博碩士論文 105323063 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:18.219.236.62
姓名 張加賢(Chia-Hsien Chang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 壁面粗糙因子對間接加熱式旋轉鼓內顆粒熱傳行為影響之研究
相關論文
★ 筆記型電腦改良型自然對流散熱設計★ 移動式顆粒床過濾器濾餅流場與過濾性能之研究
★ IP67防水平板電腦設計研究★ 汽車多媒體導航裝置散熱最佳化研究
★ 流動式顆粒床過濾器三維流場觀察及能性能測試★ 流動式顆粒床過濾器冷性能測試
★ 流動式顆粒床過濾器過濾機制研究★ 二維流動式顆粒床過濾器內部配置設計研究
★ 循環式顆粒床過濾器過濾性能研究★ 流動式顆粒床過濾器之流場型態設計與研究
★ 流動式顆粒床過濾器之流動校正單元設計與分析研究★ 流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究
★ 稻稈固態衍生燃料成型性分析之研究★ 流動式顆粒床過濾器之不對稱葉片設計與冷性能過濾機制研究
★ 流動式顆粒床過濾器之滾筒式粉塵分離系統與冷性能過濾及破碎效應研究★ 稻稈固態衍生燃料加入添加物成型性分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以實驗的方式探討間接加熱式旋轉鼓於不同的旋轉速度與壁面粗糙因子下,顆粒體與覆蓋壁面間的熱傳遞係數。鋁製旋轉鼓內徑為100 mm,厚度為10 mm,實驗顆粒為2 mm的玻璃珠,在壁面上不黏貼顆粒與黏貼1 mm、2 mm、2.5 mm、3 mm、5 mm的玻璃珠以提供粗糙因子0、0.5、1、1.25、1.5、2.5的實驗組數,旋轉速度為3、6、9、12 rpm皆在滾動流態下操作,加熱方式為以電熱加熱器環狀包覆旋轉鼓等熱通量加熱顆粒體,初始溫度為25 ,最終溫度為60 ,加熱過程中使用熱像儀進行旋轉鼓內顆粒體溫度場的拍攝,擷取溫度值後計算熱傳遞係數。運動行為分析上使用高速攝影機拍攝流場後以PIV進行速度場的計算,並以流動層面積比表示顆粒的混合能力。由研究結果指出,粗糙因子越高將降低接觸熱阻使熱傳遞係數越大,除了轉速的提升會增強粒子流的對流外,粗糙的壁面也會增強顆粒的混合能力提升熱傳遞係數。光滑的壁面與粗糙的壁面的熱傳遞係數與面積比呈現兩條線性的關係,初始的間距為接觸熱阻所造成。
摘要(英) The heat transfer coefficient between side wall and granular material in indirect heated rotating drum under different rotational speed and wall roughness was experimentally investigated in this study. The drum made by aluminum with inner diameter of 100 mm, thickness of 10 mm. Test particles are 2 mm glass beads. Smooth side wall and 1 mm, 2 mm, 2.5 mm, 3 mm, 5 mm glass beads be glued on side wall to provide six roughness factor: 0, 0.5, 1, 1.25, 1.5, 2.5. The drum be operated under rolling regime for rotational speed 3, 6, 9, 12 rpm. Drum be heated by electric heater apply constant heat flux from initial temperature 25 to final temperature is 60 . Obtain the temperature field by IR camera to calculate heat transfer coefficient. Analysis granular motion behavior by PIV to calculated velocity field. The area ratio is used to express the mixing ability of the particles. According to the results we find higher roughness factor will cause higher the heat transfer coefficient because thermal contact resistance decrease. Higher rotational speed will enhance granular convection and heat transfer coefficient. The heat transfer coefficient and area ratio of smooth wall and rough wall are expressed as two linear functions. The initial spacing is caused by the contact resistance.
關鍵字(中) ★ 粒子流
★ 旋轉鼓
★ 熱傳行為
★ 粗糙因子
★ 面積比
關鍵字(英) ★ granular flow
★ rotating drum
★ heat transfer
★ roughness factor
★ area ratio
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
附圖目錄 vi
附表目錄 ix
符號說明 x
第一章 簡介 1
1-1 顆粒體與粒子流 1
1-2 顆粒於旋轉鼓中的運動行為 2
1-2-1 顆粒於旋轉鼓中的應用與現象 2
1-2-2 顆粒於旋轉鼓中的流動型態 3
1-2-3 滾動流態下的流動層與被動層 6
1-3 顆粒熱傳機制 6
1-4 顆粒於旋轉鼓內的熱傳行為 9
1-5 壁面摩擦效應 12
1-6 研究動機與架構 14
第二章 實驗設備與分析方法 15
2-1 實驗設備 15
2-2 實驗原理與分析方法 19
2-2-1 實驗參數 19
2-2-2 顆粒於旋轉鼓內熱傳行為分析 20
2-2-3 顆粒於旋轉鼓內運動行為分析 22
2-3 實驗步驟 24
2-3-1 溫度擷取系統實驗步驟 24
2-3-2 影像拍攝系統實驗步驟 25
第三章 結果與討論 26
3-1 不同參數條件下對於顆粒床平均溫度之影響 26
3-2 不同參數條件下的顆粒床平均熱傳遞係數 29
3-3 不同參數條件下對於顆粒床速度場與面積比 30
3-4 平均熱傳遞係數與流動層面積比之關係 32
第四章 結論 33
參考文獻 34
參考文獻 [1] C. S. Campbell., ‘‘Rapid granular flows,’’ Annual Review of Fluid Mechanics, Vol. 22, pp. 57-92, 1990.
[2] H. M. Jaeger., S. R. Nagel., and R. P. Behringer., ‘‘Granular solids, liquids, and gases,” Reviews of Modern Physics, Vol. 68, pp. 1259-1273, 1996.
[3] Y. Forterre. and O. Pouliquen., ‘‘Flows of dense granular media,” Annual Review of Fluid Mechanics, Vol. 40, pp. 1-24, 2008.
[4] S. S. Hsiau. and Y. M. Shieh., ′′Effect of solid fraction on fluctuations and self-diffusion of sheared granular flows," Chemical Engineering Science, Vol. 55, pp. 1969-1979, 2000.
[5] GDR MiDi., ‘‘On dense granular flows,’’ European Physical Journal E, Vol. 14, pp. 341-365, 2004.
[6] B. Bellocq., T. Ruiz., G. Delaplace., A. Duri., and B. Cuq., ‘‘Screening efficiency and rolling effects of a rotating screen drum used to process wet soft agglomerates,” Journal of Food Engineering, Vol. 195, pp. 235-246, 2017.
[7] X. Liu., J. Gong., Z. Zhang., and W. Wua., ‘‘An image analysis technique for the particle mixing and heat transfer process in a pan coater,” Powder Technology, Vol. 295, pp. 161-166, 2016.
[8] A. Rosato., K. J. Strandburg., F. Prinz., and R. H. Swendsen., ‘‘Why the Brazil Nuts are on top: Size segregation of particulate matter by shaking,” Physical Review Letters, Vol.58, pp. 1038-1040, 1987.
[9] N. Nityanand., B. Manley., and H. Henein., ‘‘An analysis of radial segregation for different sized spherical solids in rotary cylinders,” Metallurgical Transactions B, Vol.17B, pp. 247-257, 1986.
[10] G. H. Ristow., ‘‘Particle mass segregation in a two-dimensional rotating drum,’’ Europhysics Letters, Vol. 28, pp. 97-101, 1994.
[11] N. Jain., J. M. Ottino., and R. M. Lueptow., ‘‘Regimes of segregation and mixing in combined size and density granular systems: an experimental study,” Granular Matter, Vol.7, pp. 69-81, 2005.
[12] H. Henein., J. K. Brimacombe., and A. P. Watkinson., ‘‘Experimental study of transverse bed motion in rotary kilns,” Metallurgical Transactions B, Vol. 14B, pp. 191-205, 1983.
[13] J. Mellmann., ‘‘The transverse motion of solids in rotating cylinders—forms of motion and transition behavior,’’ Powder Technology, Vol. 118, pp. 251-270, 2001.
[14] A. A. Boateng. and P. V. Barr., ‘‘Modelling of particle mixing and segregation in the transverse plane of a rotary kiln,” Chemical Engineering Science, Vol. 51, pp. 4167-4181, 1996.
[15] A. Ingram., J. P. K. Seville., D. J. Parker., X. Fan., and R. G. Forster., ‘‘Axial and radial dispersion in rolling mode rotating drums,” Powder Technology, Vol. 158, pp. 76-91, 2005.
[16] S. J. Rao., S. K. Bhatia., and D. V. Khakhar., ‘‘Axial transport of granular solids in rotating cylinders. Part 2: Experiments in a non-flow system,” Powder Technology, Vol. 67, pp. 153-162, 1991.
[17] R.Y. Yang., R. P. Zou., and A. B. Yu., ‘‘Microdynamic analysis of particle flow in a horizontal rotating drum,” Powder Technology, Vol. 130, pp. 138-146, 2003.
[18] A. A. Boateng. and P. V. Barr., ‘‘Granular flow behaviour in the transverse plane of a partially filled rotating cylinder,” Journal of Fluid Mechanics, Vol. 330, pp. 233-249, 1997.
[19] A. A. Boateng., ‘‘Boundary layer modeling of granular flow in the transverse plane of a partially filled rotating cylinder,” International Journal of Multiphase Flow, Vol. 24, pp. 499-521, 1998.
[20] Ashish V. Orpe. and D. V. Khakhar., ‘‘Scaling relations for granular flow in quasi-two-dimensional rotating cylinders,” Physical Review E, Vol. 64, pp. 031302 1-13, 2001.
[21] S. H. Chou., H. J. Hu., and S. S. Hsiau., ‘‘Investigation of friction effect on granular dynamic behavior in a rotating drum,” Advanced Powder Technology, Vol. 27, pp. 1912-1921, 2016.
[22] X. Xiao., Y. Tan., H. Zhang., R. Deng., and S. Jiang., ‘‘Experimental and DEM studies on the particle mixing performance in rotating drums: Effect of area ratio,” Powder Technology, Vol. 314, pp. 182-194, 2017.
[23] L. S. Fan. and C. Zhu., Principles of gas-solid flows. Cambridge University Press, 1998.
[24] I. H. Tavman., ‘‘Effective thermal conductivity of granular porous materials,” International Communications in Heat and Mass Transfer, Vol. 23, pp. 169-176, 1996.
[25] W. L. Vargas. and J. J. McCarthy., ‘‘Heat conduction in granular materials,” AIChE Journal, Vol. 47, pp. 1052-1059, 2001.
[26] E. E. Gonzo., ‘‘Estimating correlations for the effective thermal conductivity of granular materials,” Chemical Engineering Journal, Vol. 90, pp. 299-302, 2002.
[27] B. Metzger., O. Rahli., and X. Yin., ‘‘Heat transfer across sheared suspensions: role of the shear-induced diffusion,” Journal of Fluid Mechanics, Vol. 724, pp. 527-552, 2013.
[28] J. Yang., J. Wang., S. Bu., M. Zeng., Q. Wang., and A. Nakayama., ‘‘Experimental analysis of forced convective heat transfer in novel structured packed beds of particles,” Chemical Engineering Science, Vol. 71, pp. 126-137, 2012.
[29] M. Naghash., F. Fathieh., R. W. Besant., R. W. Evitts., and C. J. Simonson., ‘‘Measurement of convective heat transfer coefficients in a randomly packed bed of silica gel particles using IHTP analysis,” Applied Thermal Engineering, Vol. 106, pp. 361-370, 2016.
[30] V. V. R. Natarajan. and M. L. Hunt., ‘‘Heat transfer in vertical granular flows,” Experimental Heat Transfer, Vol. 10, pp. 89-107, 1997.
[31] D. G. Wang. and C. S. Campbell., ‘‘Reynolds analogy for a shearing granular material,” Journal of Fluid Mechanics, Vol. 244, pp. 527-546, 1992.
[32] S. S. Hsiau. and M. L. Hunt., ‘‘Kinetic theory analysis of flow-induced particle diffusion and thermal conduction in granular material flows,” Journal of Heat Transfer-Transactions of the ASME, Vol. 15, pp. 541-548, 1993.
[33] A. A. Boateng. and P. V. Barr., ‘‘A thermal model for the rotary kiln including heat transfer within the bed,” International Journal of Heat and Mass Transfer, Vol. 39, pp. 2131-2147, 1996.
[34] F. Herz., I. Mitov., E. Specht., and R. Stanev., ‘‘Experimental study of the contact heat transfer coefficient between the covered wall and solid bed in rotary drums,” Chemical Engineering Science, Vol. 82, pp. 312-318, 2012.
[35] E. U. Schlunder., ‘‘Heat transfer to packed and stirred beds from the surface of immersed bodies,’’ Chemical Engineering and Processing, Vol. 18, pp. 31-53, 1984.
[36] G. W. J. Wes., A. A. H. Drinkenburg., and S. Stemerdisg., ‘‘Heat transfer in a horizontal rotary drum reactor,” Powder Technology, Vol. 13, pp. 185-192, 1976.
[37] J. Lehmberg., M. Hehl., and K. Schugerl., ‘‘Transverse mixing and heat transfer in horizontal rotary drum reactors,” Powder Technology, Vol. 18, pp. 149-163, 1977.
[38] W. N. Sullivan. and R. H. Sabersky., ‘‘Heat transfer to flowing granular media,” International Journal of Heat and Mass Transfer, Vol. 18, pp. 97-107, 1975.
[39] S. -Q. Li., L. -B. Ma., W. Wan., and Q. Yan., ‘‘A mathematical model of heat transfer in a rotary kiln thermo-reactor,” Chemical Engineering & Technology, Vol. 28, pp. 1480-1489, 2005.
[40] F. Herz., I. Mitov., E. Specht., and R. Stanev., ‘‘Influence of operational parameters and material properties on the contact heat transfer in rotary kilns,” International Journal of Heat and Mass Transfer, Vol. 55, pp. 7941-7948, 2012.
[41] A. I. Nafsun., F. Herz., E. Specht., V. Scherer., and S. Wirtz., ‘‘Heat transfer experiments in a rotary drum for a variety of granular materials,” Experimental Heat Transfer, Vol. 29, pp. 1-16, 2016.
[42] I. Figueroa., W. L. Vargas., and J. J. McCarthy., ‘‘Mixing and heat conduction in rotating tumblers,” Chemical Engineering Science, Vol. 65, pp. 1045-1054, 2010.
[43] H. N. Emady., K. V. Anderson., W. G. Borghard., F. J. Muzzio., B. J. Glasser., and A. Cuitino., ‘‘Prediction of conductive heating time scales of particles in a rotary drum,” Chemical Engineering Science, Vol. 152, pp. 45-54, 2016.
[44] B. Chaudhuri., F. J. Muzzio., and M. S. Tomassone., ‘‘Experimentally validated computations of heat transfer in granular materials in rotary calciners,” Powder Technology, Vol. 198, pp. 6-15, 2010.
[45] Q. Xie., Z. Chen., Q. Hou., A. B. Yu., and R. Yang., ‘‘DEM investigation of heat transfer in a drum mixer with lifters,” Powder Technology, Vol. 314, pp. 175-181, 2017.
[46] N. Gui. and J. Fan., ‘‘Numerical study of heat conduction of granular particles in rotating wavy drums,” International Journal of Heat and Mass Transfer, Vol. 84, pp. 740-751, 2015.
[47] S. S. Hsiau. and H. W. Jang., ‘‘Measurements of velocity fluctuations of granular materials in a shear cell,” Experimental Thermal and Fluid Science, Vol. 17, pp. 202-209, 1998.
[48] S. S. Hsiau. and W. L. Yang., ‘‘Stresses and transport phenomena in sheared granular flows with different wall conditions,” Physics of Fluids, Vol. 14, pp. 612-621, 2002.
[49] V. Jasti. and C. F. Higgs III., ‘‘Experimental study of granular flows in a rough annular shear cell,” Physical Review E, Vol. 78, pp. 041306 1-8, 2008.
[50] C. C. Liao., M. L. Hunt., S. S. Hsiau., and S. H. Lu., ‘‘Investigation of the effect of a bumpy base on granular segregation and transport properties under vertical vibration,” Physics of Fluids, Vol. 26, pp. 073302 1-14, 2014.
[51] U. D’Ortona. and N. Thomas., ‘‘Influence of rough and smooth walls on macroscale flows in tumblers,” Physical Review E, Vol. 92, pp. 062202 1-12, 2015.
[52] L. T. Sheng., C. Y. Kuo., Y. C. Tai., and S. S. Hsiau., ‘‘Indirect measurements of streamwise solid fraction variations of granular flows accelerating down a smooth rectangular chute,” Experiments in Fluids, Vol. 51, pp. 1329-1342, 2011.
[53] C. E. Willert. and M. Gharib., ‘‘Digital particle image velocimetry,” Experiments in Fluids, Vol. 10, pp. 181-193, 1991.
指導教授 蕭述三(Shu-San Hsiau) 審核日期 2018-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明