參考文獻 |
[1] Sim, B., Kim, E. H., Park, J., & Lee, M. (2009). Highly enhanced mechanical stability of indium tin oxide film with a thin Al buffer layer deposited on plastic substrate. Surface and Coatings Technology, 204(3), 309-312.
[2] Wang, S., Li, M., Wu, J., Kim, D. H., Lu, N., Su, Y., ... & Rogers, J. A. (2012). Mechanics of epidermal electronics. Journal of Applied Mechanics, 79(3), 031022. ISO 690
[3] Ye, T., Jun, L., Kun, L., Hu, W., Ping, C., Ya-Hui, D., ... & Yu, D. (2017). Inkjet-printed Ag grid combined with Ag nanowires to form a transparent hybrid electrode for organic electronics. Organic Electronics, 41, 179-185.
[4]Metal price of Indium. 取自
http://www.etf.com/sections/features-and-news/1915-indium-no-screen-test-needed?nopaging=1
[5] Metal price of Indium. 取自
http://www.infomine.com/investment/metal-prices/iridium/5-year/
[6] Bae, S., Kim, S. J., Shin, D., Ahn, J. H., & Hong, B. H. (2012). Towards industrial applications of graphene electrodes. Physica Scripta, 2012(T146), 014024. ISO 690
[7] Yu, Z., Hu, L., Liu, Z., Sun, M., Wang, M., Gruner, G., & Pei, Q. (2009). Fully bendable polymer light emitting devices with carbon nanotubes as cathode and anode. Applied Physics Letters, 95(20), 299.
[8] Wu, J., Agrawal, M., Becerril, H. A., Bao, Z., Liu, Z., Chen, Y., & Peumans, P. (2009). Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS nano, 4(1), 43-48.
[9] Maurer, J. H., Gonzalez-Garcia, L., Reiser, B., Kanelidis, I., & Kraus, T. (2016). Templated self-assembly of ultrathin gold nanowires by nanoimprinting for transparent flexible electronics. Nano letters, 16(5), 2921-2925.
[10] Im, H. G., Jung, S. H., Jin, J., Lee, D., Lee, J., Lee, D., ... & Bae, B. S. (2014). Flexible transparent conducting hybrid film using a surface-embedded copper nanowire network: a highly oxidation-resistant copper nanowire electrode for flexible optoelectronics. ACS nano, 8(10), 10973-10979.
[11] Vosgueritchian, M., Lipomi, D. J., & Bao, Z. (2012). Highly conductive and transparent PEDOT: PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Advanced functional materials, 22(2), 421-428.
[12] Kim, Y. H., Sachse, C., Machala, M. L., May, C., Muller?Meskamp, L., & Leo, K. (2011). Highly conductive PEDOT: PSS electrode with optimized solvent and thermal post?treatment for ITO?free organic solar cells. Advanced Functional Materials, 21(6), 1076-1081.
[13] Chee, S. S., & Lee, J. H. (2014). Preparation and oxidation behavior of Ag-coated Cu nanoparticles less than 20 nm in size. Journal of Materials Chemistry C, 2(27), 5372-5381. ISO 690
[14] Song, J., Li, J., Xu, J., & Zeng, H. (2014). Superstable transparent conductive Cu@ Cu4Ni nanowire elastomer composites against oxidation, bending, stretching, and twisting for flexible and stretchable optoelectronics. Nano letters, 14(11), 6298-6305. ISO 690
[15] Malviya, K. D., Srivastava, C., & Chattopadhyay, K. (2017). Phase formation and stability of Ag–60 at% Cu alloy nanoparticles synthesized by chemical routes in aqueous media. Physical Chemistry Chemical Physics, 19(41), 28006-28013.
[16] Yim, C., Sandwell, A., & Park, S. S. (2016). Hybrid Copper–Silver Conductive Tracks for Enhanced Oxidation Resistance under Flash Light Sintering. ACS applied materials & interfaces, 8(34), 22369-22373.
[17] Li, W., Hu, D., Li, L., Li, C. F., Jiu, J., Chen, C., ... & Suganuma, K. (2017). Printable and Flexible Copper–Silver Alloy Electrodes with High Conductivity and Ultrahigh Oxidation Resistance. ACS applied materials & interfaces, 9(29), 24711-24721.
[18] Park, H. J., Jo, Y., Cho, M. K., Woo, J. Y., Kim, D., Lee, S. Y., ... & Jeong, S. (2018). Highly durable Cu-based electrodes from a printable nanoparticle mixture ink: flash-light-sintered, kinetically-controlled microstructure. Nanoscale, 10(11), 5047-5053.
[19] Ghosh, D. S., Chen, T. L., & Pruneri, V. (2010). High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid. Applied Physics Letters, 96(4), 041109. ISO 690
[20] Fuh, Y. K., & Lien, L. C. (2013). Pattern transfer of aligned metal nano/microwires as flexible transparent electrodes using an electrospun nanofiber template. Nanotechnology, 24(5), 055301.
[21] Yabuki, A., Arriffin, N., & Yanase, M. (2011). Low-temperature synthesis of copper conductive film by thermal decomposition of copper–amine complexes. Thin Solid Films, 519(19), 6530-6533. ISO 690
[22] Lee, D., Paeng, D., Park, H. K., & Grigoropoulos, C. P. (2014). Vacuum-free, maskless patterning of Ni electrodes by laser reductive sintering of NiO nanoparticle ink and its application to transparent conductors. ACS nano, 8(10), 9807-9814.
[23] Ryu, J., Kim, H. S., & Hahn, H. T. (2011). Reactive sintering of copper nanoparticles using intense pulsed light for printed electronics. Journal of Electronic Materials, 40(1), 42-50.
[24] Tsai, C. Y., Chang, W. C., Chen, G. L., Chung, C. H., Liang, J. X., Ma, W. Y., & Yang, T. N. (2015). A study of the preparation and properties of antioxidative copper inks with high electrical conductivity. Nanoscale research letters, 10(1), 357.
[25] Li, W., Zhang, H., Gao, Y., Jiu, J., Li, C. F., Chen, C., ... & Nagao, S. (2017). Highly reliable and highly conductive submicron Cu particle patterns fabricated by low temperature heat-welding and subsequent flash light sinter-reinforcement. Journal of Materials Chemistry C, 5(5), 1155-1164.
[26] Shin, D. H., Woo, S., Yem, H., Cha, M., Cho, S., Kang, M., ... & Piao, Y. (2014). A self-reducible and alcohol-soluble copper-based metal–organic decomposition ink for printed electronics. ACS applied materials & interfaces, 6(5), 3312-3319. ISO 690
[27] Liang, K. L., Wang, Y. C., Lin, W. L., & Lin, J. J. (2014). Polymer-assisted self-assembly of silver nanoparticles into interconnected morphology and enhanced surface electric conductivity. RSC Advances, 4(29), 15098-15103. ISO 690
[28] Ye, T., Jun, L., Kun, L., Hu, W., Ping, C., Ya-Hui, D., ... & Yu, D. (2017). Inkjet-printed Ag grid combined with Ag nanowires to form a transparent hybrid electrode for organic electronics. Organic Electronics, 41, 179-185.
[29] Jang, Y., Kim, J., & Byun, D. (2013). Invisible metal-grid transparent electrode prepared by electrohydrodynamic (EHD) jet printing. Journal of Physics D: Applied Physics, 46(15), 155103.
[30] Schneider, J., Rohner, P., Thureja, D., Schmid, M., Galliker, P., & Poulikakos, D. (2016). Electrohydrodynamic nanodrip printing of high aspect ratio metal grid transparent electrodes. Advanced Functional Materials, 26(6), 833-840.
[31] Hsu, P. C., Kong, D., Wang, S., Wang, H., Welch, A. J., Wu, H., & Cui, Y. (2014). Electrolessly deposited electrospun metal nanowire transparent electrodes. Journal of the American Chemical Society, 136(30), 10593-10596.
[32] Khan, A., Lee, S., Jang, T., Xiong, Z., Zhang, C., Tang, J., ... & Li, W. D. (2017). Scalable Solution-processed Fabrication Strategy for High-performance, Flexible, Transparent Electrodes with Embedded Metal Mesh. Journal of visualized experiments: JoVE, (124).
[33] Han, S., Hong, S., Ham, J., Yeo, J., Lee, J., Kang, B., ... & Ko, S. H. (2014). Fast plasmonic laser nanowelding for a cu?nanowire percolation network for flexible transparent conductors and stretchable electronics. Advanced materials, 26(33), 5808-5814.
[34] Kim, D. G., Kim, J., Jung, S. B., Kim, Y. S., & Kim, J. W. (2016). Electrically and mechanically enhanced Ag nanowires-colorless polyimide composite electrode for flexible capacitive sensor. Applied Surface Science, 380, 223-228.
[35] Hong, S., Yeo, J., Kim, G., Kim, D., Lee, H., Kwon, J., ... & Ko, S. H. (2013). Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink. ACS nano, 7(6), 5024-5031.
[36] Min, H., Lee, B., Jeong, S., & Lee, M. (2016). Laser-direct process of Cu nano-ink to coat highly conductive and adhesive metallization patterns on plastic substrate. Optics and Lasers in Engineering, 80, 12-16. ISO 690
[37] Lee, D., Paeng, D., Park, H. K., & Grigoropoulos, C. P. (2014). Vacuum-free, maskless patterning of Ni electrodes by laser reductive sintering of NiO nanoparticle ink and its application to transparent conductors. ACS nano, 8(10), 9807-9814.
[38] Shou, W., Mahajan, B. K., Ludwig, B., Yu, X., Staggs, J., Huang, X., & Pan, H. (2017). Low?Cost Manufacturing of Bioresorbable Conductors by Evaporation–Condensation?Mediated Laser Printing and Sintering of Zn Nanoparticles. Advanced Materials, 29(26), 1700172.
[39] Ohishi, T., & Kimura, R. (2015). Fabrication of copper wire using glyoxylic acid copper complex and laser irradiation in air. Materials Sciences and Applications, 6(09), 799.
[40] Yabuki, A., Ichida, Y., Kang, S., & Fathona, I. W. (2017). Nickel film synthesized by the thermal decomposition of nickel-amine complexes. Thin Solid Films, 642, 169-173.
[41] "陳郁文,「二氧化碳之捕集及再利用技術之應用介紹」,工業污染防治 第 94 期(Apr. 2005) "
[42]Braag’s Law取自:
https://zh.wikipedia.org/wiki/%E5%B8%83%E6%8B%89%E6%A0%BC%E5%AE%9A%E5%BE%8B |