博碩士論文 105323042 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.141.198.66
姓名 高興宇(GAO,XING-YU)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 添加鐵顆粒與鈦鋯金屬玻璃顆粒對鎂鋅鈣塊狀金屬玻璃複材機械性質之研究
(Mechanical Properties of Mg-based Bulk Metallic Glass Composite with Ex-situ Adding Spherical Fe and TiZr Metallic Glass Particles)
相關論文
★ 鋯基與鋯銅基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質提升之研究★ 非 晶 質 合 金 手 術 刀 與 非 晶 質 合 金 鍍 膜 手 術 刀 之 銳 利 度 研 究
★ 以急冷旋鑄法及機械冶金法製備Zn4Sb3熱電塊材及其熱電性質之研究★ 添加Ti顆粒對MgZnCa非晶質合金之機械性質研究
★ 不同製程對鋯基非晶質合金破裂韌性影響之研究★ 硼碳元素對鐵基非晶質鋼材玻璃形成能力、熱性質及切削性質影響之研究
★ 鋯銅基塊狀金屬玻璃複材和鋯基塊狀金屬 多孔材之製作及其性質分析之研究★ 添加鉭顆粒與球狀鈦合金對鎂鋅鈣非晶質合金機械性質影響之研究
★ 高速火焰熔射製備鐵基非晶質合金塗層及其耐磨耗性與抗腐蝕性之研究★ 不同製程對鋯-銅-鋁非晶質合金內析出ZrCu B2相分布及其機械性質影響之研究
★ 以塊狀金屬玻璃和其複材製作骨科鑽頭及其鑽孔能力之研究★ 鋯基塊狀金屬玻璃與金屬玻璃鍍膜 手術刀切削耐久度之研究
★ 利用急冷旋鑄及真空熱壓製備β-Zn4Sb3 奈米/微 米晶塊材之熱電性質探討★ 無鎳鋯基及鈦基金屬玻璃生物相容性之研究
★ 以鐵基金屬玻璃複材或金屬玻璃鍍膜製作手術用取皮刀並進行模擬切削性能之研究★ 探討不同結晶率對鋯鋁鈷塊狀非晶質合金機械性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 骨科進行肌腱及韌帶縫合手術時,縫合用線的末端會使用鉚釘來固定在骨骼上,因此骨科手術經常用到縫合鉚釘;縫合鉚釘必須能夠承受生物運動在縫合處的應力而不損壞,且不會危害人體,這使得醫界對於縫合鉚釘的材料改善相當有興趣。我們希望材料具有良好的機械性質,本實驗室製作出的鎂基金屬玻璃合金強度高,且楊氏係數與人體的骨骼相近,因此適合用於縫合鉚釘的材料開發。本研究選擇以具有較佳玻璃形成能力的Mg66Zn29Ca5為基底分別添加微米級鐵顆粒及鈦鋯金屬玻璃顆粒以製作鎂基金屬玻璃合金複材,期望提升其破裂韌性。由於冷卻速率的限制,本研究所製作之4 mm直徑棒材均呈現部分非晶態,但其抗壓強度仍遠高於一般的鎂合金。由實驗結果顯示,添加鐵顆粒之鎂基金屬玻璃合金複材的破裂韌性並無明顯的改善,但添加球狀鈦鋯金屬玻璃顆粒之鎂基金屬玻璃合金複材的破裂韌性則有明顯的,隨著鈦鋯金屬玻璃顆粒的添加量增加至30 vol.%,破裂韌性也由1.17提升至4.19 MPa‧m1/2,且能保持535 MPa的最大抗壓強度。
摘要(英) Suture anchors are often used to rivet the suture wires at the bones in orthopedic surgery. Therefore, suture anchor must be able to withstand the stress of biological movements and non-harmful to human body. This attracts the medical community to pay lots attention on the improvement of materials for suture anchor. We want that the material has the good mechanical properties of the material. The Mg-based bulk metallic glasses (BMG) produced by our laboratory has high strength and Young′s modulus is similar to the value of human bones. Therefore, it is very suitable to apply the Mg-based metallic glass alloys on suture anchor. In this study, Mg66Zn29Ca5, has the best glass forming ability in the Mg-Zn-Ca metallic glass alloy system, was selected to be the base alloy. Then this base alloy was added with different vol% micro-sized spherical Fe and TiZr-based metallic glass particles to form Mg-based bulk metallic glass composite (BMGC), respectively for improving its fracture toughness. Due to the limitation of cooling rate, the BMGC rods with 4 mm in diameter only present partial metallic glass state, but still show much higher compressive strength of commercial magnesium alloy. Based on the results of this study, the Mg-based BMGCs added Fe particle could not obtain effective improvement on fracture toughness. On the other hand, the Mg-based BMGCs added with TiZr-based metallic glass particles present a clear improvement of fracture toughness. With increasing the addition of Ti-Zr metallic glass particles to 30 vol.%, the fracture toughness of Mg-based BMGC increases from 1.17 to 4.19 MPa‧m1/2 and remains the maximum compressive strength of 535 MPa.
關鍵字(中) ★ 生物相容性
★ 生物可降解
★ 縫合鉚釘
★ 金屬玻璃合金
★ 破裂韌性
關鍵字(英) ★ biocompatibility
★ biodegradation
★ suture anchor
★ metallic glass alloys
★ fracture toughness
論文目次 總目錄
中文摘要...................................................................................................................I
英文摘要.................................................................................................................II
總目錄....................................................................................................................III
表目錄....................................................................................................................VI
圖目錄...................................................................................................................VII
第一章 前言.........................................................................................................1
1-1 緒論……………………………………………………………………1
1-2 研究動機…………………………………………………………………...2
1-3 研究目的…………………………………………………………………...3
第二章 理論基礎…………………….…………………………………………..4
2-1 金屬玻璃合金概述……………………………………………………...4
2-2 金屬玻璃合金的發展歷程……………………………………...5
2-3 實驗歸納法則……………………………………………………………...7
2-4 金屬玻璃合金之製成方法……………………………………………...8
2-5 金屬玻璃合金熱力學………………………………………………….10
2-5-1 金屬玻璃是平衡的介穩定態…………………………………............11
2-5-2 玻璃轉換溫度Tg……………………...………………………………11
2-5-3 簡化玻璃溫度(Trg)………………………………………..……..…….12
2-5-4 過冷液相區大小(ΔTx)………………………………………………..13
2-5-5 γ值與γm值…………………………………………..…………….13
2-6 金屬玻璃合金之特性…………………………………………………..14
2-6-1 機械性質………………………………………………………………14
2-6-2 耐腐蝕性…………………………………………………………….16
2-6-3 磁性質……………………………………………………………….16
2-6-4 抗菌性……………………………………………………………….17
2-7 鎂基金屬玻璃及其複材之沿革………………………….…………17
2-8 添加金屬顆粒的選擇法則…………………….………………………...18
第三章 實驗步驟……………………………………………………………..20
3-1 棒材的製作………………………………………………………………20
3-2 顯微組織的觀測分析……………………………………………………22
3-2-1 X光繞射(XRD)的分析……………………………………………...22
3-2-2 掃描式電子顯微鏡(SEM)與能量散射質譜(EDS)的分析………….23
3-3 熱性質分析………………………………………………………………23
3-4 機械性質測試……………………………………………………………23
3-4-1 硬度與破裂韌性測試…………………………………………………23
3-4-2 壓縮測試……………………………………………………………..26
3-4-3 壓縮測試後SEM觀察……………………………………………27
第四章 結果與討論…………………………………………………………..28
4-1 顯微組織的觀察與分析………………………………………………...28
4-1-1 X光繞射與基材析出相……………………………………………..28
4-1-2 添加顆粒的實際含量………………………………………………..29
4-1-3 壓縮前SEM表面觀察與EDS組成分析…………………………..30
4-2 熱性質分析……………………………………………………………...30
4-2-1 非恆溫熱性質分析…………………………………………………..30
4-3 機械性質分析…………………………………………………………...31
4-3-1 硬度與破裂韌性測試………………………………………………..31
4-3-2 壓縮測試之數據分析………………………………………………..32
4-3-3 壓縮後SEM破斷面觀察…………………………………………...33
第五章 結論…………………………………………………………………...34
參考文獻………………………………………………………………………...35


?
表目錄
表2-1 金屬玻璃合金的性能及其相對應之應用領域…..…………....………43
表4-1 鎂鋅鈣金屬玻璃基材添加鐵顆粒之內部顆粒實際含量………..……44
表4-2 鎂鋅鈣金屬玻璃基材添加鈦鋯金屬玻璃顆粒之內部顆粒實際含量44
表4-3 鎂鋅鈣金屬玻璃基材添加不同體積百分率鐵與鈦鋯金屬玻璃顆粒之成分分析………………………………………………………………………45
表4-4 鎂鋅鈣金屬玻璃基材與不同體積百分率鐵顆粒之硬度及破裂韌性………………………………………………………………………………….47
表4-5 鎂鋅鈣金屬玻璃基材與不同體積百分率鈦鋯金屬玻璃顆粒之硬度及破裂韌性……………………………………………………………………47
表4-6 鎂鋅鈣金屬玻璃基材與添加不同體積百分率鐵顆粒所製備的4 mm複合棒材常溫壓縮之機械性質……….……………………………………………48
表4-7 鎂鋅鈣金屬玻璃基材與添加不同體積百分率鈦鋯金屬玻璃顆粒所製備的4 mm複合棒材常溫壓縮之機械性質…………………..………………….48

?
圖目錄
圖1-1 鎂鋅鈣金屬玻璃組成相圖具備良好玻璃形成能力之區間表示……..49
圖2-1 結晶材料與非晶材料X-ray繞射比較圖……………………………...49
圖2-2 平面流鑄法示意圖……………………………………………………..50
圖2-3 激冷熔液旋噴法示意圖…………………………………………..……50
圖2-4 雙輪連續急冷法示意圖…………………………………………..……51
圖2-5 熔融金屬液急冷之比體積對溫度變化曲線………………………..…51
圖2-6 臨界冷卻速率與玻璃形成能力關係圖………………………………..52
圖2-7 結晶與金屬玻璃不鏽鋼材料抵抗腐蝕示意圖……………………......52
圖3-1 實驗流程圖…………………………………………………………......53
圖3-2 實驗用原料外觀………………………………………………………..53
圖3-3 高週波熔煉感應爐外觀………………………………………………..54
圖3-4 高週波熔煉感應噴鑄爐外觀………………………………………..…54
圖3-5 X光繞射儀外觀…………………………..……………………………55
圖3-6 雙束型聚焦離子束&掃描式電子顯微鏡外觀………………………...55
圖3-7 示差掃描熱分析儀外觀………………………………………………..56
圖3-8 Micro Vickers及Vickers硬度機……………………………………....56
圖3-9 壓痕裂縫示意圖..……………………………………………………....57
圖3-10 慢速切割機外觀……..………………………………………………..57
圖3-11 研磨機外觀………..……..………………………………………..…..58
圖3-12 圓柱型標準試片(h:d=2:1)………………………………………….....58
圖3-13 萬能材料試驗機外觀…..…………………………………………..…59
圖4-1 使用的鐵顆粒之形貌…………………………………………………..59
圖4-2 使用的鈦鋯金屬玻璃顆粒之形貌……………………………………..60
圖4-3 鎂鋅鈣金屬玻璃基材棒材…….……………………………………….60
圖4-4 直徑2mm、4mm之鎂鋅鈣金屬玻璃基材的X-ray繞射圖…………61
圖4-5 鎂鋅鈣金屬玻璃添加不同體積百分率之鐵顆粒的複材與基材之X-ray繞射圖…………………………………………….………………….…....61
圖4-6 鎂鋅鈣金屬玻璃添加不同體積百分率之鈦鋯金屬玻璃顆粒的複材與基材之X-ray繞射圖……………………………………………..……....62
圖4-7 鎂鋅鈣金屬玻璃金屬玻璃基材表面形貌及其析出相….…………..63
圖4-8 添加不同體積百分率鐵顆粒之複材的表面形貌(a) 5 vol.% (b) 10 vol.% (c) 15 vol.% (d) 20 vol.% (e) 30 vol.%………………………………….…………64
圖4-9 添加不同體積百分率鈦鋯金屬玻璃顆粒之複材的表面形貌(a) 5 vol.% (b)10 vol.% (c)15 vol.% (d)20 vol.% (e)30 vol.%...............................................65
圖4-10 鎂鋅鈣金屬玻璃基材添加30 vol.%鐵顆粒之分布圖……….……..66
圖4-11 鎂鋅鈣金屬玻璃基材添加30 vol.%鈦鋯金屬玻璃顆粒之分布圖….66
圖4-12 鎂鋅鈣金屬玻璃基材添加不同體積百分率鐵顆粒之複材非恆溫DSC曲線圖………………………………………………………………….…67
圖4-13 鎂鋅鈣金屬玻璃基材添加不同體積百分率鈦鋯金屬玻璃顆粒之複材的非恆溫DSC曲線…………………………………………..…………………67
圖4-14 鎂鋅鈣金屬玻璃添加30 vol.%鈦鋯金屬玻璃顆粒之複材的硬度測試之菱形壓痕………………………………………………………………………...68
圖4-15 鎂鋅鈣之金屬玻璃基材棒材經壓縮試驗後的試片情形…………………………………………………………………………..….69
圖4-16 添加30 vol.%鈦鋯金屬玻璃顆粒之複合棒材經壓縮試驗後的試片情形……………………………………………………………………………….…69
圖4-17 直徑4mm鎂鋅鈣金屬玻璃基材添加不同體積百分率之鐵顆粒之複材與基材的壓縮應力應變圖……………..……………………………………70
圖4-18 直徑4mm鎂鋅鈣金屬玻璃基材添加不同體積百分率之鈦鋯金屬玻璃顆粒之複材與基材的壓縮應力應變圖………….…………………………70
圖4-19 直徑4mm鎂鋅鈣金屬玻璃添加30 vol.% 鐵顆粒之鎂鋅鈣金屬玻璃合金複材經壓縮後之破斷面觀察(a)與(b)SEM影像(c)EDS分析……………………………………………………………..……………..……71
圖4-20 直徑4mm鎂鋅鈣金屬玻璃添加30 vol.% 鈦鋯金屬玻璃顆粒之鎂鋅鈣金屬玻璃合金複材經壓縮後之破斷面觀察(a)與(b)SEM影像(c)EDS分析………………………………..………………………………………….……..72
參考文獻 [1]. D.W. Hoeppner and V. Chandrasekaran, “Fretting in orthopaedic implants: a review”, Wear, 173, 1994, pp.189-197.
[2]. J. Lu, H. Yu and C. Chen, “Biological properties of calcium phosphate biomaterials for bone repair: a review”, RSC Advances, 2018, pp.2015–2033.
[3]. S.F. Hulbert, L.L. Hench, D. Forbers, L.S. Bowman, “History of Bioceramics”, Ceramics International, vol.8, 1982, no 4, pp.131-140.
[4]. D.F. Williams, “Implantable prostheses”, Physics in Medicine & Biology, vol.25, no.4, 1980, pp.611-636.
[5]. H. Li, Y. Zheng, L. Qin, “Progress of biodegradable metals”, Progress in Natural Science: Materials International, 24, 2014, pp.414-422.
[6]. J. Wang, S. Huang, Y. Li, Y. Wei, S. Guo, F. Pan, “Ultrahigh strength MgZnCa eutectic alloy/Fe particle composites with excellent plasticity”, Materials Letters, vol.137, 2014, pp.139-142.
[7]. H.F. Li and Y.F. Zheng, “Recent advances in bulk metallic glasses for biomedical applications”, Acta Biomaterialia, 36, 2016, pp.1-20.
[8]. D.M. Miskovic, K. Pohl, N. Birbilis, K.J. Laws and M. Ferry, “Examining the elemental contribution towards the biodegradation of Mg–Zn–Ca ternary metallic glasses”, Journal of Materials Chemistry B, 4, 2016, pp.2679-2690.
[9]. N.T. Nguyen, O.S. Seo, C.A. Lee, M.G. Lee, J.H. Kim and H.Y. Kim, “Mechanical Behavior of AZ31B Mg Alloy Sheets under Monotonic and Cyclic Loadings at Room and Moderately Elevated Temperatures”, Materials, 2014, pp.1271-1295.
[10]. P.C. Wong, “Development of biodegradable Mg-Zn-Ca metallic glass for the application of orthopedic implant”, unpublished doctoral dissertation, National Yang-Ming University, Mar.2017.
[11]. P.J. Hsieh, L.C. Yang, H.C. Su, C.C. Lu, J.S.C. Jang, “Improvement of mechanical properties in MgCuYNdAg bulk metallic glasses with adding Mo particles”, Journal of Alloys and Compounds, 504S, 2010, pp.98–101.
[12]. Y.C. Chang, J.C. Huang, C.W. Tang, C.I. Chang and J.S.C. Jang, “Viscous Flow Behavior and Workability of Mg-Cu-(Ag)-Gd Bulk Metallic Glasses”, Materials Transactions, Vol. 49, No. 11, 2008, pp.2605-2610.
[13]. K.F. Chang, M.L.T. Guo, R.H. Kong, C.Y.A. Tsao, J.C. Huangb, J.S.C. Jang, “Mg–Cu–Gd layered composite plate synthesized via the spray forming process”, Materials Science and Engineering A, 477, 2008, pp.58–62.
[14]. J.W. WU, “The Influence of Iron-particles Addition on Thermal and Mechanical Properties of Mg-based Amorphous Alloy” unpublished Master′s thesis, National Central University, 2014.
[15]. P.J. WONG, “Mechanical Properties of Magnesium Based Bulk Meallic Glass Composites with the Ti particles”, unpublished Master′s thesis, National Central University, 2012.
[16]. M.S. SUEI, “Influences of Ta and Ti-6Al-V particle Additions on the Mechanical Properties of MgZnCa-Based Amorphous Alloy”, unpublished Master′s thesis, National Central University, 2015.
[17]. T.B. Matias, V. Roche, R.P. Nogueira, “Mg-Zn-Ca amorphous alloys for application as temporary implant : Effect of Zn content of the mechanical and corrosion properties”, Materials and Design ,vol. 110, 2016, pp.188-195.
[18]. 吳學陞著,新興材料-塊狀金屬玻璃金屬材料,工業材料,第149期,1999年。
[19]. J. Kramer, “Amorphous Ferromagnetic in Iron-Carbon-Phosphorus Alloys”, J. Appl. Phys., vol.19, 1934, p.37.
[20]. A. Brenner, D.E. Couch, E.K. Williams and J. Res., “natn. Bur. Stand”, vol.44, 1950, p.109.
[21]. P. Duwez and S.C.H. Lin, “Amorphous Ferromagnetic Phase in Iron-Carbon-Phosphorus Alloys”, Journal of Applied Physics, vol.38, 1967, pp.4096-4097.
[22]. W. Klement, R. Willens and P. Duwez, “Non-crystalline Structure in Solidified Gold–Silicon Alloys”, Nature, vol.187,1960, p.869.
[23]. D. Turnbull, “Phase Changes”, Solid State Physics, vol.3, 1956, pp.225-306.
[24]. D. Turnbull, “Amorphous solid formation and interstitial solution behavior in metallic alloy system”, Journal of Physics, vol.35, 1974, pp.1-10.
[25]. D.R. Uhlmann, J. F. Hays and Turnbull, “The effect of high pressure on crystallization kinetics with special reference to fused silica”, Physics and Chemistry of Glasses, vol.7, 1966, pp.159-168.
[26]. H.A. Davies, “The formation of metallic glass”, Physics and Chemistry of Glasses, vol.17, 1976, pp.159-173.
[27]. A. Inoue, K. Hashimoto, Amorphous and Nanocrystalline Materials, Springer-Link, Inc., Berlin Heidelberg, 1995, p.159.
[28]. A. Inoue, “Bulk amorphous alloys with soft and hard magnetic properties”, Materials Science & Engineering, A, vol.226-228, 1997, pp.357-363.
[29]. A. Inoue, A. Kato, T. Zhang, S.G. Kim, and T. Masumoto, “Mg-Cu-Y Amorphous Alloys with High Mechanical Strengths Produced by Metallic Mold Casting Method”, Materials Transactions JIM, vol. 32-7, 1991, pp. 609-616.
[30]. A. Inoue, T Nakamura, N. Nishiyama and T. Masumoto, “Development of Mg based amorphous alloys with higher amounts of rare earth elements”, Materials Transactions JIM, vol.33, 1992, pp.937-945.
[31]. H.C. Yim, “Quasistatic and dynamic deformation of tungsten reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass matrix composites”, Scripta Materialia, vol.45, 2001, pp.1039-1045.
[32]. Y.K. Xu and J. Xu, “Ceramics particulate reinforced Mg65Cu20Zn5Y10 bulk metallic glass composites”, Scripta Materialia, vol.49, 2003, pp.843-848.
[33]. D.G. Pan, H.F. Zhang, A.M. Wang and Z.Q. Hu., “Enhanced plasticity in Mg-based bulk metallic glass composite reinforced with ductile Nb particles”, Applied Physics Letters, vol.89, 2006, 261904 pp.1-3.
[34]. N. Nishiyama, K. Takenaka, T. Wada, H. Kimura and A. Inoue, “New Pd-based bulk glassy alloys with high glass-forming ability”, Journal of Alloys and Compounds, vol.434-435, 2007, pp.138-140.
[35]. F.X. Qin, X.M. Wang and A. Inoue, “Effect of annealing on microstructure and mechanical property of Ti-Zr-Cu-Pd bulk metallic glass”, Intermetallics, vol.15, 2007, pp.1337-1342.
[36]. R.E. Reed-Hill, Physical Metallurgy Principles 3rd edition, PWS Pub. Co., Boston, USA, 1994.
[37]. A. Inoue, “High strength bulk amorphous alloys with low critical cooling rates”, Materials Transactions JIM, vol. 36, 1995, pp.866-875.
[38]. A. Inoue, T. Zhang and A. Takeuchi, “Ferromagnetic bulk amorphous alloys”, Metallurgical and Materials Transactions, vol. 29, 1998, pp.1779-1793.
[39]. A. Inoue, T. Zhang, A. Takeuchi, “Ferrous and nonferrous bulk amorphous alloys”, Materials Science Forum, vol. 269-272, 1998, pp.855-864.
[40]. R.W. Cahn, P. Hassen and E.J. Kramer, Materials Science and Technology, vol.9, New York, USA, 1991.
[41]. W. Paul and R.J. Temkin, “Amorphous germanium I. A model for the structural and optical properties”, vol. 22, Advances in Physics, 1973, pp. 531-580.
[42]. K.L. Chapra, “Thin Film Phenomena”, McGraw-Hill, New York, 1969.
[43]. B. Li, N. Nordstrom and E.J. Lavernia, “Spray forming of zircaloy-4”, Materials Science and Engineering, vol. 237, 1997, pp.207-215.
[44]. R. Liu, J. Li, K. Dong, C. Zheng and H. Liu, “Formation and evolution properties of clusters in a large liquid metal system during rapid cooling processes”, Materials Science and Engineering, vol. 94, 2002, pp.141-148.
[45]. P.S. Grant, “Spray forming”, Progress in Materials Science, vol. 39, 1995, pp.497-545.
[46]. C.R.M. Afonso, C. Bolfarini, C.S. Kiminami and N.D. Bassim, “Amorphous phase formation during spray forming of Al84Y3Ni8Co4Zr1 alloy”, Journal of Non-Crystalline Solid, vol. 284, 2001, pp.134-138.
[47]. A. Inoue, “High strength bulk amorphous alloys with low critical cooling rates (overview)”, Materials Transactions JIM, vol. 36, 1995, pp.866-875.
[48]. S.R. Elliot, Physics of Amorphous Materials, Longman, Harlow, 1990, p. 30.
[49]. H.S. Elliot, “Zridence of a Glass-Liquid Transition in a Gold-Germanium”, J. Chem. Phys., vol.48, 1968, pp.2560-2565.
[50]. W. Kauzman, “The nature of the glassy state and the behavior of liquids at low temperatures”, Chem Rev., vol.43, 1948, pp.219-225.
[51]. A. Inoue, W. Zhang, T. Zhang and K. Kurosaka,“Formation and mechanical properties of Cu-Hf-Ti bulk glassy alloys”, Journal of Materials Research, vol. 16, 2001, pp.2836-2844.
[52]. X.H. Du, C. Huang, C.T. Liu and Z.P. Liu, “New Criterion of Glass Forming Ability for Bulk Metallic Glasses”, J. Appl. Phys., vol.101, 2007, pp.88-108.
[53]. 顧宜著,複合材料,新文京開發出版公司,1992年。
[54]. 許樹恩、吳泰伯著,X光繞射原理與材料結構分析,中國材料科學學會,1996年,p.10。
[55]. A. Inoue, “Bulk Amorphous Alloys Practical Characteristics and Applications, Institute for Material Research”, Tohoku University, Sendai, Japan, 1999.
[56]. A.S. Argon, “Plastic Deformation in Metallic Glasses”, Acta Metallurgica, vol. 27, 1979, pp.47-58.
[57]. W.C. Oliver and G.M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, Journal of Materials Research, vol. 7, 1992, pp. 1564-1583.
[58]. S.R. Elliot, Physics of Amorphous Materials 2nd Ed., John Wiley & Sons, Inc., USA, 1990.
[59]. F. Spaepen, “A microscopic mechanism for steady state inhomogeneous flow in metallic glasses”, Acta Metallurgica, vol.25, 1977, pp.407-415.
[60]. L. Xu, E. Zhang, D. Yin, S. Zeng, K. Yang, “In vitro corrosion behaviour of Mg alloys in a phosphate buffered solution for bone implant application”, J Mater Sci: Mater, 2008, pp.1017–1025.
[61]. W. Kunz and H.R. Hilzinger, “Temperature dependence of permeability in amorphous alloys.”, IEEE TRANSACTION ON MAGNETICS, vol.MAG-17, no6, Nov.1981, pp.2695-2697.
[62]. C.W. Chu, J.S.C. Jang, S.M. Chiu, J.P. Chu, “Study of the characteristics and corrosion behavior for the Zr-based metallic glass thin film fabricated by pulse magnetron sputtering process”, Thin Solid Films, 517, 2009, pp.4930-4933.
[63]. Y.P. Hung, K.J. Wu, C.Y.A. Tsao, J.C. Huang, P.L. Hsieh, J.S.C Jang, “AZ61 Mg with nano SiO2 particles prepared by spray forming plus extrusion”, Key Engineering Materials, vol.313, 2006, pp.77-82.
[64]. L.J. Chang, J.S.C. Jang, B.C. Yang, J.C. Huang, “Crystallization and thermal stability of the Mg65Cu25?xGd10Agx (x = 0–10) amorphous alloys”, Journal of Alloys and Compounds, vol.434–435, 2007, pp.221-224.
[65]. L.J. Chang, G.R. Fang, J.S.C. Jang, I.S. Lee, J.C. Huang, C.Y.A. Tsao, “Hot workability of the Mg65Cu20Y10Ag5 amorphous/ nanoZrO2 composite alloy within supercooled temperature region”, Key Engineering Materials, vol. 351, 2007, pp.103-108.
[66]. J.S.C. Jang and J.Y. Ciou, “Enhanced mechanical performance of Mg metallic glass with porous Mo particles”, APPLIED PHYSICS LETTERS, vol.92, 2008, 011930 pp.1-3.
[67]. A. Inoue, B.L. Shen, H. Koshiba, H. Kato and A.R. Yavari, “Cobalt-Based Bulk Glassy Alloy with Ultrahigh Strength and Soft Magnetic Properties”, Nature Material, vol. 2, 2003, pp.661-663.
指導教授 鄭憲清(JHENG,SIAN-CING) 審核日期 2018-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明