參考文獻 |
[1] C. S. Campbell., ‘‘Rapid granular flows,’’ Annual Review of Fluid Mechanics, Vol. 22, pp. 57-92, 1990.
[2] H. M. Jaeger., S. R. Nagel., and R. P. Behringer., ‘‘Granular solids, liquids, and gases,” Reviews of Modern Physics, Vol. 68, pp. 1259-1273, 1996.
[3] Y. Forterre. and O. Pouliquen., ‘‘Flows of dense granular media,” Annual Review of Fluid Mechanics, Vol. 40, pp. 1-24, 2008.
[4] S. S. Hsiau. and Y. M. Shieh., ′′Effect of solid fraction on fluctuations and self-diffusion of sheared granular flows," Chemical Engineering Science, Vol. 55, pp. 1969-1979, 2000.
[5] GDR MiDi., ‘‘On dense granular flows,’’ European Physical Journal E, Vol. 14, pp. 341-365, 2004.
[6] B. Bellocq., T. Ruiz., G. Delaplace., A. Duri., and B. Cuq., ‘‘Screening efficiency and rolling effects of a rotating screen drum used to process wet soft agglomerates,” Journal of Food Engineering, Vol. 195, pp. 235-246, 2017.
[7] X. Liu., J. Gong., Z. Zhang., and W. Wua., ‘‘An image analysis technique for the particle mixing and heat transfer process in a pan coater,” Powder Technology, Vol. 295, pp. 161-166, 2016.
[8] A. Rosato., K. J. Strandburg., F. Prinz., and R. H. Swendsen., ‘‘Why the Brazil Nuts are on top: Size segregation of particulate matter by shaking,” Physical Review Letters, Vol.58, pp. 1038-1040, 1987.
[9] N. Nityanand., B. Manley., and H. Henein., ‘‘An analysis of radial segregation for different sized spherical solids in rotary cylinders,” Metallurgical Transactions B, Vol.17B, pp. 247-257, 1986.
[10] G. H. Ristow., ‘‘Particle mass segregation in a two-dimensional rotating drum,’’ Europhysics Letters, Vol. 28, pp. 97-101, 1994.
[11] N. Jain., J. M. Ottino., and R. M. Lueptow., ‘‘Regimes of segregation and mixing in combined size and density granular systems: an experimental study,” Granular Matter, Vol.7, pp. 69-81, 2005.
[12] H. Henein., J. K. Brimacombe., and A. P. Watkinson., ‘‘Experimental study of transverse bed motion in rotary kilns,” Metallurgical Transactions B, Vol. 14B, pp. 191-205, 1983.
[13] J. Mellmann., ‘‘The transverse motion of solids in rotating cylinders—forms of motion and transition behavior,’’ Powder Technology, Vol. 118, pp. 251-270, 2001.
[14] A. A. Boateng. and P. V. Barr., ‘‘Modelling of particle mixing and segregation in the transverse plane of a rotary kiln,” Chemical Engineering Science, Vol. 51, pp. 4167-4181, 1996.
[15] A. Ingram., J. P. K. Seville., D. J. Parker., X. Fan., and R. G. Forster., ‘‘Axial and radial dispersion in rolling mode rotating drums,” Powder Technology, Vol. 158, pp. 76-91, 2005.
[16] S. J. Rao., S. K. Bhatia., and D. V. Khakhar., ‘‘Axial transport of granular solids in rotating cylinders. Part 2: Experiments in a non-flow system,” Powder Technology, Vol. 67, pp. 153-162, 1991.
[17] R.Y. Yang., R. P. Zou., and A. B. Yu., ‘‘Microdynamic analysis of particle flow in a horizontal rotating drum,” Powder Technology, Vol. 130, pp. 138-146, 2003.
[18] A. A. Boateng. and P. V. Barr., ‘‘Granular flow behaviour in the transverse plane of a partially filled rotating cylinder,” Journal of Fluid Mechanics, Vol. 330, pp. 233-249, 1997.
[19] A. A. Boateng., ‘‘Boundary layer modeling of granular flow in the transverse plane of a partially filled rotating cylinder,” International Journal of Multiphase Flow, Vol. 24, pp. 499-521, 1998.
[20] Ashish V. Orpe. and D. V. Khakhar., ‘‘Scaling relations for granular flow in quasi-two-dimensional rotating cylinders,” Physical Review E, Vol. 64, pp. 031302 1-13, 2001.
[21] S. H. Chou., H. J. Hu., and S. S. Hsiau., ‘‘Investigation of friction effect on granular dynamic behavior in a rotating drum,” Advanced Powder Technology, Vol. 27, pp. 1912-1921, 2016.
[22] X. Xiao., Y. Tan., H. Zhang., R. Deng., and S. Jiang., ‘‘Experimental and DEM studies on the particle mixing performance in rotating drums: Effect of area ratio,” Powder Technology, Vol. 314, pp. 182-194, 2017.
[23] L. S. Fan. and C. Zhu., Principles of gas-solid flows. Cambridge University Press, 1998.
[24] I. H. Tavman., ‘‘Effective thermal conductivity of granular porous materials,” International Communications in Heat and Mass Transfer, Vol. 23, pp. 169-176, 1996.
[25] W. L. Vargas. and J. J. McCarthy., ‘‘Heat conduction in granular materials,” AIChE Journal, Vol. 47, pp. 1052-1059, 2001.
[26] E. E. Gonzo., ‘‘Estimating correlations for the effective thermal conductivity of granular materials,” Chemical Engineering Journal, Vol. 90, pp. 299-302, 2002.
[27] B. Metzger., O. Rahli., and X. Yin., ‘‘Heat transfer across sheared suspensions: role of the shear-induced diffusion,” Journal of Fluid Mechanics, Vol. 724, pp. 527-552, 2013.
[28] J. Yang., J. Wang., S. Bu., M. Zeng., Q. Wang., and A. Nakayama., ‘‘Experimental analysis of forced convective heat transfer in novel structured packed beds of particles,” Chemical Engineering Science, Vol. 71, pp. 126-137, 2012.
[29] M. Naghash., F. Fathieh., R. W. Besant., R. W. Evitts., and C. J. Simonson., ‘‘Measurement of convective heat transfer coefficients in a randomly packed bed of silica gel particles using IHTP analysis,” Applied Thermal Engineering, Vol. 106, pp. 361-370, 2016.
[30] V. V. R. Natarajan. and M. L. Hunt., ‘‘Heat transfer in vertical granular flows,” Experimental Heat Transfer, Vol. 10, pp. 89-107, 1997.
[31] D. G. Wang. and C. S. Campbell., ‘‘Reynolds analogy for a shearing granular material,” Journal of Fluid Mechanics, Vol. 244, pp. 527-546, 1992.
[32] S. S. Hsiau. and M. L. Hunt., ‘‘Kinetic theory analysis of flow-induced particle diffusion and thermal conduction in granular material flows,” Journal of Heat Transfer-Transactions of the ASME, Vol. 15, pp. 541-548, 1993.
[33] A. A. Boateng. and P. V. Barr., ‘‘A thermal model for the rotary kiln including heat transfer within the bed,” International Journal of Heat and Mass Transfer, Vol. 39, pp. 2131-2147, 1996.
[34] F. Herz., I. Mitov., E. Specht., and R. Stanev., ‘‘Experimental study of the contact heat transfer coefficient between the covered wall and solid bed in rotary drums,” Chemical Engineering Science, Vol. 82, pp. 312-318, 2012.
[35] E. U. Schlunder., ‘‘Heat transfer to packed and stirred beds from the surface of immersed bodies,’’ Chemical Engineering and Processing, Vol. 18, pp. 31-53, 1984.
[36] G. W. J. Wes., A. A. H. Drinkenburg., and S. Stemerdisg., ‘‘Heat transfer in a horizontal rotary drum reactor,” Powder Technology, Vol. 13, pp. 185-192, 1976.
[37] J. Lehmberg., M. Hehl., and K. Schugerl., ‘‘Transverse mixing and heat transfer in horizontal rotary drum reactors,” Powder Technology, Vol. 18, pp. 149-163, 1977.
[38] W. N. Sullivan. and R. H. Sabersky., ‘‘Heat transfer to flowing granular media,” International Journal of Heat and Mass Transfer, Vol. 18, pp. 97-107, 1975.
[39] S. -Q. Li., L. -B. Ma., W. Wan., and Q. Yan., ‘‘A mathematical model of heat transfer in a rotary kiln thermo-reactor,” Chemical Engineering & Technology, Vol. 28, pp. 1480-1489, 2005.
[40] F. Herz., I. Mitov., E. Specht., and R. Stanev., ‘‘Influence of operational parameters and material properties on the contact heat transfer in rotary kilns,” International Journal of Heat and Mass Transfer, Vol. 55, pp. 7941-7948, 2012.
[41] A. I. Nafsun., F. Herz., E. Specht., V. Scherer., and S. Wirtz., ‘‘Heat transfer experiments in a rotary drum for a variety of granular materials,” Experimental Heat Transfer, Vol. 29, pp. 1-16, 2016.
[42] I. Figueroa., W. L. Vargas., and J. J. McCarthy., ‘‘Mixing and heat conduction in rotating tumblers,” Chemical Engineering Science, Vol. 65, pp. 1045-1054, 2010.
[43] H. N. Emady., K. V. Anderson., W. G. Borghard., F. J. Muzzio., B. J. Glasser., and A. Cuitino., ‘‘Prediction of conductive heating time scales of particles in a rotary drum,” Chemical Engineering Science, Vol. 152, pp. 45-54, 2016.
[44] B. Chaudhuri., F. J. Muzzio., and M. S. Tomassone., ‘‘Experimentally validated computations of heat transfer in granular materials in rotary calciners,” Powder Technology, Vol. 198, pp. 6-15, 2010.
[45] Q. Xie., Z. Chen., Q. Hou., A. B. Yu., and R. Yang., ‘‘DEM investigation of heat transfer in a drum mixer with lifters,” Powder Technology, Vol. 314, pp. 175-181, 2017.
[46] N. Gui. and J. Fan., ‘‘Numerical study of heat conduction of granular particles in rotating wavy drums,” International Journal of Heat and Mass Transfer, Vol. 84, pp. 740-751, 2015.
[47] S. S. Hsiau. and H. W. Jang., ‘‘Measurements of velocity fluctuations of granular materials in a shear cell,” Experimental Thermal and Fluid Science, Vol. 17, pp. 202-209, 1998.
[48] S. S. Hsiau. and W. L. Yang., ‘‘Stresses and transport phenomena in sheared granular flows with different wall conditions,” Physics of Fluids, Vol. 14, pp. 612-621, 2002.
[49] V. Jasti. and C. F. Higgs III., ‘‘Experimental study of granular flows in a rough annular shear cell,” Physical Review E, Vol. 78, pp. 041306 1-8, 2008.
[50] C. C. Liao., M. L. Hunt., S. S. Hsiau., and S. H. Lu., ‘‘Investigation of the effect of a bumpy base on granular segregation and transport properties under vertical vibration,” Physics of Fluids, Vol. 26, pp. 073302 1-14, 2014.
[51] U. D’Ortona. and N. Thomas., ‘‘Influence of rough and smooth walls on macroscale flows in tumblers,” Physical Review E, Vol. 92, pp. 062202 1-12, 2015.
[52] L. T. Sheng., C. Y. Kuo., Y. C. Tai., and S. S. Hsiau., ‘‘Indirect measurements of streamwise solid fraction variations of granular flows accelerating down a smooth rectangular chute,” Experiments in Fluids, Vol. 51, pp. 1329-1342, 2011.
[53] C. E. Willert. and M. Gharib., ‘‘Digital particle image velocimetry,” Experiments in Fluids, Vol. 10, pp. 181-193, 1991. |