博碩士論文 105332602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:18.188.228.135
姓名 普利亞(Pouria Dadvari)  查詢紙本館藏   畢業系所 應用材料科學國際研究生碩士學位學程
論文名稱 合成?Ba?_(1-x)?Ca?_x?Co?_(0.2)?Fe?_(0.8)O_(3-δ)(BCCF)為陰極,CuO滲透效果為P 型SOFC
(Synthesis of ?Ba?_(1-x) ?Ca?_x ?Co?_(0.2) ?Fe?_(0.8) O_(3-δ) (BCCF) as the cathode and CuO-infiltration effect on it for P-type SOFC)
相關論文
★ 鋁鈧濺鍍薄膜中鈧含量對其微結構、光反射性與腐蝕性質之影響★ 鍍金發泡鎳質子交換膜燃料電池之電池操作溫度、陰極加濕溫度、陰極計量比對其性能影響之研究
★ 1kW質子交換膜商用電堆中四個特徵區段單電池之電化學交流阻抗圖譜診斷★ 碳酸鹽沉澱製備Ba0.5Sr0.5Co0.8Fe0.2O3 及其在滲透銀前後之陰極特性比較
★ 銅導線上鍍鎳或錫對遷移性之影響及鍍金之鎳/銅銲墊與Sn-3.5Ag BGA銲料迴銲之金脆研究★ 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析
★ 光電化學蝕刻n-型(100)單晶矽獲得矩陣排列之巨孔洞研究★ 銅箔基板在H2O2/H2SO4溶液中之微蝕行為
★ 助銲劑對迴銲後Sn-3Ag-0.5Cu電化學遷移之影響★ 塗佈奈米銀p型矽(100)在NH4F/H2O2 水溶液中之電化學蝕刻行為
★ 高效能Ni80Fe15Mo5電磁式微致動器之設計與製作★ 銅導線上鍍金或鎳/金對遷移性之影響及鍍金層對Sn-0.7Cu與In-48Sn BGA銲料迴銲後之接點強度影響
★ 含氮、硫雜環有機物對鍋爐鹼洗之腐蝕抑制行為研究★ 銦、錫金屬、合金與其氧化物的陽極拋光行為探討
★ n-型(100)矽單晶巨孔洞之電化學研究★ 鋁在酸性溶液中孔蝕行為研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要

本文研究了氧化物 Ba_(1-x) Ca_x Co_0.2 Fe_0.8 O_(3-δ) (x=0,0.5,0.6,0.7),並對它們的結構進行了研究。這些氧化物被用於製造質子傳輸固體氧化物燃料電池(P-SOFC)的陰極以探索其性能。還研究了浸潤氧化銅對陰極的改性。

在硝酸鹽溶液中,調整甘氨酸/硝酸鹽pH並使用燃燒合成法製造前驅粉末。收集燃粉末並在不同溫度下煆燒再使用XRD找出最佳晶體。通過SEM檢查粉末的表面形態。使用兩個不同的模具中將粉末壓製成長錠以及圓錠,在1100℃下燒結測量其歐姆阻抗和熱膨脹係數。使用Ba_(1-x) Ca_x Co_0.2 Fe_0.8 O_(3-δ) 粉末與?品醇均勻混合配置成陰極膏並塗抹在電解液?Ba Ce?_0.8 Zr_0.1 Y_0.1 O_3(BCZY)的其中一面來當作陰極,並在其另一側上塗覆白金膏來當作陽極以形成全電池(Pt/?Ba Ce?_0.8 Zr_0.1 Y_0.1 O_3/Ba_(1-x) Ca_x Co_(0"." 2) Fe_0.8 O_(3-δ) )。最後再浸潤CuO並測量其電池的功率密度和電化學阻抗譜(EIS),參數為在800 ℃操作溫度下陰極空氣進口流量為200c.c./min,陽極氫氣流量為450c.c./min。
結果表明,Ba_(1-x) Ca_x Co_0.2 Fe_0.8 O_(3-δ) 製備的陰極中,隨著鈣含量從x = 0.5增加到x = 0.7,電池的功率增加。但是浸潤氧化銅顆粒(CuO)(CuO : Ba_0.3 Ca_0.7 Co_(0"." 2) Fe_0.8 O_(3-δ)= 1/1 質量比)對功率密度沒有任何顯著影響並增加了極化電阻。
摘要(英) Abstract

Oxides Ba_(1-x) Ca_x Co_0.2 Fe_0.8 O_(3-δ) (x=0,0.5,0.6,0.7) were prepared and their structures, propertied were studied in this thesis. These oxides were employed to fabricate the cathodes for the proton-transport solid oxide fuel cell (P-SOFC) to explore their performance. Modification of the cathodes by infiltration of copper oxide was also investigated.

The powders were synthetized by a glycine/nitrate combustion process under a control of pH value in the nitrate solution. The combustion ashes were collected and subjected to calcination at different temperatures to find out best crystals of the related phases according to X-ray diffraction (XRD) patterns. Surface morphology of the powders was examined by scanning electron microscope (SEM). All powders were pressed in two different molds and sintered at 1100°C to make samples for measurement of their ohmic resistance and thermal expansion behavior. Each kind of Ba_(1-x) Ca_x Co_0.2 Fe_0.8 O_(3-δ) powders was mixed with the binder to make a paste. Then the paste was screen-painted on one side of an electrolyte (i.e., ?Ba Ce?_0.8 Zr_0.1 Y_0.1 O_3) and the Pt-paste on other side of it to make a single cell. The power density and electrochemical impedance spectroscopy (EIS) for the single cell of Pt/?Ba Ce?_0.8 Zr_0.1 Y_0.1 O_3/Ba_(1-x) Ca_x Co_(0"." 2) Fe_0.8 O_(3-δ), and for that of Pt/?Ba Ce?_0.8 Zr_0.1 Y_0.1 O_3/Ba_0.3 Ca_0.7 Co_(0"." 2) Fe_0.8 O_(3-δ) infiltrated with CuO were tested at 800°C. The flow rates of air inlet on cathode was at 200 c.c./min and that of hydrogen on anode at 450 c.c./min.

The results indicated that the power density of the cell increased with increasing the calcium content from x=0.5 to x=0.7 in the cathode made from Ba_(1-x) Ca_x Co_0.2 Fe_0.8 O_(3-δ). Copper oxide particles (CuO) infiltration (with mass ratio CuO/Ba_0.3 Ca_0.7 Co_(0"." 2) Fe_0.8 O_(3-δ) =1/1) does not have any significant effect on power density and increased polarization resistance.
關鍵字(中) ★ BCCF複合氧化物 - 鈣鈦礦 關鍵字(英) ★ BCCF composite oxide-perovskite
論文目次 Table of Contents

Chapter 1. Introduction………..……….………………..………...........1
1.1. World energy need………………………………………………………..…...1
1.2. A brief history about fuel cell............................................................................4
1.2.1. Principles and categories of fuel cells ………………...……....................5
1.3. Fundamental cathode materials………………………………...………….....9
1.3.1. Simple Perovskites……………………………………….….…….…....12
1.3.2. Layered Perovskites ………………….………………………..…........19
1.3.3. Ruddlesden-Popper phases……………………………………...….......21

Chapter 2. Motivation………………………………………..….….….23
2.1. SOFC challenges and drawbacks………..……………………………....…..23
2.1.1. Cathode design………………………………..……………..………......25

Chapter 3. Literature survey……………….…………………….……28
3.1. Particle deposition on cathode …………………………..……...……….…..28
3.1.1. Ionic conducting infiltrates………………………………………..….....28
3.1.2. Partial of MIEC infiltrated into MIEC scaffold……………………........31
3.1.3. Particles of precious metal infiltrated into MIEC cathode scaffold……..35
3.2. Thin film coating on MIEC cathode……………………………………......36
3.3. Effects of calcium doping……………….…………………………………...44

Chapter 4. Materials, preparation and characterization methods….52
4.1. Powder preparation……………………………………………………..........52
4.2. Basic characterization………………………………………………..............59
4.2.1. XRD……………………………………………………...…………........59
4.2.2. SEM……………………………………………………………………...60
4.2.3. Thermo-gravimetric analysis (TGA)………………………………..…...62
4.2.4. Thermo-mechanical analysis………………………………………….....62
4.2.5. Ohmic resistance measurement………………………………………….66
4.3. Cell fabrication and testing………………………………………………......71
4.3.1. Cell fabrication and power density measurements………………………71
4.3.2. Electrochemical Impedance Spectroscopy ………………………….......87

Chapter 5. Results and Discussion…………....…………………….…90
5.1. Phase identification and XRD patterns……………………………….…….90
5.2. SEM images……………………………………………………………….....100
5.3. Thermo-gravimetric analysis (TGA)…………………………………….…102
5.4. Thermo-mechanical analysis………………………………………………..106
5.5. Conductivity calculation results……..……………………………….….…107
5.6. EIS results………….………………………………………………..…...…..108
5.7. Power density measurements of cells……………………………….…..….110

Chapter 6. Conclusions and Outlook……………………..………....112
6.1. Conclusions………………………………………………………………....112
6.2. Outlook…………..………………………………………….……………….113

References…………………………………………………………………...…114
參考文獻 References

[1]. Marta Boaro, Antonino Salvatore Arico,′′Advances in Medium and High Temperature Solid Oxide Fuel Cell Technology′′, CISM International Centre for Mechanical Sciences, Courses and lectures, ISBN 978-3-319-46145-8, Springer, 2017, 574, 1-4

[2]. D. Ding, X. Li, S. Y. Lai, K. Gerdes, M. Liu, ′′ Enhancing SOFC cathode performance by surface modification through infiltration′′, Energy Environ. Sci., 2014, 7, 553-564.

[3]. Kungas, Rainer, ′′Factors Governing the Performance and Stability of Solid Oxide Fuel Cell Cathodes Prepared by infiltration′′ (2012). Publicly Accessible Penn Dissertation. 529. 2-4.
https://repository.upenn.edu/edissertations/529

[4]. Retrieved from Sakurambu-own work: Diagram of Solid Oxide Fuel Cell, en.wikipedia.org/wiki/Solid-oxide –fuel-cell.

[5]. Zhan Gao, Liliana V. Mogni, Elizabeth C. Miller, Justin G. Railsback and Scott A. Barnett, Energy Environ. Sci., 2016, 9, 1611-1634.

[6]. S. Choi, S. Park, J. Shin, G. Kim, J. Mater. Chem. A, 2015, 3, 6088.

[7]. C. Lim, A. Jun, H. Jo, K. M Ok, J. Shin, Young-Wan Ju, G. Kim, J. Mater. Chem. A, 2016, 4, 6479.

[8]. J.C. Toniolo*, M.D. Lima, A.S. Takimi, C.P. Bergmann, ′′ Synthesis of alumina powders by the glycine–nitrate
combustion process′′, Materials Research Bulletin, 2005, 40, 561–571.

[9]. M. Afzal, R. Raza, S. Du, R. B. Lima, B. Zhu, Electrochimia Acta, 2015, 178, 385-391.

[10]. Y. M. Al-Yuosef, M. Ghouse, World Journal of Nano Science and Engineering, 2011, 1, 99-107. doi:10.4236/wjnse.2011.14016 Published Online December 2011 (http://www.SciRP.org/journal/wjnse)

[11]. Venkateswara, R. K., et al. CuO nanoparticles Synthsis and characterization for Humidity Sensor Application. (2016) J Nanotech Mater Sci, 3(1): 10-14.
DOI: 10.15436/2377-1372.16.020
[12]. Y. Guo, Y. Lin, R. Ran, Z. Shao, J.Power Sources 193(2009) 400-407.

[13]. S. B. Adler, J. A. Lane and B. C. H. Steele, J. Electrochem. Soc., 1996, 143, 3554-3564.

[14]. J. Fleig and J. Maier, J. Eur. Ceram. Soc., 2004, 24, 1343-1347.

[15]. Y. Lu, C. Kreller and S. B. Adler, J. Electrochem. Soc., 2009, 156, B513-B525.

[16]. S. B. Adler, X. Y. Chen and J. R. Wilson, J. Catal., 2007, 245, 91-109.

[17]. Y. Lu, C. R. Kreller, S. B. Adler, J. R. Wilson, S. A. Barnett, P. W. Voorhees, H.-Y. Chen and K. Thornton, J. Electrochem. Soc., 2014, 161, F561-F568.

[18]. M. Shah, P. W. Voorhees and S. A. Barnett, Solid State Ionics, 2011, 192, 398-403.

[19]. J. Druce, H. Tellez and J. Hyodo, MRS Bull., 2014, 39, 810-815.

[20]. A. Mai, M. Becker, W. Assenmacher, F. Tietz, D. Hathiramani, E.Ivers-Tiffee, D. Stover and W. Mader, Solid state Ionics, 2006, 177, 1965-1968.

[21]. K. Sasaki, K. Haga, T. Yoshizumi, D. Minematsu, E. Yuki, R. R. Liu, C. Uryu, T.Oshima, Y. Shiratori, K. Ito, M. Koyama and K. Yokomoto, J. Power Sources, 2011, 196, 9130-9140.

[22]. S. J. Skinner, Fuel Cell. Bull., 2001, 4, 6-12.

[23]. H. Yokokawa, T. Horita, K. Yamaji, H. Kishimoto and M. E. Brito, J. Korean Ceram. Soc., 2012, 49, 11-18.

[24]. H. Yokokawa, H. Y. Tu, B. Iwanschitz and A. Mai, J. Power Sources, 2008, 182, 400-412.

[25]. L. Zhao, J. Drennan, C. Kong, S. Amarasinghe and S. P. Jiang, J. Mater. Chem. A, 2014, 2, 11114-11123.

[26]. C. W. Sun, R. Hui and J. Roller., J. Solid State Electrochem., 2010, 14, 1125-1144.

[27]. S. B. Adler, Solid State Ionics, 1998, 111, 125-134.
指導教授 林景崎(Jing-Chie Lin) 審核日期 2018-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明