博碩士論文 105323037 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:18.222.161.123
姓名 孫葳(Sun Wei)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 SOFC之La0.6Sr0.4Co0.8Fe0.2O3-δ陰極經浸潤 La0.6-xSr0.4BaxCo0.8Fe0.2O3-δ(x=0.13、0.26、0.39)表面改質後對其效能之影響
(Improved efficiency of the La0.6Sr0.4Co0.8Fe0.2O3-δ cathode of SOFC by infiltration with La0.6-xSr0.4BaxCo0.8Fe0.2O3-δ (x=0.13、0.26、0.39))
相關論文
★ 銅導線上鍍鎳或錫對遷移性之影響及鍍金之鎳/銅銲墊與Sn-3.5Ag BGA銲料迴銲之金脆研究★ 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析
★ 光電化學蝕刻n-型(100)單晶矽獲得矩陣排列之巨孔洞研究★ 銅箔基板在H2O2/H2SO4溶液中之微蝕行為
★ 助銲劑對迴銲後Sn-3Ag-0.5Cu電化學遷移之影響★ 塗佈奈米銀p型矽(100)在NH4F/H2O2 水溶液中之電化學蝕刻行為
★ 高效能Ni80Fe15Mo5電磁式微致動器之設計與製作★ 銅導線上鍍金或鎳/金對遷移性之影響及鍍金層對Sn-0.7Cu與In-48Sn BGA銲料迴銲後之接點強度影響
★ 含氮、硫雜環有機物對鍋爐鹼洗之腐蝕抑制行為研究★ 銦、錫金屬、合金與其氧化物的陽極拋光行為探討
★ n-型(100)矽單晶巨孔洞之電化學研究★ 鋁在酸性溶液中孔蝕行為研究
★ 微陽極引導電鍍與監測★ 鍍金層對Bi-43Sn與Sn-9Zn BGA銲料迴銲後之接點強度影響及二元銲錫在不同溶液之電解質遷移行為
★ 人體血清白蛋白構形改變之電化學及表面電漿共振分析研究★ 光電化學蝕刻製作n-型(100)矽質微米巨孔 陣列及連續壁結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究使用甘胺酸-硝酸鹽燃燒合成法製備奈米級粒徑之鈣鈦礦結晶結構La0.6Sr0.4Co0.8Fe0.2O3 (LSCF)、La0.6-xSr0.4BaxCo0.8Fe0.2O3 (標示為x=0.13;LSB1CF、0.26;LSB2CF、0.39;LSB3CF)陰極粉末。經由調整LSCF前驅硝酸鹽水溶液之酸鹼值(pH值: 2、3、4、5)與甘胺酸-硝酸根比值(G/N比: 0.50、0.75、1.00、1.25),觀察煆燒後粉末之結晶結構與表面形貌,並對其材料熱性質、電化學性質進行探討;再以最佳燃燒法合成參數(pH值、G/N比)進行LSBxCF之合成,並分析其電化學性質。最後評估LSCF作為陰極骨架、LSBxCF作為浸潤材料,將兩者經由浸潤法製成複合式陰極應用於質子傳導型固態氧化物燃料電池陰極之可行性。在LSCF實驗結果所示,LSCF1.00/、LSCF1.00/4、LSCF1.25/3與LSCF1.25/4等樣品為所有燃燒法合成參數中,結晶結構與表面形貌最符合作為SOFC陰極之結果,其中LSCF1.25/3由雷射粒徑分析其平均粒徑為300nm;由熱膨脹(TMA)之分析可發現LSCF1.25/3與電解質BCZY之熱膨脹係數最為相近;由四點式直流電量測導電度,LSCF1.00/4之導電度可達3690 S/cm;而LSBxCF之實驗結果,在熱重損失(TGA)分析中可發現, LSB2CF有最高之氧空缺變化量;其半電池之電子傳導阻抗與氧離子轉移阻抗分別為0.24 ?cm2與0.30 ?cm2。LSCF1.25/3作為陰極骨架、LSB2CF作為浸潤材料將兩者結合製成陰極進行極化曲線測試,在700°C時浸潤之陰極最高功率密度為39.5 mW/cm2,未浸潤之陰極最高功率密度為23.7 mW/cm2,效率提升將近66.67 %,而浸潤之陰極其極化阻抗為1.06 ?cm2,未浸潤之陰極其極化阻抗為3.21 ?cm2,阻抗降低約66.9 %。
摘要(英) In this study, the nanostructured perovskite La0.6Sr0.4Co0.8Fe0.2O3 (LSCF) and La0.6-xSr0.4BaxCo0.8Fe0.2O3 (note as x=0.13; LSB1CF, 0.26; LSB2CF, 0.39; LSB3CF) prepared by the glycine-nitrate combustion synthesis method were considered as a potential candidate for use as cathode in solid oxide fuel cells (SOFC) operated at intermediate-temperature. In the present work, combustion synthesis method was investigated by adjusting the pH of LSCF nitrate solution (pH=2, 3, 4, 5) and ratio between glycine and nitrate (G/N=0.50, 0.75, 1.00, 1.25). The crystal structure and morphology of the powders after calcining were analyzed and also its thermal properties and electrochemical characteristic were discussed. The optimal combustion synthesis parameters (pH and G/N) were used to synthesize the LSBxCF. Then the crystal structure and electrochemical properties were investigated. Finally, the feasibility for using as cathode in P-SOFC though combining LSCF as cathode backbone and LSBxCF as infiltrating material together by infiltration to fabricate a composite cathode was evaluated. The results of LSCF analysis showed that LSCF1.00/3, LSCF1.00/4, LSCF1.25/3 and LSCF1.25/4 were the optimal parameters for combustion synthesis whose crystal structure and morphology were the most suitable as cathode for SOFC. Among all, LSCF1.25/3 was analyzed that its average particle size around 300nm. For the measurement of thermal expansion coefficient (TMA), the coefficient of LSCF1.25/3 was about 11.8 × 10-6 K-1 which was the closest to that of electrolyte BCZY. In the results of four-probe DC conductivity measurement, LSCF1.00/4 had the highest conductivity near 3690 S/cm@550°C. For the thermosgravimetric analysis of LSBxCF, the results showed that the weight loss of La0.34Sr0.4Ba0.26Co0.8Fe0.2O3 (LSB2CF) was the biggest which indicated that LSB2CF provided the highest amount of oxygen vacancies in LSBxCF. Also, the resistance of electron conductivity and oxygen ion transfer for half-cell of LSB2CF was 0.24 ?cm2 and 0.30 ?cm2 respectively. Then, results of performance tests for the cell used LSCF as cathode backbone and LSB2CF as infiltrating material showed that the maximum power density of infiltrated cell was 39.5 mW/cm2 and pristine was 23.7 mW/cm2. The power density enhanced about 66.67 %. The polarization resistance of infiltrated cell was 1.06 ?cm2 and pristine was 3.21 ?cm2. The resistance reduced about 66.9 %.
關鍵字(中) ★ 固態氧化物燃料電池
★ 鑭鍶鈷鐵氧化物
★ 鋇摻雜
★ 浸潤法
關鍵字(英) ★ Solid oxide fuel cell
★ Lanthanum-strontium-cobalt-ferrite oxide
★ Barium doping
★ infiltration
論文目次 摘要 i
Abstract iii
致謝 iv
表目錄 viii
圖目錄 ix
第一章 緒論 1
1-1前言 1
1-2 研究動機與目的 3
1-3 論文架構 5
第二章 實驗理論與文獻回顧 6
2-1 燃料電池簡介 6
2-1-1 固態氧化物燃料電池原理與簡介 7
2-1-2 固態氧化物燃料電池元件 8
2-1-3 固態氧化物燃料電池支撐類型[31] 11
2-2陰極元件 11
2-2-1 陰極傳導機制[32] 12
2-2-2 陰極晶體結構 13
2-2-3 陰極材料製備方式 15
2-3 電化學分析原理 18
2-3-1 直流電極化曲線(I-V Curve)原理 18
2-3-2 電化學交流阻抗頻譜(EIS)原理 21
2-4 文獻回顧 24
2-4-1 SOFC陰極材料 24
2-4-2 SOFC陰極合成法 25
2-4-3 複合陰極製程 27
第三章 實驗方法 29
3-1 實驗藥品與原料 30
3-2 樣品製備、條件與實驗流程 30
3-2-1 陰極粉末製備流程 30
3-2-2 陰極樣品製備流程 31
3-2-3 陰極膏製備流程 32
3-2-4 半電池製備 32
3-2-5 浸潤法製程 34
3-3 實驗設備 34
3-3-1 X光晶體繞射儀(X-Ray diffraction; XRD) 34
3-3-2 掃描式電子顯微鏡(Scanning Electron Microscope; SEM) 35
3-3-3 熱重損失分析儀(Thermogravity Analysis; TGA) 36
3-3-4 導電性量測 36
3-3-5直流極化曲線測試平台 37
3-3-6 電化學交流阻抗頻譜儀 37
第四章 實驗結果 39
4-1 X光晶體繞射分析 39
4-1-1 LSCF之X光繞射圖譜 39
4-1-2 LSBxCF之X光繞射圖譜 40
4-2 LSCF陰極表面形貌觀察 40
4-3 陰極粉末熱重分析 41
4-3-1 LSCF之熱重分析 41
4-3-2 LSBxCF之熱重分析 42
4-4 LSCF熱機械性質分析 42
4-5 陰極材料導電性量測 42
4-5-1 LSCF之導電度 43
4-5-2 LSBxCF之導電度 43
4-6 直流極化曲線測試分析 43
4-6-1 LSCF之直流極化曲線 44
4-6-2 LSBxCF之直流極化曲線 44
4-6-3 LSB2CF浸潤LSCF陰極骨架之直流極化曲線 44
4-7 電化學交流阻抗頻譜分析 44
4-7-1 LSCF之交流阻抗頻譜 45
4-7-2 LSBxCF之交流阻抗頻譜 45
4-7-3 LSB2CF浸潤LSCF陰極骨架之交流阻抗頻譜 46
第五章 實驗結果討論 47
5-1 燃燒合成法製備LSCF與LSBxCF粉末之探討 47
5-1-1 LSCF 47
5-1-2 LSBxCF 48
5-2 陰極樣品特性分析之探討 49
5-2-1 氧空缺 49
5-2-2 熱膨脹係數 50
5-2-3 導電性 50
5-3 全電池性能分析 51
5-3-1 LSCF陰極 51
5-3-2 LSBxCF陰極 52
5-3-3 LSB2CF浸潤LSCF陰極 52
第六章 結論與未來工作 54
6-1 結論 54
6-2 未來工作 55
參考文獻 56
參考文獻 [1] 經濟部能源局政策與措施,2018年5月17日。取自: https://www.moeaboe.gov.tw/ecw/populace/content/SubMenu.aspx?menu_id=48
[2] 台灣電力公司統計資料,2015年。取自: https://www.taiwanstat.com/statistics/electric-consume/
[3] W.R. Grove, “On voltaic series and the combination of gases by platinum”, Philosophical Magazine and Journal of Science, Series 3, 14, 127–130, 1839
[4] Y. A. Cengel, Thermodynamics: An Engineering Approach, 7th Edition, McGraw-Hill, U.S.A, 2010
[5] J. Hou, et al, “A new cobalt-free proton-blocking composite cathode La2NiO4+δ-LaNi0.6Fe0.4O3-δ for BaZr0.1Ce0.7Y0.2O3-δ-based solid oxide fuel cells”, Journal of Power Sources, 264, 64-75, 2014
[6] L. Bi, et al, “Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides”, Chem. Sov. Rev, 43, 8255-8270, 2014
[7] S. P. S. Badwa, et al., “Review of Progress in High Temperature Solid Oxide Fuel Cells”, Journal of the Australian Ceramics Society, 50, 23-37, 2014
[8] Wikiwand, 2012, derive from:
http://www.wikiwand.com/zh-tw/%E8%B3%AA%E5%AD%90
[9] Wikiwand, 2012, derive from:
https://zh.wikipedia.org/wiki/%E7%A6%BB%E5%AD%90%E5%8D%8A%E5%BE%84
[10] Z. Wang, et al., “A mixed-conducting BaPr0.8In0.2O3?δ cathode for proton-conducting solid oxide fuel cells”, Electrochemistry Communications, 27, 19-21, 2013
[11] J. Mizusaki, et al, “Nonstoichiometry of the Perovskite-Type Oxides La1-xSrxCoO3-δ”, Journal of Solid State Chemistry,80, 102-111, 1989
[12] T. S. John, et al, “Solid Oxide Fuels Cells: Facts and Figures: Past Present and Future Perspectives for SOFC Technologies”, Springer, U.S.A, 2013
[13] sunfire官方網站。檢自:
http://www.sunfire.de/en/products-and-technology
[14] fuelcellmaterials官方網站。檢自: https://fuelcellmaterials.com/products/powders/cathode-powders/
[15] elcogen官方網站。檢自:
http://www.elcogen.com/products/
[16] SOFCMAN官方網站。檢自:
http://www.sofcman.com/lscf.html
[17] H. S. Kim, et al, “A Study of LSCF Cathode Material Prepared by Pechini Process for IT-SOFCs”, International Conference on Power and Energy Systems, Lecture Notes in Information Technology, 13, 2012
[18] U. Schubert, et al, “Synthesis of inorganic materials”, second, revised and updated edition, U.S.A., 2004
[19] C. T. Wu, “Preparation and Characterization of Lanthanum-Indium (Gallium)-Zirconium Oxides by Chemical Co-precipitation”, National Cheng Kung University, degree of master, 2003
[20] D. H. Huang, “Synthesis and Electrochemical Properties of Sm-doped and Bi-doped Cerium Oxides Prepared by a Low Temperature Hydrothermal Method for SOFC Electrolyte”, National Taiwan Normal University, degree of master, 2004
[21] C. H. Wu, “Modified combustion synthesis method to prepare nano (La0.7Sr0.3)MnO3 electrode powders for enhancing fatigue properties of Pb(Zn,Nb,Zr,Ti)O3 material system”, National Taipei University of Technology, degree of master, 2006
[22] W. Zhou, et al, “LSCF Nano-powder from Cellulose–Glycine?Nitrate Process and its Application in Intermediate?Temperature Solid?Oxide Fuel Cells”, Journal of the American Ceramic Society, 91, 1155-1162, 2008
[23] Z. Shao, et al, “Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells”, Progress in Materials Science, 57, 804-874, 2012
[24] B. Liu, et al, “Ba0.5Sr0.5Co0.8Fe0.2O3 nanopowders prepared by glycine-nitrate process for solid oxide fuel cell cathode”, Journal of Alloys and Compounds, 453, 418-422, 2008
[25] Y. H. Lim, et al, “Electrochemical performance of Ba0.5Sr0.5CoxFe1-XO3-δ (x=0.2-0.8) cathode on a ScSZ electrolyte for intermediate temperature SOFCs”, Journal of Power Sources, 171, 79-85, 2007
[26] 黃鎮江,「燃料電池」,修訂版,全華科技圖書股份有限公司,2004
[27] 衣寶蓮,「燃料電池-原理與應用」,初版,五南圖書出版股份有限公司,2005
[28] H. A. Taroco, et al, “Ceramic Materials for Solid Oxide Fuel Cells, Advances in Ceramics - Synthesis and Characterization, Processing and Specific Applications, Processing and Specific Applications”, Prof. Costas Sikalidis (Ed.), 2011
[29] S. C. Singhai, et al, “High-Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications”, Elsevier, U.K., 2004
[30] N. Q. Minh, et al, “Ceramic Fuel Cells”, Journal of American Ceramic Society, 76, 563, 1993
[31] N. Q. Minh, et al, “Solid oxide fuel cell technology—features and applications”, Solid State Ionics, 174, 271-277, 2004
[32] L. Fan, et al, “Layer-structured LiNi0.8Co0.2O2: A new triple (H+/O2-/e-) conducting cathode for low temperature proton conducting solid oxide fuel cells”, Journal of Power Sources, 306, 366-377, 2016
[33] S. B. Adler, et al, “Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes”, Chemical Reviews, 104, 4791-4844, 2004
[34] C. Li, et al, “Formability of ABO3 perovskites”, Journal of Alloys and Compounds, 372, 40-48, 2004
[35] T. Ishihara, “Perovskite Oxide for Solid Oxide Fuel Cells”, Springer, U.S.A., 2009
[36] H. Arai, et al, “Catalytic combustion of methane over various perovskite-type oxides”, Applied Catalysis, 26, 265-276, 1986
[37] S. N. Ruddlesden, et al, “New compounds of the K2NiF4 type”, Acta Crystallographica, 10, 538-839, 1957
[38] EG & G Technical Services Inc., “Fuel Cell Handbook”, 7th Eds, U.S.A., 2004
[39] S. M. Haile, “Fuel cell materials and components”, Acta Materialia, 51, 5981-6000, 2003
[40] R. O’Hayre, et al, “Fuel Cell Fundamentals”, 2nd Edition, U.S.A., 2009
[41] E. Povoden-Karadeniz, “Thermodynamic Database of the La-Sr-Mn-Cr-O Oxide System and Applications to Solid Oxide Fuel Cells”, Swiss Federal Institute of Technology Zurich, degree of doctor, 2008
[42] N. Y. Hsu, et al, “Impedance studies and modeling of direct methanol fuel cell anode with interface and porous structure perspectives”, Journal of Power Sources, 161, 232-239, 2006
[43] Jurgen Garche, “Encyclopedia of Electrochemical Power Sources”, Elsevier, U.S.A., 2009
[44] J. Mizusaki, et al, “Nonstoichiometry of the Perovskite-Type Oxides La1-xSrxCoO3-δ”, Journal of Solid State Chemistry, 80, 102-111, 1989
[45] K. T. Lee, et al, “Effect of cation doping on the physical properties and electrochemical performance of Nd0.6Sr0.4Co0.8M0.2O3-δ (M=Ti, Cr, Mn, Fe, Co, and Cu) cathodes”, Solid State Ionics, 178, 995-1000, 2007
[46] C. Sun, et al, “Cathode materials for solid oxide fuel cells: a review”, Journal of Solis State Electrochemical, 14, 1125-1144, 2010
[47] Y. Chen, et al, “Characterization and evaluation of Ba-doped BaxSr1-xCo0.9Sb0.1O3-δ as cathode materials for LaGaO3-based solid oxide fuel cells”, International Journal of Hydrogen Energy, 42, 6231-6242, 2017
[48] C. C. Hwang, et al, “Development of a novel combustion synthesis method for synthesizing of ceramic oxide powders”, Materials Science and Engineering B, 111, 49-56, 2004
[49] L. A. Chick, et al, “Glycine-nitrate combustion synthesis of oxide ceramic powders”, Materials Letters, 10, 6-12, 1990
[50] T. W. Chiu, et al, “Synthesis of nanosized CuCrO2 porous powders via a self-combustion glycine nitrate process”, Journal of Alloys and Compounds, 509, 2933-2935, 2011
[51] 葉哲均,「甘胺酸-硝酸燃燒合成法製備固態氧化物燃料電池陰極材料La0.8Sr0.2MnO3、La0.6Sr0.4Co0.2Fe0.2O3與其電化學性質之研究」,國立中央大學,碩士論文,2013
[52] M. Juhl, et al, “Performance/structure correlation for composite SOFC cathodes”, Journal of Power Sources, 61, 173-181, 1996
[53] E. P. Murray, et al, “Oxygen transfer processes in (La, Sr)MnO3/Y2O3-stabilized ZrO2 cathodes: an impedance spectroscopy study”, Solid State Ionics, 110, 235-243, 1998
[54] M. J. Jorgensen, et al, “Impedance of Solid Oxide Fuel Cell LSM/YSZ Composite Cathodes”, Journal of The Electrochemical Society, 148, A433-A442, 2001
[55] B. C. H. Steele, et al, “Kinetic parameters influencing the performance of IT-SOFC composite electrodes”, Solid State Ionics, 135, 445-450, 2000
[56] R. Zeng, et al, “Enhancing surface activity of La0.6Sr0.4CoO3-δ cathode by a simple infiltration process”, International Journal of Hydrogen Energy, 42, 7220-7225, 2017
[57] T. H. Wang, et al, “Decreasing the Polarization Resistance of BaCo0.7Fe0.2Nb0.1O3-δ Cathodes by Infiltration of Ce0.8Y0.2O2-δ”, Fuel cells, 16, 611-616, 2016
[58] Q. A. Huang, et al, “A review of AC impedance modeling and validation in SOFC diagnosis”, Electrochimica Acta, 52, 8144-8164, 2007
[59] F. Shen, et al, “Perovskite-type La0.6Sr0.4Co0.2Fe0.8O3, Ba0.5Sr0.5Co0.2Fe0.8O3, and Sm0.5Sr0.5Co0.2Fe0.8O3 cathode materials and their chromium poisoning for solid oxide fuel cells”, Electrochimica Acta, 211, 445-452, 2016
[60] A. Jun, et al, “Thermodynamic and electrical properties of Ba0.5Sr0.5Co0.8Fe0.2O3-δ and La0.6Sr0.4Co0.2Fe0.8O3-δ for intermediate-temperature solid oxide fuel cells”, Electrochimica Acta, 89, 372-376, 2013
[61] A. Dutta, et al, “Combustion synthesis and characterization of LSCF-based materials as cathode of intermediate temperature solid oxide fuel cells”, Journal of the European Ceramic Society, 29, 2003-2011, 2009
指導教授 林景崎(Jing-Chie Lin) 審核日期 2018-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明