參考文獻 |
[BS] A. Baernstein II and E. T. Sawyer, Embedding and multiplier theorems
for Hp(Rn), Mem. Amer. Math. Soc. 53 (1985).
[Be] A. Beurling, Construction and analysis of some convolution algebras,
Ann. Inst. Fourier Grenoble 14 (1964), 1-32.
[CF] R. Coifman and C. Fe erman, Weighted norm inequalities for maximal
functions and singular integrals, Studia Math. 51 (1974), 241-250.
[Fe] H. G. Feichtinger, An elementary approach to Wiener’s third
Tauberian theorem for the Euclidean n-spaces, Proceedings of Conference
at Cortona 1984, Symposia Mathematica 29, Academic Press, New
York (1987), 267-301.
[Fl] T. M. Flett, Some elementary inequalities for integrals with applications
to Fourier transforms, Proc. London Math. Soc. (3) 29 (1974), 538-556.
[GR] J. Garcia-Cuerva and J. Rubio de Francia, Weighted Norm Inequalities
and Related Topics, North Holland, 1985.
[He] C. Herz, Lipschitz spaces and Bernstein’s theorem on absolutely convergent
Fourier transforms, J. Math. Mech. 18 (1968), 283-324.
[HMW] R. Hunt, B. Muckenhoupt, and R. Wheeden, Weighted norm inequalities
for the conjugate function and Hilbert transform, Trans. Amer. Math.
Soc. 176 (1973), 227-251.
[LL] Ming-Yi Lee and Chin-Cheng Lin, The molecular characterization of
weighted Hardy spaces, J. Funct. Anal. 188 (2002), 442-460.
[LY1] S. Lu and D. Yang, The decomposition of the weighted Herz spaces and
its applications, Sci. in China (Ser. A) 38 (1995), 147-158.
[LY2] , The weighted Herz-type Hardy spaces and its applications, Sci.
in China (Ser. A) 38 (1995), 662-673.
[LY3] , The local versions of Hp(Rn) spaces at the origin, Studia Math.
116 (1995), 103-131.
[M] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal
function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
[ST] J.-O. Str¨omberg and A. Torchinsky, Weighted Hardy Spaces, Lecture
Notes in Mathematics, vol. 1381, Springer-Verlag, 1989.
[TW] M. H. Taibleson and G.Weiss, The molecular characterization of certain
Hardy spaces, Ast´erisque 77 (1980), Soci´et´e Math. de France, Paris, 67-
149. |