博碩士論文 104624012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:3.93.59.171
姓名 趙耕賢(Keng-Hsien Chao)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 菱鐵礦於高壓下電子自旋態轉變與熱傳導率之研究
(Spin transition and thermal conductivity of (Fe0.78Mg0.22CO3) siderite under high pressure)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 菱鐵礦於高壓下電子自旋態轉變與熱傳導率之研究


摘要      


深層碳循環控制地球表面與內部長期的碳含量收支。該循環係由海洋板塊將碳元素隱沒至地函,而碳元素會再被火山活動循環回地表。過去研究指出,含鐵碳酸鹽,例如:菱鐵礦,是深層碳循環中重要的地函含碳礦物。此外過去研究亦指出菱鐵礦會在大約40 GPa 至 55 GPa 發生電子自旋態轉變(由高自旋態轉變至低自旋態)並伴隨物理性質的劇烈變化,例如:彈性係數。熱傳導率為一種控制物質在兩端有溫差的狀況下,通過該物質的熱流多寡的重要物理性質,因此地球內部礦物的熱傳導率會影響其溫度構造與熱演化之過程。然而,由於過去實驗技術的困難,含鐵碳酸鹽在高溫高壓下的熱傳導率從未被研究過。本研究結合鑽石高壓砧,拉曼光譜與超快雷射技術(Time-domain thermoreflectance),測量菱鐵礦從常壓至67 GPa 的熱傳導率變化。我們發現菱鐵礦的熱傳導率在電子自旋態轉變的壓力範圍內會發生劇烈的變化:當菱鐵礦所受之壓力介於40 GPa至55 GPa之間且低自旋態鐵的比例估計介於50%至85%之間時,熱傳導率會劇烈地增加三倍;在電子自旋態轉變幾乎結束時,熱傳導率會下降至最高值的1/9。這種在小壓力範圍內發生的劇烈熱傳導率變化意謂著如果菱鐵礦可以被板塊隱沒至1100至1500公里深,則可能會產生局部的熱流以及溫度異常,進一步影響局部礦物相的穩定度。
摘要(英) Spin transition and thermal conductivity of (Fe0.78Mg0.22CO3) siderite under high pressure

ABSTRACT

Deep carbon cycle is a cycle controlling the long-term budget of carbon on Earth’s surface and in Earth’s interior: the carbon is transported to the mantle by the subduction of slabs and recycled back to the Earth’s surface by the volcanic activities, respectively. Iron-bearing carbonate, for example, siderite, was proposed to be an important mantle carbon-hosting mineral in the deep carbon cycle. Previous literature showed that the siderite undergoes a pressure-induced iron spin transition (from high spin to low spin) around 40-55 GPa and the physical properties of siderite, such as elastic properties, change drastically across the spin transition. The thermal conductivity is a critical physical property that controls the heat flux flowing through a mineral when temperature gradient exists, and therefore, thermal conductivity controls the temperature profile and thermal structure evolution in Earth’s interior. However, the thermal conductivity of iron-bearing carbonate has never been investigated under relevant extreme temperature and pressure conditions due to the experimental difficulties. In this work, we combined the diamond anvil cell, Raman spectroscopy and time-domain thermoreflectance techniques to measure the thermal conductivity of siderite from ambient condition to 67 GPa, in particular across the spin transition. We found that the thermal conductivity varies drastically across the spin transition: when siderite is under 40-55 GPa, the thermal conductivity increases by three times as the fraction of low spin iron is estimated to be around 50-85% and suddenly drops to around 1/9 of its maximum value as the spin transition almost completes. These results imply that if the siderite could be transported to the depth of 1100-1500 km by the subduction of slabs, the thermal conductivity anomaly of siderite that varies drastically within a narrow pressure range might induce local heat flux and temperature anomalies, and therefore, influence the stability of local mineral phases.
關鍵字(中) ★ 菱鐵礦
★ 電子自旋態轉變
★ 熱傳導率
關鍵字(英) ★ siderite
★ spin transition
★ thermal conductivity
論文目次 TABLE OF CONTENTS
CHINESES ABSTRACT. . . . . . . . . . . . . . . . . . .i
ENGLISH ABSTRACT . . . . . . . . . . . . . . . . . . .ii
ACKNOWLEDGMENT. . . . . . . . . . . . . . . . . . . . iii
TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . iv
LIST OF FIGURES. . . . . . . . . . . . . . . . . . . .vi
LIST OF TABLES . . . . . . . . . . . . . . . . . . . .vii
LIST OF SYMBOLS. . . . . . . . . . . . . . . . . . . viii
CHAPTER 1: INTRODUCTION. . . . . . . . . . . . . . . . 1
1.1. Deep carbon cycle. . . . . . . . . . . . . . . . .1
1.2. Pressure-induced iron spin transition in siderite.3
1.3. Structure of siderite (calcite-group rhombohedral carbonate). . . . . . . . . . . . . . . . . . . . . . .5
1.4. Review of techniques measuring thermal conductivity at high pressure. . . . . . . . . . . . . . . . . . . .7
1.5. Motivations and scientific goals. . . . . . . . .11
CHAPTER 2: EXPERIMENTAL METHODS. . . . . . . . . . . .13
2.1. Sample preparation and characterization. . . . . 13
2.1.1. Sample preparation . . . . . . . . . . . . . . 13
2.1.2. Characterization of the sample composition by electron micro probe analyzer (EPMA . . . . . . . . . 13
2.1.3. Determination of the crystal orientation by electron backscattered diffraction (EBSD). . . . . . .15
2.1.4. Determination of the crystal orientation by Laue
diffraction. . . . . . . . . . . . . . . . . . . . . .18
2.2. Raman spectroscopy. . . . . . . . . . . . . . . .21
2.2.1. Principle of Raman spectroscopy. . . . . . . . 21
2.2.2. Spin state characterization by Raman spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.3. Comparison of experimental methods characterizing the spin state of siderite. . . . . . . . . . . . . . 27
2.3. High-pressure experimental setup. . . . . . . . .30
2.4. Time-domain thermoreflectance (TDTR). . . . . . .33
2.5. Thermal model and parameters in the TDTR analysis36
2.5.1. Configuration of the thermal model . . . . . . 36
2.5.2. Thermal conductivity and heat capacity of the silicone oil layer. . . . . . . . . . . . . . . . . . 37 2.5.3. Thermal conductivity and heat capacity of the aluminum layer. . . . . . . . . . . . . . . . . . . . 38
2.5.4. Thickness of aluminum layer. . . . . . . . . . 39
2.5.5. Heat capacity of siderite. . . . . . . . . . . 46
2.5.6. Thermal conductance of interfaces. . . . . . . 47
2.5.7. Deriving thermal conductivity of sample. . . . 47
CHAPTER 3: RESULTS AND DISCUSSION. . . . . . . . . . .49
3.1. Raman spectra of siderite. . . . . . . . . . . . 49
3.2. Results of thermal conductivity along a-axis. . .56
3.3. Results of thermal conductivity along c-axis. . .61
3.4. Uncertainties of TDTR. . . . . . . . . . . . . . 66
CHAPTER 4: SUMMARY. . . . . . . . . . . . . . . . . . 78
REFERENCES. . . . . . . . . . . . . . . . . . . . . . 80
參考文獻 REFERENCES
[1] R. Dasgupta, and M.M. Hirschmann, "The deep carbon cycle and melting in Earth′s interior", Earth and Planetary Science Letters, Vol 298, 1, 2010.
[2] C. Biellmann, P. Gillet, F. Guyot, J. Peyronneau, and B. Reynard, "Experimental evidence for carbonate stability in the Earth′s lower mantle", Earth and Planetary Science Letters, Vol 118, 31, 1993.
[3] P. Gillet, "Stability of magnesite (MgCO3) at mantle pressure and temperature conditions: A Raman spectroscopic study", American Mineralogist, Vol 78, 1328, 1993.
[4] A.R. Oganov, S. Ono, Y. Ma, C.W. Glass, and A. Garcia, "Novel high-pressure structures of MgCO3, CaCO3 and CO2 and their role in Earth′s lower mantle", Earth and Planetary Science Letters, Vol 273, 38, 2008.
[5] B. Lavina, P. Dera, R.T. Downs, V. Prakapenka, M. Rivers, S. Sutton, and M. Nicol, "Siderite at lower mantle conditions and the effects of the pressure-induced spin-pairing transition", Geophysical Research Letters, Vol 36, L23306, 2009.
[6] J.F. Lin, J. Liu, C. Jacobs, and V.B. Prakapenka, "Vibrational and elastic properties of ferromagnesite across the electronic spin-pairing transition of iron", American Mineralogist, Vol 97, 583, 2012.
[7] S.S. Lobanov, A.F. Goncharov, and K.D. Litasov, "Optical properties of siderite (FeCO3) across the spin transition: Crossover to iron-rich carbonates in the lower mantle", American Mineralogist, Vol 100, 1059, 2015.
[8] S. Fu, J. Yang, and J.F. Lin, "Abnormal elasticity of single-crystal magnesiosiderite across the spin transition in Earth′s lower mantle". Physical Review Letter, Vol 118, 036402, 2017.
[9] K.D. Litasov, A. Shatskiy, P.N. Gavryushkin, I.S. Sharygin, P.I. Dorogokupets, A.M. Dymshits, E. Ohtani, Y. Higo, and K. Funakoshi, "P–V–T equation of state of siderite to 33 GPa and 1673K", Physics of the Earth and Planetary Interiors, Vol 224, 83, 2013.
[10] J.F. Lin, and A. Wheat, "Electronic spin transition of iron in the Earth’s lower mantle", Hyperfine Interactions, Vol 207, 81, 2011.
[11] K. Cornelis, and S.H. Cornelius, Jr., Manual of Mineralogy, 1985, John Wiley & Sons, New York, 1985.
[12] P.W. Bridgman, "The Thermal conductivity and compressibility of several rocks under high pressures", American Journal of Science C, Vol 7, 81, 1924.
[13] F.R. Boyd, and J.L. England, "Apparatus for phase-equilibrium measurements at pressures up to 50 kilobars and temperatures up to 1750°C", Jouranl of Geophysical Research, Vol 65, 741, 1960.
[14] H. Fujisawa, N. Fujii., H. Mizutani, H. Kanamori, and S. Akimoto, "Thermal diffusivity of Mg2SiO4, Fe2SiO4, and NaCl at high pressures and temperatures", Journal of Geophysical Research, Vol 73, 4727, 1968.
[15] T. Katsura, "Thermal diffusivity of olivine under upper mantle conditions", Geophysical Journal International, Vol 122, 63, 1995.
[16] T. Katsura, "Thermal diffusivity of silica glass at pressures up to 9 GPa", Physics and Chemistry of Minerals, Vol 20, 201, 1993.
[17] L. Dubrovinsky, N. Dubrovinskaia, E. Bykova, M. Bykov, V. Prakapenka, C. Prescher, K. Glazyrin, H.P. Liermann, M. Hanfland, M. Ekholm, Q. Feng, L.V. Pourovskii, M.I. Katsnelson, J.M. Wills, and I.A. Abrikosov, "The most incompressible metal osmium at static pressures above 750 gigapascals", Nature, Vol 525, 226, 2015.
[18] P. Beck, A.F. Goncharov, V.V. Struzhkin, B. Militzer, H.K. Mao, and R.J. Hemley, "Measurement of thermal diffusivity at high pressure using a transient heating technique", Applied Physics Letters, Vol 91, 181914, 2007.
[19] W.P. Hsieh, "Thermal conductivity of methanol-ethanol mixture and silicone oil at high pressures", Journal of Applied Physics, Vol 117, 235901, 2015.
[20] W.P. Hsieh, "Testing theories for thermal transportation using high pressure", University of Illinois at Urbana-Champaign, Degree of Doctor of Philosophy in Physics, 2011.
[21] W.P. Hsieh, B. Chen, J. Li, P. Keblinski, and D.G. Cahill, "Pressure tuning of the thermal conductivity of the layered muscovite crystal", Physical Review B, Vol 80, 180302, 2009.
[22] Y.Y. Chang, W.P. Hsieh, E. Tan, and J. Chen, "Hydration-reduced lattice thermal conductivity of olivine in Earth′s upper mantle", Proceeding of the National Academy of Science of the United States of America, Vol 114, 4078, 2017.
[23] S.J.B. Reed, Electron microprobe analysis and scanning electron microscopy in Geology, Cambridge University Press, Cambridge, 2005.
[24] V. Randle, "Electron backscatter diffraction: Strategies for reliable data acquisition and processing", Materials Characterization, Vol 60, 913, 2009.
[25] S. Nishikawa, and S. Kikuchi, "The diffraction of cathode rays by calcite", Nature, Vol 122, 475, 1928.
[26] C.V. Raman, and K.S. Krishinan, "A new type of secondary radiation", Nature, Vol 121, 501, 1928.
[27] G.A. Farfan, S. Wang, H. Ma, R. Caracas, and W.L. Mao, "Bonding and structural changes in siderite at high pressure", American Mineralogist, Vol 97, 1421, 2012.
[28] V. Cerantola, C. McCammon, I. Kupenko, I. Kantor, C. Marini, M. Wilke, L. Ismailova, N. Solopova, A. Chumakov, S. Pascarelli, and L. Dubrovinsky, "High-pressure spectroscopic study of siderite (FeCO3) with a focus on spin crossover", American Mineralogist, Vol 100, 2670, 2015.
[29] C. Weis, C. Sternemann, V. Cerantola, C.J. Sahle, G. Spiekermann, M. Harder, Y. Forov, A. Kononov, R. Sakrowski, H. Yava?, M. Tolan, and M. Wilke, "Pressure driven spin transition in siderite and magnesiosiderite single crystals", Scientific Reports, Vol 7, 16526, 2017.
[30] A. Mattila, T. Pylkkanen, J.P. Rueff, S. Huotari, G. Vanko, M. Hanfland, M. Lehtinen, and K. Hamalainen, "Pressure induced magnetic transition in siderite FeCO3 studied by X-ray emission spectroscopy", Journal of Physics: Condensed Matter, Vol 19, 386206, 2007.
[31] J.D. Barnett, S. Block, and G.J. Piermarini, "An optical fluorescence system for quantitative pressure measurement in the diamond?anvil cell", Review of Scientific Instruments, Vol 44, 1, 1973.
[32] H.K. Mao, J. Xu, and P.M. Bell, "Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions", Journal of Geophysical Research, Vol 91, 4673, 1986.
[33] S. Klotz, J.C. Chervin, P. Munsch, and G.L. Marchand, "Hydrostatic limits of 11 pressure transmitting media", Journal of Physics D: Applied Physics, Vol 42, 075413, 2009.
[34] K. Kang, Y.K. Koh, C. Chiritescu, X. Zheng, and D.G. Cahill, "Two-tint pump-probe measurements using a femtosecond laser oscillator and sharp-edged optical filters", Review of Scientific Instruments, Vol 79, 114901, 2008.
[35] W.P. Binnie, "Calculation of the mean Debye temperature of cubic crystals", Physical Review, Vol 103, 579, 1956.
[36] G.A. Farfan, E. Boulard, S. Wang, and W.L. Mao, "Bonding and electronic changes in rhodochrosite at high pressure", American Mineralogist, Vol 98, 1817, 2013.
[37] C. Bercegeay, and S. Bernard, "First-principles equations of state and elastic properties of seven metals", Physical Review B, Vol 72, 214101, 2005.
[38] R.A. Robie, H.T. Haselton, Jr., and B.S. Hemingway, "Heat capacities and entropies of rhodochrosite (MnCO3) and siderite (FeCO3) between 5 and 600 K", American Mineralogist, Vol 69, 349, 1984.
[39] D.G. Cahill, "Analysis of heat flow in layered structures for time-domain thermoreflectance", Review of Scientific Instruments, Vol 75, 5119, 2004.
[40] W.D. Bischoff, S.K. Sharma, and F.T. Mackenzie, "Carbonate ion disorder in synthetic and biogenic magnesian calcites: a Raman spectral study", American Mineralogist, Vol 70, 581, 1985.
[41] B. Lavina, P. Dera, R.T. Downs, W. Yang, S. Sinogeikin, Y. Meng, G. Shen, and D. Schiferl, "Structure of siderite FeCO3 to 56 GPa and hysteresis of its spin-pairing transition", Physical Review B, Vol 82, 064110, 2010.
[42] B. Lavina, P. Dera, R.T. Downs, O. Tschauner, W. Yang, O. Shebanova, and G. Shen, "Effect of dilution on the spin pairing transition in rhombohedral carbonates", High Pressure Research, Vol 30, 224, 2010.
[43] T. Nagai, T. Ishido, Y. Seto, D. Nishio-Hamane, N. Sata, and K. Fujino, "Pressure-induced spin transition in FeCO3-siderite studied by X-ray diffraction measurements", Journal of Physics: Conference Series, Vol 215, 012002, 2010.
[44] Y. Fei, L. Zhang, A. Corgne, H. Watson, A. Ricolleau, Y. Meng, and V. Prakapenka, "Spin transition and equations of state of (Mg, Fe)O solid solutions", Geophysical Research Letters, Vol 34, L17307, 2007.
[45] J. Muller, I. Efthimiopoulos, S. Jahn, and M. Koch-Muller, "Effect of temperature on the pressure-induced spin transition in siderite and iron-bearing magnesite: a Raman spectroscopy study", European Journal of Mineralogy, Vol 29, 785, 2017.
[46] J. Liu, J.F. Lin, Z. Mao, and V.B. Prakapenka, "Thermal equation of state and spin transition of magnesiosiderite at high pressure and temperature", American Mineralogist, Vol 99, 84, 2014.
[47] M. Merlini, M. Hanfland, and M. Gemmi, "The MnCO3-II high-pressure polymorph of rhodocrosite", American Mineralogist, Vol 100, 2625, 2015.
[48] J. Zhang, I. Martinez, F. Guyot, and J.R. Richard, "Effects of Mg-Fe2+ substitution in calcite-structure carbonates: Thermoelastic properties", American Mineralogist, Vol 83, 280, 1998.
[49] R.G. Dandrea, and N.W. Ashcroft, "High pressure as a probe of electron structure: Aluminum", Physical Review B, Vol 32, 6936, 1985.
[50] I.P. Morton, and M.F. Lewis, "Effect of iron impurities on the thermal conductivity of magnesium oxide single crystals below room temperature", Physical Review B, Vol 3, 552, 1971.
指導教授 黃文正 謝文斌 審核日期 2018-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明