博碩士論文 104624005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.91.17.78
姓名 吳沛恩(Pei-En Wu)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 石門水庫集水區颱風事件下之山崩、土壤沖蝕及泥沙遞移特性
(Landslide, soil erosion and sediment delivery under different typhoon events in the Shihmen reservoir catchment basin)
相關論文
★ 台灣中部德基至梨山地區岩石劈理位態分布特性之研究★ 台北盆地松山層土壤性質之空間分析
★ 新店溪之地形研究★ 運用類神經網路進行隧道岩體分類
★ 大肚溪流域河階地形研究★ 台南台地暨鄰近地區之台南層及其構造運動
★ 台灣東北部地區隱沒帶地震強地動衰減式之研究★ 運用類神經網路進行地震誘發山崩之潛感分析
★ 地形地質均質區劃分與山崩因子探討★ 由世界應力量測資料探討不同地體構造區的應力特性
★ 921集集地震造成之地表變形模式★ 運用模糊類神經網路進行山崩潛感分析—以台灣中部國姓地區為例
★ 運用判別分析進行山崩潛感分析之研究 – 以臺灣中部國姓地區為例★ 運用羅吉斯迴歸法進行山崩潛感分析-以臺灣中部國姓地區為例
★ 台灣西南平原末次冰期以來之地層及構造運動★ 利用近年大規模地震的強震資料修正Newmark經驗式
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 為評估崩塌地對下游輸砂影響,本研究以石門水庫集水區為研究區,以歷年衛星影像建立各年及若干颱風事件誘發之山崩目錄及估計崩塌量體,以下游水文測站含砂量資料估計年輸砂量及若干颱風事件之總輸砂量。將兩種資料量化相互比對,以了解崩塌地產砂對下游輸砂量的貢獻。
本研究採用颱風期間連續觀測輸砂量資料,含砂濃度跟流量都透過連續實測得到,相較其他研究採用率定曲線或是水理輸砂模式帶入水文參數推估輸砂量,本研究採用的輸砂量較直接而可靠。經過計算分析比較後,發現颱風期間的輸砂量與颱風事件誘發山崩量兩者之間存在良好的線性關係。
輸砂具有時間與空間上的變異性,在年與颱風期間的時間尺度下,從2004以及2008~2015年一共九年的資料,除了艾利颱風發生當年,發現不管在事件期間亦或年的時間尺度,下游水庫的河道輸砂量普遍大於上游崩塌產量,顯示上游泥砂來源充足,不僅包含當年度產出的崩塌土砂還有堆積於山坡及河床的沉積物。從2004年到2015的輸砂量總合與土砂生產量總合來看,發現時間尺度拉長到12年,兩者之間的量十分接近。推論這12年間前三年的造成的土砂量不斷的供應下游輸砂,以致於之後的颱風事件即使只有少量的崩塌,下游輸砂還是相當多。
摘要(英) In order to evaluate the impact of landslide on downstream sediment transport, this study takes the Shimen Reservoir catchment area as the study area. I estimates the amount of landslide from landslide inventories of several typhoon events in the past years. I also estimates the total sediment load of each year and several typhoon events by the sediment content which recorded by the downstream hydrological stations. Two of these were quantified and compared to each other to understand the contribution of landslide to downstream sediment transport.
In this study, the suspended load was continuously observed and recorded during the typhoon. Compared with other studies, which used the methods of rating curve or the numerical hydraulic model, this study get better results in estimating total sediment load. After calculation and analysis, it is found that there is a good linear relationship between the amount of suspended load during typhoon and the amount of typhoon induced landslide .
Sediment transport has variability in time and space. During the time scale of a year and a typhoon, through the data of the eight years after typhoon Aere, it is found that the amount of sediments in the downstream Shimen reservoir generally greater than the upstream landslide amount. It shows that there is sufficient source of sediments upstream, which include not only the landslide occurred in the year but also the sediment deposited on the hill slope and riverbed. From 2004 to 2015, total sediment yield of the catchment is very close to total sediment discharge at the time scale of 12 years. It is inferred that the sediment products at first three years continuously provided sediments to the downstream. So that even typhoon event induced few of landslide, there is still a lot of sediment in the downstream.
關鍵字(中) ★ 崩塌量
★ 土壤沖蝕
★ 輸砂量
關鍵字(英)
論文目次 目錄
頁次
中文摘要 II
英文摘要 III
目錄 VI
表目 IX
圖目 X
第一章 緒論 1
1-1動機目的 1
1-2文獻回顧 2
1-2-1崩塌量推估 2
1-2-2 坡面沖蝕量推估 6
1-2-3輸砂量推估 7
第二章 研究區域背景概述 9
2-1流域概述 9
2-1-1地形水系與交通 9
2-1-2地質 10
2-1-3氣候水文 13
2-1-4淤積情況 13
第三章 研究方法 14
3-1研究流程 14
3-2資料蒐集與處理 15
3-2-1 SPOT衛星影像 15
3-2-2山崩判釋及檢核 16
3-2-3崩塌地分類與面積量化 17
3-2-4以土壤深度轉換崩塌面積成體積 18
3-2-5土壤沖蝕量估算模式 20
3-2-6輸砂量推估 26
第四章結果 28
4-1崩塌量推估結果 28
4-1-1山崩目錄判釋成果與崩塌體積 28
4-2土壤沖蝕推估結果 30
4-3輸砂量推估結果 32
4-3-1颱風期間輸砂量 34
4-3-2年輸砂量 35
4-4颱風事件和年時間尺度下的推估結果對照 38
4-4-1颱風事件尺度下 38
4-4-2年時間尺度下 39
第五章 討論 40
5-1輸砂推估值的可靠性與驗證 40
5-2山崩體積推估的可靠性 42
5-3輸砂量大於上游土砂生產量之現象探討 46
5-4颱風事件誘發崩塌對輸砂量的貢獻 51
第六章 結論與建議 55
6-1結論 55
6-2建議 55
參考文獻 57
附錄A 各颱風事件之誘發山崩目錄圖 62
附錄B 推估土壤沖蝕量的各因子圖層分布 71
參考文獻 參考文獻
1. 王如意、易任(2003),應用水文學,國立編譯館。
2. 林冠瑋(2005),陳有蘭溪流域的山崩作用在颱風及地震事件中與河流輸砂量之相對關係,國立臺灣大學地質科學研究所碩士論文。
3. 梁惠儀、許正崑、林伯勳、鄭錦桐、冀樹勇,極端暴雨於石門水庫之土壤沖蝕量估算及探討,中興工程季刊,第106期,第5-15頁。
4. 許松盈、蔡俊鋒、魏綺瑪、黃宏莆(2007),水庫泥沙濁度與濃度率定關係研究─以石門水庫為例,農業工程學報,第五十三卷,第1期。
5. 許振崑、林伯勳、冀樹勇(2015),雙環入滲及土壤理化試驗應用於石門水庫集水區土壤沖蝕指數研訂,中興工程季刊,第126期,第31-40頁。
6. 郭佳韋(2013),自然斜坡土壤深度推估方法探討,國立中央大學應用地質研究所碩士論文。
7. 陳毅青(2012),降雨誘發崩塌侵蝕之規模頻率及其控制因子,國立臺灣大學土木工程學系博士論文。
8. 陳樹群(2005),石門水庫集水區泥砂產量推估之研究(3/3),經濟部水利署。
9. 陳樹群、吳俊毅、吳岳霖、王士豪(2009),GIS圖層即修正因子建置台灣通用土壤流失公式(TUSLE)—以石門水庫集水區為例,中華水土保持學報,第四十卷,第2期,第185-197頁。
10. 陳樹群、賴益成(2004),「水庫集水區土砂評量與整治率評估模式」,中華水土保持學報,第三十五卷,第1期,第53-67頁。
11. 游繁結(2012),土壤沖蝕講義,國立中興大學水土保持學系。
12. 經濟部中央地質調查所(2012),易淹水地區上游集水區地質調查與資料庫建置-集水區侵蝕及堆積之調查與評估計畫,第3期。
13. 詹原魁(2014),石門水庫集水區土壤沖蝕量之分析,國立台北科技大學土木與防災研究所碩士論文。
14. 趙倬群(2004),石門水庫集水區崩塌土砂產量推估之研究,國立臺灣大學土木工程學系碩士論文。
15. 歐陽元淳(2002),水庫集水區土壤沖蝕之研究-以石門、翡翠水庫為例,國立臺灣大學地理環境資源學研究所碩士論文。
16. 蔡宗賢(2012),石門水庫集水區崩塌地產砂與後續沖刷之量化研究,國立臺灣大學土木工程學系博士論文。
17. 盧昭堯、蘇志強、吳藝昀(2005),台灣地區年等降雨沖蝕指數圖之修訂,中華水土保持學報,第三十六卷,第2期,第159-172頁。
18. 鐘志忠、林志平(2014),河川含砂濃度全洪程觀測與含砂濃度歷線推估模式建構(1/2),經濟部水利署委託研究報告,國立交通大學防災與水環境研究中心。
19. 鐘志忠、林志平(2015),河川含砂濃度全洪程觀測與含砂濃度歷線推估模式建構(2/2),經濟部水利署委託研究報告,國立交通大學防災與水環境研究中心。
20. Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M. L., Willett, S. D., Hu, J. C., Horng, M. J., Chen, M. C., Stark, C. P., Lague, D., Lin, J. C. (2003) Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature 426(6967): 648-651.
21. Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Lin, J. C., Hsu, M. L., Lin, C. W., Horng, M. J., Chen, T. C., Milliman, J., Stark, C. P. (2004) Earthquaketriggered increase in sediment delivery from an active mountain belt. Geology 32(8): 733-736.
22. Fuller, C. W., Willett, S. D., Hovius, N., Slingerland, R. (2003) Erosion rates for Taiwan mountain basins: New determinations from suspended sediment records and a stochastic model of their temporal variation. The Journal of Geology 111(1): 71-87.
23. Guzzetti, F., Ardizzone, F., Cardinali, M., Galli, M., Reichenbach, P., Rossi, M. (2008) Distribution of landslides in the Upper Tiber River basin, central Italy. Geomorphology 96(1): 105-122.
24. Guzzetti, F., Ardizzone, F., Cardinali, M., Rossi, M., Valigi, D., (2009) Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth and Planetary Science Letters 279(3-4): 222-229.
25. Guzzetti, F., Peruccacci, S., Rossi, M., Stark, CP., (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorology and Atmospheric Physics 98(3): 239-267.
26. Hovius, N., Meunier, P., Lin, C. W., Chen, H., Chen, Y. G., Dadson, S., Horng, M. J., Lines, M. (2011) Prolonged seismically induced erosion and the mass balance of a large earthquake. Earth and Planetary Science Letters 304(3-4): 347-355.
27. Hovius, N., Stark, C. P., Allen, P. A. (1997) Sediment flux from a mountain belt derived by landslide mapping. Geology 25(3): 231-234.
28. Hovius, N., Stark, C. P., HaoTsu, C., JiunChuan, L. (2000) Supply and removal of sediment in a landslidedominated mountain belt: Central Range, Taiwan. The Journal of Geology 108(1): 73-89.
29. Kao, S., Lee, T., Milliman, J. D. (2005) Calculating highly fluctuated suspended sediment fluxes from mountainous rivers in Taiwan. Terrestrial Atmospheric and Oceanic Sciences 16(3): 653.
30. Kao, S., Milliman, J. (2008) Water and sediment discharge from small mountainous rivers, Taiwan: The roles of lithology, episodic events, and human activities. The Journal of Geology 116(5): 431-448.
31. Khazai, B., Sitar, N. (2000) Assessment of seismic slope stability using GIS modeling. Annals of GIS 6(2): 121-128.
32. Khazai, B., Sitar, N. (2004) Evaluation of factors controlling earthquake-induced landslides caused by Chi-Chi earthquake and comparison with the Northridge and Loma Prieta events. Engineering geology 71(1): 79-95.
33. Larsen, I. J., Montgomery, D. R. (2012) Landslide erosion coupled to tectonics and river incision. Nature Geoscience 5: 468-473.
34. Larsen, I. J., Montgomery, D. R., Korup, O. (2010) Landslide erosion controlled by hillslope material. Nature Geoscience 3(4): 247-251.
35. Lee, H. Y., Lin, Y. T., Chiu, Y. J. (2006) Quantitative estimation of reservoir sedimentation from three typhoon events. Journal of Hydrologic Engineering 11: 362-370.
36. Lin, G. W., Chen, H. (2012) The relationship of rainfall energy with landslides and sediment delivery. Engineering geology 125: 108-118.
37. Lin, G. W., Chen, H., Hovius, N., Horng, M. J., Dadson, S., Meunier, P., Lines, M. (2008) Effects of earthquake and cyclone sequencing on landsliding and fluvial sediment transfer in a mountain catchment. Earth Surface Processes and Landforms 33(9): 1354-1373.
38. Malamud, B. D., Turcotte, D. L., Guzzetti, F., Reichenbach, P. (2004) Landslide inventories and their statistical properties. Earth Surface Processes and Landforms 29(6): 687-711.
39. Musgrave, G. W., RA, Norton (1937) Soil and water conservation investigations at the Soil Conservation Experiment Station Missouri Valley Loess Region, Clarinda, Iowa, USDA Tech. Bull. 558. Washington , D.C. : GPO.
40. Neal, J. H. (1938) The effect of the degree of slope and rainfall characteristics on runoff and soil erosion. Agric. Exp. St. Res. Bull., No: 280 107.
41. Wischmeier, W. H. and D. D. Smith (1965) Predicting Rainfall Erosion Losses from Cropland East of the Rocky Mountains, Agricultural Handbook 282, Agricultural Research Service, United States Department of Agriculture.
42. Wischmeier, W. H. and D. D. Smith (1978) Predicting Rainfall Erosion Losses, Agricultural Handbook 537, Agricultural Research Service, United States Department of Agriculture.
指導教授 李錫堤(Chyi-Tyi Lee) 審核日期 2018-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明