTRACT II
致謝 IV
目錄 V
圖目錄 IX
表目錄 XIII
符號表 XIV
第一章 緒論 1
1.1 前言 1
1.2 固態氧化物燃料電池複合系統 9
1.2.1固態氧化物燃料電池之工作原理 9
1.2.2 燃料電池極化現象 13
1.2.3固態氧化物燃料電池結構 14
1.2.4 固態氧化物燃料電池系統 16
1.2.5 熱回收系統 18
1.2.6 減碳系統: 18
1.3 文獻回顧 18
1.3.1 SOFC數學模型: 18
1.3.2 SOFC系統: 22
1.3.3 碳捕捉與應用 24
1.4 研究動機與方向 25
第二章 理論分析 27
2.1 問題描述與假設 27
2.2 系統模型 27
2.2.1 固態氧化物燃料電池模型 27
2.2.2 壓縮機 33
2.2.3 混和器 33
2.2.4 重組/合成反應器 33
2.2.5 熱交換器 34
2.2.6 微氣渦輪機(Micro gas turbine, MGT) 35
2.2.7 後燃器 35
2.2.8 氫氣傳輸膜(Hydrogen transport membrane, HTM) 36
2.2.9 水分離器 36
2.2.10 二氧化碳捕捉(CO2 capture) 36
2.2.11 效率定義 36
2.3 參數條件 38
第三章 數值方法與驗證 40
3.1 數值方法 40
3.2 程式驗證 43
第四章 結果與討論 47
4.1 質子傳導型固態氧化物燃料電池性能曲線 47
4.2 系統設計之比較 50
4.2.1 燃料及空氣當量對系統A的影響 58
4.2.2 燃料及空氣當量對系統B的影響 63
4.2.3 燃料及空氣當量對系統C的影響 69
4.2.4 燃料及空氣當量對系統D的影響 78
4.3系統減碳效益 85
第五章 結論與未來建議 87
5.1 結論 87
5.2 未來建議 88
第六章 參考文獻 89
參考文獻 [1] http://www.storm.mg/article/132859
[2] http://www.sgesc.nat.gov.tw
[3] https://www.navigantresearch.com/newsroom/annual-fuel-cell-system-shipments-will-surpass-600000-by-2017
[4] http://money.cnn.com/2017/04/12/technology/germany-hydrogen-powered-train/index.html
[5] https://h2me.eu/2016/05/05/germany-h2-mobility-targets-400-hydrogen-fueling-stations-by-2023/
[6] https://www.japan.go.jp/tomodachi/2016/spring2016/tokyo_realize_hydrogen_by_2020.html
[7] https://www.google.com.tw/search?q=NRDC&oq=NRDC&aqs=chrome..69i57j69i60l3j0l2.1630j0j4&sourceid=chrome&ie=UTF-8
[8] http://money.cnn.com/2017/08/21/news/economy/germany-diesel-gas-cars-ban-angela-merkel/index.html
[9] http://www.bbc.com/news/world-europe-40518293
[10] https://www.ft.com/content/7e61d3ae-718e-11e7-93ff-99f383b09ff9
[11] https://www.greencarreports.com/news/1103847_smaller-cheaper-toyota-mirai-fuel-cell-car-coming-in-2019-company-says
[12] https://www.mercedes-benz.com/en/mercedes-benz/vehicles/passenger-cars/glc/the-new-glc-f-cell
[13] http://www.bmwblog.com/2017/03/29/bmw-produce-low-volume-hydrogen-fuel-cell-car-2021
[14] http://www.autonews.com/article/20170923/OEM05/170929942/audi-fuel-cell-hydrogen-ev
[15] http://boeing.mediaroom.com/2016-02-08-Boeing-Delivers-Reversible-Fuel-Cell-based-Energy-Storage-System-to-U-S-Navy
[16] http://www.bloomenergy.com/customer-fuel-cell/google-renewable-energy
[17] http://ballard.com/about-ballard/newsroom/news-releases/2014/06/29/ballard-signs-fuel-cell-licensing-engineering-services-agreement-with-m-field-in-europe
[18] http://www.nepii.tw/KM/CCS/index.html
[19] J. L.Young and V. I.Birss, “Crack severity in relation to non-homogeneous Ni oxidation in anode-supported solid oxide fuel cells,” J. Power Sources, vol. 196, no. 17, pp. 7126-7135, 2011.
[20] P. Ranran, W. Yan, Y. Lizhai, and M. Zongqiang, “Electrochemical properties of intermediate-temperature SOFCs based on proton conducting Sm-doped BaCeO3 electrolyte thin film,” vol. 177, pp. 389-393, 2006.
[21] F. Iguchi, N. Sata, and H. Yugami, “Proton transport properties at the grain boundary of barium zirconate based proton conductors for intermediate temperature operating SOFC+,” pp. 6265-6270, 2010.
[22] A. D’Epifanio, E. Fabbri, E. Di Bartolomeo, S. Licoccia, and E. Traversa, “Design of BaZr0.8Y0.2O3–d protonic conductor to improve the electrochemical performance in intermediate temperature solid oxide fuel cells (IT-SOFCs),” pp. 69-76, 2008.
[23] S. H. Chan and Z. T. Xia, “Polarization effects in electrolyte/electrode-supported solid oxide fuel cells,” pp. 339-347, 2002.
[24] R. Suwanwarangkul, E. Croiset, M. W. Fowler, P. L. Douglas, E. Entchev, and M. a. Douglas, “Performance comparison of Fick’s, dusty-gas and Stefan-Maxwell models to predict the concentration overpotential of a SOFC anode,” J. Power Sources, vol. 122, no. 1, pp. 9-18, 2003.
[25] M. M. Hussain, X. Li, and I. Dincer, “Mathematical modeling of planar solid oxide fuel cells,” J. Power Sources, vol. 161, no. 2, pp. 1012-1022, 2006.
[26] H. W. Chang, C. M. Huang, and S. S. Shy, “An experimental investigation of pressurized planar solid oxide fuel cells using two different flow distributors,” J. Power Sources, vol. 250, pp. 21-29, 2014.
[27] D. J. L. Brett, A. Atkinson, N. P. Brandon, and S. J. Skinner, “Intermediate temperature solid oxide fuel cells.,” Chem. Soc. Rev., vol. 37, no. 8, pp. 1568-78, 2008.
[28] A. Demin, “Thermodynamic analysis of a hydrogen fed solid oxide fuel cell based on a proton conductor,” Int. J. Hydrogen Energy, vol. 26, no. 10, pp. 1103-1108, 2001.
[29] A. K. Demin, P. E. Tsiakaras, V. a. Sobyanin, and S. Y. Hramova, “Thermodynamic analysis of a methane fed SOFC system based on a protonic conductor,” Solid State Ionics, vol. 152-153, pp. 555-560, 2002.
[30] M. Ni, M. K. H. Leung, and D. Y. C. Leung, “Mathematical modelling of proton-conducting solid oxide fuel cells and comparison with oxygen-ion-conducting counterpart,” Fuel Cells, vol. 7, no. 4, pp. 269-278, 2007.
[31] M. Ni, D. Y. C. Leung, and M. K. H. Leung, “Thermodynamic analysis of ammonia fed solid oxide fuel cells: Comparison between proton-conducting electrolyte and oxygen ion-conducting electrolyte,” J. Power Sources, vol. 183, no. 2, pp. 682-686, 2008.
[32] Y. Patcharavorachot, N. P. Brandon, W. Paengjuntuek, S. Assabumrungrat, and A. Arpornwichanop, “Analysis of planar solid oxide fuel cells based on proton-conducting electrolyte,” Solid State Ionics, vol. 181, no. 35-36, pp. 1568-1576, 2010.
[33] H. Iwahara, “High temperature proton conducting oxides and their application to solid electrolyte fuel cells and steam electrolyzer for hydrogen production,” Solid State Ionics, no. 1, pp. 573-578, 1987.
[34] A. Arpornwichanop, Y. Patcharavorachot, and S. Assabumrungrat, “Analysis of a proton-conducting SOFC with direct internal reforming,” Chem. Eng. Sci., vol. 65, no. 1, pp. 581-589, 2010.
[35] J. Bu, P. G. Jonsson, and Z. Zhao, “Ionic conductivity of dense BaZr0.5Ce0.3Ln0.2O3?δ (Ln = Y, Sm, Gd, Dy) electrolytes,” J. Power Sources, vol. 272, pp. 786-793, 2014.
[36] A. Choudhury, H. Chandra, and A. Arora, “Application of solid oxide fuel cell technology for power generation- A review,” Renew. Sustain. Energy Rev., vol. 20, pp. 430-442, 2013.
[37] C. Zamfirescu and I. Dincer, “Thermochimica Acta Thermodynamic performance analysis and optimization of a SOFC-H+ system,” vol. 486, pp. 32-40, 2009.
[38] H. Xu, Z. Dang, and B.-F. Bai, “Analysis of a 1 kW residential combined heating and power system based on solid oxide fuel cell,” Appl. Therm. Eng., vol. 50, no. 1, pp. 1101-1110, 2013.
[39] R. J. Braun, S. A. Klein, and D. T. Reindl, “Evaluation of system configurations for solid oxide fuel cell-based micro-combined heat and power generators in residential applications,” vol. 158, pp. 1290-1305, 2006.
[40] B. Tjaden, M. Gandiglio, A. Lanzini, M. Santarelli, and M. Ja, “Small-Scale Biogas-SOFC Plant: Technical Analysis and Assessment of Di ff erent Fuel Reforming Options,” 2014.
[41] W. Doherty, A. Reynolds, and D. Kennedy, “Process simulation of biomass gasification integrated with a solid oxide fuel cell stack,” J. Power Sources, vol. 277, pp. 292-303, 2015.
[42] S. Wongchanapai, H. Iwai, M. Saito, and H. Yoshida, “Performance evaluation of a direct-biogas solid oxide fuel cell-micro gas turbine (SOFC-MGT) hybrid combined heat and power (CHP) system,” J. Power Sources, vol. 223, pp. 9-17, 2013.
[43] S. K. Park, J.-H. Ahn, and T. S. Kim, “Performance evaluation of integrated gasification solid oxide fuel cell/gas turbine systems including carbon dioxide capture,” Appl. Energy, vol. 88, no. 9, pp. 2976-2987, 2011.
[44] N. S. Siefert and S. Litster, “Exergy and economic analyses of advanced IGCC-CCS and IGFC-CCS power plants,” Appl. Energy, vol. 107, pp. 315-328, Jul. 2013.
[45] A. Lanzini, T. G. Kreutz, E. Martelli, and M. Santarelli, “Energy and economic performance of novel integrated gasifier fuel cell (IGFC) cycles with carbon capture,” Int. J. Greenh. Gas Control, vol. 26, pp. 169-184, 2014.
[46] S. Chen, N. Lior, and W. Xiang, “Coal gasification integration with solid oxide fuel cell and chemical looping combustion for high-efficiency power generation with inherent CO2 capture,” Appl. Energy, vol. 146, pp. 298-312, 2015.
[47] L. Barelli and a. Ottaviano, “Solid oxide fuel cell technology coupled with methane dry reforming: A viable option for high efficiency plant with reduced CO2 emissions,” Energy, vol. 71, pp. 118-129, 2014.
[48] S. G. Jadhav, P. D. Vaidya, B. M. Bhanage, and J. B. Joshi, “Catalytic carbon dioxide hydrogenation to methanol: A review of recent studies,” Chem. Eng. Res. Des., vol. 92, no. 11, pp. 2557-2567, 2014.
[49] H. Taghdisian, F. Farhadi, and M. R. Pishvaie, “An optimization-oriented green design for methanol plants,” J. Chem. Technol. Biotechnol., vol. 87, no. 8, pp. 1111-1120, 2012.
[50] D. Milani, R. Khalilpour, G. Zahedi, and A. Abbas, “A model-based analysis of CO2 utilization in methanol synthesis plant,” J. CO2 Util., vol. 10, pp. 12-22, 2015.
[51] R. J. Pearson, M. D. Eisaman, J. W. G. Turner, P. P. Edwards, Z. Jiang, V. L. Kuznetsov, K. a. Littau, L. Di Marco, and S. R. G. Taylor, “Energy storage via carbon-neutral fuels made from CO2, Water, and Renewable Energy,” Proc. IEEE, vol. 100, no. 2, pp. 440-460, 2012.
[52] A. K. Sayah and A. K. Sayah, “Wind-hydrogen utilization for methanol production: An economy assessment in Iran,” Renew. Sustain. Energy Rev., vol. 15, no. 8, pp. 3570-3574, 2011.
[53] https://data.gov.tw/comment/540376#comment-540376
指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2018-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明