博碩士論文 983406001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.15.218.254
姓名 林錫聰(Shi-Tsung Lin)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以天然多醣體製備氧化鋅及其光催化效能之研究
(Synthesis of ZnO using various polysaccharides as precursors and evaluation of photocatalytic activity)
相關論文
★ 工業廢水對灌溉水質影響之研究-以黃墘溪為例★ 廢冷陰極管汞回收處理效率之研究
★ 室內懸浮微粒與生物氣膠之相關性探討-以某醫學中心為例★ 化學機械研磨廢液對工業區污水處理效益與 操作成本之影響
★ 網路數位電力監測系統於大學用電行為分析之研究★ 光電業進行自願性碳標準(VCS)減量計畫可行性之研究
★ 污染農地整治後未能符合農用成因之探討★ 桃園縣居家入侵紅火蟻防治方法探討
★ 印刷電路板產業濕式製程廢液回收鈀金屬可行性之研究★ 不同表面特性黏土催化高分子凝聚劑與消毒劑(氯)反應之研究
★ 界面活性劑對土壤/水系統中有機污染物分佈行為之研究★ 淨水程序中添加高分子凝聚劑對混凝與加氯處理效應之研究
★ 土壤無機相對揮發性有機污染物吸∕脫附行為之影響★ 土壤對Triton 系列各EO鏈選擇性吸附之研究
★ 土壤有機質對土壤/水系統中低濃度非離子有機污染物吸附行為之研究★ 不同表面特性黏土催化水中有機物之氯化反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 光催化技術可有效應用於廢水處理;於光觸媒中,又以二氧化鈦(TiO2)最具光催化效能;然而氧化鋅(ZnO)具備價格便宜、可吸收可見光範圍大、對特定染劑光催化效果佳等眾多優點,因此有其潛力取代傳統TiO2光觸媒。對於氧化鋅光觸媒之合成技術一般包含氣相冷凝法、物理粉碎法、沉積法、沉澱法、水熱合成法、溶膠凝膠法及微乳液法。本研究利用不同天然多醣進行改質以製備奈米氧化鋅,其具成本低、低污染、廢棄物再利用及製備容易等優點。因海藻酸鈉、幾丁聚醣、玉米澱粉及纖維素於自然界中含量豐富,故被選擇為製備ZnO之前驅物。
本研究利用上述四種天然多醣體於不同製備條件探討ZnO之製備及其表面理化特性,並進一步測試其對甲烯藍、結晶紫與剛果紅等三種染劑的吸附作用及光催化反應。由XRD結果顯示四種天然多醣體所合成光觸媒皆為ZnO結構,且隨鍛燒溫度增加,光觸媒於XRD有較強散射波峰。另外;由SEM圖及BET分析結果顯示光觸媒ZnO於較高鍛燒溫度條件會產生燒結現象,導致比表面積下降。光觸媒於三種染劑(甲烯藍、結晶紫及剛果紅)催化結果顯示利用玉米澱粉與海藻酸鈉製備ZnO對三種染劑催化降解效率相當,特別於結晶紫催化,兩者觸媒於第3小時即可完全降解結晶紫;反之,幾丁聚醣合成氧化鋅對染劑催化降解效果最差。儘管不同製備條件影響ZnO光觸媒對染劑催化性能,本研究亦發現溫度、染劑濃度、觸媒含量及pH值皆會影響氧化鋅的催化性能。大致而言,本研究利用改質多醣體可成功合成ZnO且應用於廢水處理。
摘要(英) Photocatalytic technology is considered as one effective way for wastewater treatment. Among various photocatalysts, TiO2 is most effective catalyst for wastewater treatment. Nevertheless, ZnO has potential to substitute traditional TiO2 due to low cost, large visible light range, and good photocatalytic performance. Generally, synthetic methods for ZnO preparation include vapor condensation, physical crushing, deposition, precipitation, hydrothermal synthesis, sol-gel and microemulsion.
This study attempted to use natural polysaccharides, such as sodium alginate, chitosan, corn starch and cellulose as precursors for ZnO preparation with various conditions. Various ZnO prepared were characterized by XRD, SEM, BET and TGA, respectively. Further performances of ZnO prepared were evaluated for the removal of various pollutants including methylene blue, crystal violet and congo red. The XRD results indicated that ZnO prepared by 4 polysaccharides as precursors mainly present diffraction peaks of ZnO. It was also observed that diffraction peaks of ZnO enhance with increasing calcination temperature. In addition, SEM and BET results indicated that ZnO would present sintering as photocatalyst was calcined with a higher temperature, resulting in lower BET specific surface area. Further lower BET specific surface area may influence performance of photocatalyst. For photocatalytic test, the results indicated that ZnO prepared by sodium alginate and corn starch revealed good photocatalytic activity for removal of various pollutants. Especially, removal efficiency of crystal violet achieved with ZnO prepared by sodium alginate and corn starch could 100% after 3hr. On the contrary, ZnO prepared by chitosan revealed the lowest activity for removal of various pollutants. In addition, various preparation processes for ZnO synthesis significantly influence their characteristics and catalytic performances. Also, various operating conditions influence catalytic performance for removals of methylene blue, crystal violet and congo red. Overall, ZnO developed by this study revealed good activity and potential for wastewater treatment.
關鍵字(中) ★ 氧化鋅
★ 光催化
★ 光觸媒
★ 海藻酸鈉
★ 幾丁聚醣
★ 玉米澱粉
關鍵字(英) ★ Znic oxide
★ photocatalysis
★ photocatalyst
★ sodium alginate
★ chitosan
★ corn starch
論文目次 目錄
中文摘要 I
Abstract III
第一章 前言 1
1.1研究緣起 1
1.2研究目的 2
第二章 文獻回顧 4
2.1 光化學理論 4
2.2 光催化反應 5
2.2.1光催化理論 5
2.3 二氧化鈦與氧化鋅之簡介 8
2.4 氧化鋅之特性 10
2.5 光觸媒之製備方式 16
2.6 光觸媒物化特性影響催化性能之因子 17
2.7 操作條件對光催化的影響 19
2.8多醣體介紹 28
2.8.1 澱粉(starch) 29
2.8.2 幾丁聚醣(Chitosan) 31
2.8.3 海藻酸鈉(Sodium alginate) 32
2.8.4 纖維素(Cellulose) 33
2.9 多醣體官能基之交聯 34
2.10 多醣體衍生化改質與重金屬錯合 35
2.11 吸附理論 44
2.12等溫吸附方程式 46
2.12.1 Freundlich等溫吸附方程式 49
2.12.2 Langmuir等溫吸附方程式 50
2.13.3 BET等溫吸附方程式 52
第三章 研究方法與設備 54
3.1多醣體衍生物之改質 59
3.1.1羧基幾丁聚醣製備 61
3.1.2羧基玉米澱粉及交聯交聯羧基澱粉製備 62
3.1.2羧基纖維素製備 66
3.2多醣體吸附鋅實驗 67
3.3多醣體製備氧化鋅 68
3.4 觸媒表面特性分析設備 69
3.5光觸媒反應系統 73
3.6重要儀器與設備 75
3.7 實驗藥品與器材 77
第四章 結果與討論 80
4.1 改質前天然多醣體FTIR分析 80
4.1.1改質後多醣體幾丁聚醣FTIR分析 81
4.1.2改質後多醣體玉米澱粉FTIR分析 82
4.1.3改質後多醣體纖維素FTIR分析 86
4.2多醣體對金屬鋅之吸附 87
4.2.1玉米澱粉對金屬鋅之吸附 87
4.2.2幾丁聚醣對金屬鋅之吸附 92
4.2.3纖維素對金屬鋅之吸附 94
4.3多醣體金屬鋅錯合物之TGA分析 98
4.3.1玉米澱粉金屬鋅錯合物之TGA分析 98
4.3.2幾丁聚醣金屬鋅錯合物之TGA分析 102
4.3.3海藻酸鈉金屬鋅錯合物之TGA分析 105
4.4多醣體合成氧化鋅之XRD分析 107
4.4.1多醣體合成氧化鋅之XRD 107
4.4.2多醣體合成氧化鋅之SEM與TEM之分析 115
4.4.3多醣體合成氧化鋅之孔洞特性 131
4.5不同改質參數綜合評析 133
4.6氧化鋅之光催化試驗 134
4.6.1氧化鋅對染劑之吸附 136
4.6.2氧化鋅對染劑光催化降解 138
4.6.3循環水溫對氧化鋅光催化染劑之影響 142
4.6.4染劑濃度對氧化鋅光催化性能之影響 144
4.6.5光觸媒含量對光催化性能之影響 147
4.4.6 pH值對光催化性能之影響 149
第六章 結論與建議 153
6.1結論 153
6.2建議 154
參考文獻 156
參考文獻 參考文獻
Abdel-Khalek A.A., Mahmoud S.A., Zaki A.H., “Visible light assisted photocatalytic degradation of crystal violet, bromophenol blue and eosin Y dyes using AgBr-ZnO nanocomposite”, Environmental Nanotechnology, Monitoring & Management 9, 164-173 (2018).
Abu-Saied M.A., Wycisk R., Abbassy M.M., El-Naim G.A., El-Demerdash F., Youssef M.E., Bassuony H., Pintauro P.N., “Sulfated chitosan/PVA absorbent membrane for removal of copper and nickel ions from aqueous solutions-Fabrication and sorption studies”, Carbohydrate Polymers, 165, 149-158 (2017).
Akyol A., Yatmaz H.C., Bayramoglu M., “Photocatalytic decolorization of Remazol Red RR in aqueous ZnO suspensions”, Applied Catalysis B: Environmental, 54, 19-24 (2004).
Aliabadi M., Irani M., Ismaeili J., Piri H., Parnian M.J., “Electrospun nanofiber membrane of PEO/Chitosan for the adsorption of nickel, cadmium, lead and copper ions from aqueous solution,” Chemical Engineering Journal, 220, 237-243 (2013).
Baruah S., Dutta J., “Hydrothermal growth of ZnO nanostructures”, Science and Technology of Advanced Materials, 10, 18 (2009).
Bhandari N., Bahl R., Taneja S., Strand T., Molbak K., Ulvik R.J., Sommerfelt H., Bhan M.K., “Effect of routine zinc supplementation on pneumonia in children aged 6 months to 3 years: randomised controlled trial in an urban slum”, British Medical Journal, 8, 1358 (2002).
Brunauer S., Emmet P.H., Teller, E., “Adsorption of gas in multimolecular lays”, Journal of the American Chemical Society, 60, 309-319 (1938).
Cavu? S., Gurda? G., Ya?ar M., Guclu K., Gurkaynak M.A., “The competitive heavy metal removal by hydroxyethyl cellulose-g-poly (acrylic acid) copolymer and its sodium salt: the effect of copper content on the adsorption capacity”, Polymer Bulletin, 57, 445-456 (2006).
Chan W.C, Wu, J.Y., “Dynamic adsorption behaviors between Cu2+ ion and water?insoluble amphoteric starch in aqueous solutions”, Journal of Applied Polymer Science, 81, 2849-2855 (2001).
Chen M., Bao C., Cun T., Huang Q., “One-pot synthesis of ZnO/oligoaniline nanocomposites with improved removal of organic dyes in water: Effect of adsorption on photocatalytic degradation”, Materials Research Bulletin, 95, 459-467 (2017).
Chen Y.X., and Wang G.Y., “Adsorption properties of oxidized carboxymethyl starch and cross-linked carboxymethyl starch for calcium ion”, Colloids and Surfaces A-PhysicochemIical and Engineering Aspects, 289, 75-83 (2006).
Fakhre N.A., Ibrahim B.M., “The use of new chemically modified cellulose for heavy metal ion adsorption”, Journal of Hazardous Materials, 343, 324-331 (2018).
Fatimah I., Wang S., Wulandari D., “ZnO/montmorillonite for photocatalytic and photochemical degradation of methylene blue”, Applied Clay Science, 53, 553-560 (2011).
Freundlich H., “Kolloidfallung und Adsorption”, Angewandte Chemie, 20, 749-750 1907.
Fujishima A., Hashimoto K., Watanabe T., “TiO2 Photocatalysis, fundamentals and applications”, BKC Inc., 1999.
Fujishima A., Honda K., “Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature, 238, 37-37 (1972).
Fujishima A., Rao T.N., Tryk D.A., “Titanium dioxide photocatalysis”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1, 1-21 (2000).
Gratzel M., Energy Resources through Photochemistry and Catalysis, Acadmic Press Inc., 1983.
Gregg S.J., Sing K.S.W., “Adsorption Surface Area and Porosity”, 2nd ed., Academic Press, London, 1982.
Gao X., Liu X., Zhu Z., Gao Y., Wan Q., Zhu F., Xie Z., “Enhanced visible light photocatalytic performance of CdS sensitized TiO2 nanorod arrays decorated with Au nanoparticles as electron sinks”, Scientific Reports, 7, 973 (2017).
Guibal E., “Interactions of metal ions with chitosan-based sorbents: a review”, Separation and Purification Technology, 38, 43-74 (2004).
Gupta A., Gaur V., Verma,N., “Breakthrough analysis for adsorption of sulfur-dioxide over zeolites”, Chemical Engineering and Processing, 43, 9-22 (2004).
Hirano S., and Nagao N., “Effects of chitosan, pectic acid, lysozyme, and chitinase on the growth of several phytopathogens”, Agricultural and Biological Chemistry, 53, 3065-3066 (1989).
Hizukuri S., “Polymodal distribution of the chain lengths of amylopectins, and its significance”, Carbohydrate Research, 147, 342-347 (1986).
Hizukuri S., Kozuma T., Yoshida H., Abe J., Takahashi K., Yamamoto M., Nakamura N., “Properties of Flavobacterium odoratum KU Isoamylase”, Starch, 4, 295-300 (1996).
Hossain M.M., Ku B.-C., Hahn J.R., “Synthesis of an efficient white-light photocatalyst composite of graphene and ZnO nanoparticles: Application to methylene blue dye decomposition”, Applied Surface Science, 354, 55-65 (2015).
Horikoshi S., Matsubara A., Takayama S., Sato M., Sakai F., Kajitani M., Abe M., Serpone N., Applied Catalysis B: Environmental, 91, 362-367 (2009).
Huang C.P., Dong C., Tang Z., “Advanced chemical oxidation: Its present role and potential future in hazardous waste treatment,” Waste Management., 13, 361-377 (1993).
Huang M.H., Mao S., Feick H., Yan H., Wu Y., Kind H., Weber E., Russo R., Yang P., “Room-temperature ultraviolet nanowire nanolasers”, Science, 292, 1897 -1899 (2001).
Hunge Y.M., Yadav A.A., Mathe V.L., “Ultrasound assisted synthesis of WO3-ZnO nanocomposites for brilliant blue dye degradation”, Ultrasonics Sonochemistry, 45, 116-122 (2018).
Hwang D., Kim B., Baik M., “Physicochemical properties of non?thermally cross?linked corn starch with phosphorus oxychloride using ultra high pressure (UHP). Starch, 61, 438-447 (2009).
Ibrahim A.A., Adel A.M., El–Wahab Z.H., Al–Shemy M.T., “Utilization of carboxymethyl cellulose based on bean hulls as chelating agent. Synthesis, characterization and biological activity”, Carbohydrate Polymers, 83, 94-115 (2011).
Ichiura H., Nozaki M., Kitaoka T., Tanaka H., “Influence of uniformly of zeolite sheets prepared using a papermaking technique on VOC adsorptivity”, Advances in Environmental Research, 7, 975-979 (2003).
Jorfi S, Barkhordari M.J., Ahmadi M, Jaafarzadeh N., Moustofi A., Ramavandid B., “Photodegradation of Acid red 18 dye by BiOI/ZnO nanocomposite: A dataset”, Data in Brief, 16, 608-611 (2018).
Karunakaran C., and Senthilvelan S., “Fe2O3-photocatalysis with sunlight and UV light: Oxidation of aniline“, Electrochemistry Communications, 8, 95-101 (2006).
Keller J.U., and Staudt, R., Gas Adsorption Equilibria, Springer, U.SA, 2005.
Khalil M.I. and Abdel-Halim M.G., “Preparation of anionic starch containing carboxyl groups and its utilization as chelating agent”, Starch, 53, 35-41( 2001).
Khodja A.A., Sehili T., Pilichowski J.F., Boule P., Journal of Photochemistry and Photobiology A: Chemistry, 141, 231-239 (2001).
Kim B.S., Lim S-T., “Removal of heavy metal ions from water by cross-linked carboxymethyl corn starch”, Carbohydrate Polymers, 39, 217-223 (1999).
Kim S.P., Choi M.Y., Choi H.C., “Photocatalytic activity of SnO2 nanoparticles in methylene blue degradation”, Materials Research Bulletin 74, 85-89 (2016).
Kirk R.E., Othmer D.F., “Cellulose, encyclopedia of chemical technology”, New York: John Wiley and Sons, 4 ,593-683 (1967).
Kong X., Xu, W., Zhang C., Kong W., “Chitosan temperature?sensitive gel loaded with drug microspheres has excellent effectiveness, biocompatibility and safety as an ophthalmic drug delivery system”, Experimental and Therapeutic Medicine, 15, 1442-1448 ( 2018).
Lee G.J., and Wu J.J., “Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications- A review”, Powder Technology, 318, 8-22 (2017).
Leprince-Wang Y, Yacoubi-Ouslim A., Wang G.Y., “Structure study of electrodeposited ZnO nanowires”, Microelectronics Journal, 36, 625- 628 (2005).
Leyva E., Montalvo C., Moctezuma E., Leyva S., “Photocatalytic degradation of pyridine in water solution using ZnO as an alternative catalyst to TiO2”, Journal of Ceramic Processing Research, 9, 455-462 (2008).
Li X.C., He G.H., Xiao G.K., Liu H.J., Wang M., “Synthesis and morphology control of ZnO nanostructures in microemulsions”, Journal of Colloid and Interface Science, 333, 465-473 (2009).
Lin S.T., Thirumavalavan M., Jiang T.Y., Lee J.F., “Synthesis of ZnO/Zn nano photocatalyst using modified polysaccharides for photodegradation of dyes”, Carbohydrate Polymers, 105, 1-9 (2014).
Lin Barltrop J.A., and Coyle J.D., “Principles of photochemistry”, Chichester, New York, 1978.
Linsebigler Lu G., A.L., Yates J.T., “Photocatalysis on TiO2 surfaces: Principles, mechanisms, and celected results”, Chemical Reviews, 95, 735-758 (1995).
Lower, S. E., Polymers from the sea chitin and chitosan I. Manufacturing Chemist, 55 ,73-75 (1984).
Lu J., and Ng K.M., “Efficient, One-Step Mechanochemical Process for the Synthesis of ZnO Nanoparticles”, Industrial & Engineering Chemistry Research, 47, 1095-1101, (2008).
Ma X., Liu X., Anderson D.P., Chang P.R., “Modification of porous starch for the adsorption of heavy metal ions from aqueous solution”, Food Chemistry, 181, 133-139 (2015).
Massicotte L.P., Baille W.E., Mateescu M.A., “Carboxylated high amylose starch as pharmaceutical excipients Structural insights and formulation of pancreatic enzymes”, International Journal of Pharmaceutics, 356, 212-223 (2008).
Monier M., Ayad D.M., Wei Y., Sarhan A.A., “Immobilization of horseradish peroxidase on modified chitosan beads”, International Journal of Biological Macromolecules, 46, 324-30 (2010).
Mourya V.K., and Inamdar N.N, “Chitosan-modifications and applications: Opportunities galore”, Reactive & Functional Polymers, 68, 1013-1051 (2008).
Nakata K, and Fujishima A, “TiO2 photocatalysis: Design and applications”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13, 169-189 (2012).
Navarro R.R., Sumi K., Matsumura M., “Improved metal affinity of chelating adsorbents through graft polymerization”, Water Research, 33, 2037-2044 (1999).
Norkus E., Vai?i?nien J., Vuorinen T., Macalady D.L., “Equilibria of Cu(II) in alkaline suspensions of cellulose pulp”, Carbohydrate Polymers, 55, 47-55 (2004).
O’Connell D.W., Birkinshaw C., O’Dwyer T.F., “A modified cellulose adsorbent for the removal of nickel(II) from aqueous solutions”, Journal of Chemical Technology & Biotechnology, 81, 1820-1828 (2006a).
O’Connell D.W., Birkinshaw C., O’Dwyer T.F., “Removal of lead(II) from aqueous solution using a modified cellulose adsorbent”, Environmental Science & Technology, 24, 337-347 (2006b).
O’Connell D.W., Birkinshaw C., O’Dwyer T.F., “A chelating cellulose adsorbent for the removal of Cu(II) from aqueous solution”, Journal of Applied Polymer Science, 99, 2888-2897 (2006c).
Qin J., Zhang X., Yang C., Cao M., Ma M., Liu R., “ZnO microspheres-reduced graphene oxide nanocomposite for photocatalytic degradation of methylene blue dye”, Applied Surface Science, 392, 196-203 (2017).
Palominos R.A., Mondaca M.A., Giraldo A., Penuela G., Perez-Moya M., Mansilla HD., “Photocatalytic oxidation of the antibiotic tetracycline on TiO2 and ZnO suspensions”, Catalysis Today, 144, 100-105 (2009).
Peternel I.T., Koprivanac N., Bo?i? A.M.L., Ku?i? H.M., “Comparative study of UV/TiO2, UV/ZnO and photo-Fenton processes for the organic reactive dye degradation in aqueous solution”, Journal Hazardous Materials, 148, 477-484 (2007).
Raizada P., Singh P., Kumar A., Sharma G., Pare B., Jonnalagadda S.B., Thakur P., “Solar photocatalytic activity of nano-ZnO supported on activated carbon or brick grain particles: Role of adsorption in dye degradation”, Applied Catalysis A: General, 486, 159-169 (2014).
Rego E., Marto .J, Marcos P.S., Labrincha J.A., “Decolouration of Orange II solutions by TiO2 and ZnO active layers screen-printed on ceramic tiles under sunlight irradiation”, Applied Catalysis A: General, 355, 109-114 (2009).
Ruthven D.M., “Principles of adsorption and adsorption process”, John Wiley & Sons, Inc., New York, 1984.
Sakthivel S., Neppolian B., Shankar M.V., Arabindoo B., Palanichamy M., Murugesan V., “Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2”, Solar Energy Materials & Solar Cells, 77, 65-82 (2003).
Salmi T., Valtakari D., PaaterotE., “Kinetic Study of the Carboxymethylation of Cellulose”, Industrial & Engineering Chemistry Research, 33, 1454-1459 (1994).
Sapawe N., Jalil A.A., Triwahyono S., Sah R.N.R.A., Jusoh N.W.C., Hairom N.H.H., Efendi J., “Electrochemical strategy for grown ZnO nanoparticles deposited onto HY zeolite with enhanced photodecolorization of methylene blue: Effect of the formation of Si O Zn bonds”, Applied Catalysis A: General, 456, 144-158 (2013).
Schneider J., Matsuoka M., Takeuchi M., Zhang J., Horiuchi Y., Anpo M., Bahnemann D.W., “Understanding TiO2 photocatalysis: mechanisms and materials”, Chemical Reviews, 114, 9919-998 9 (2014).
Shen H., Xue T., Wang Y., Gao G., Lu Y., Fang G., “Photocatalytic property of perovskite LaFeO3 synthesized by sol-gel process and vacuum microwave calcination”, Materials Research Bulletin, 84, 15-24 (2016).
Shibi I.G., Anirudhan T.S., “Polymer-grafted banana (Musa paradisiaca) stalk as an adsorbent for the removal of lead(II) and cadmium(II) ions from aqueous solutions: kinetic and equilibrium studies”, Journal of Chemical Technology & Biotechnology, 81, 433-444 (2006).
Sun S., Wang L., Wang A., “Adsorption properties of crosslinked carboxymethyl-chitosan resin with Pb(II) as template ions”, Journal of Hazardous Materials, 136 , 930-937 (2006).
Suryavanshi R.D., Mohite S.V., Bagade A.A., Shaikh S.K., Thorat J.B., Rajpure K.Y., “Nanocrystalline immobilised ZnO photocatalyst for degradation of benzoic acid and methyl blue dye”, Materials Research Bulletin, 101, 324-333 (2018).
Sutirman Z.A., Sanagi M.M., Abd Karim K.J., Wan Ibrahim W.A., Jume B.H., “Equilibrium, kinetic and mechanism studies of Cu(II) and Cd(II) ions adsorption by modified chitosan beads”, International Journal of Biological Macromolecules, 116, 255-263 (2018).
Tan H.L., Amal R., Ng, Y.H., “Alternative strategies in improving the photocatalytic and photoelectrochemical activities of visible light-driven BiVO4: A review”, Journal of Materials Chemistry A, 5, 16498-16521 (2017).
Thomas J.K., “The chemistry of excitation at interfaces”, American Chemica Society, Washington DC, 1984.
Tian J., Chen L.J., Dai J.H., Wang X., Yin Y.S., Wu P.W., “Preparation and characterization of TiO2, ZnO, and TiO2/ZnO nanofilms via sol-gel process”, Ceramics International, 35, 2261-2270 (2009).
Tran H.V., Tran L.D., Nguyen T.N., “Preparation of chitosan/magnetite composite beads and their application for removal of Pb(II) and Ni(II) from aqueous solution, Materials Science and Engineering: A, 30, 304-310 (2006).
Tseng J.M., and Huang C.P., “Removal of chlorophenols from water by photocatalytic oxidation”, Water Science Technology, 23, 377-387 (1991).
Wan Ngah W.S., Hanafiah M.A.K.M., “Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents, a review”, Bioresource Technology, 99, 3935-3948 (2008).
Wang H., Xie C., Zhang W., Cai S., Yang Z., Gui Y., “Comparison of dye degradation efficiency using ZnO powders with various size scales,” Journal of Hazardous Materials, 141, 645-652 (2007).
Wang Y., Gao W., Li., “Carboxymethyl Chinese yam starch: synthesis, characterization, and influence of reaction parameters”, Carbohydrate Research, 344, 1764-1769 (2009).
Wayne C.E., and R.P. Wayne, “Photochemistry”, Oxford University Press, New York, 1996.
Whister, R.L., Bemiller, J.M., and Paschall, E.F., Starch: chemistry and technology. Academic Press Inc. U.S.A. (1984).
Wissiak K.S., Sket B., Vrtacnik M., “Heterogeneous photocatalytic decomposition of halosubstituted benzyl alcohols on semiconductor particles in aqueous media”, Chemosphere, 41, 1451-1455 (2000).
Xiao Y.H., Li L., Li Y., Fang M., Zhang L.D., “Synthesis of mesoporous ZnO nanowires through a simple in situ precipitation method”, Nanotechnology, 16, 671-674 (2005).
Yeber M.C., Rodriguez J., Freer J., Duran N., Mansilla H.D., “Photocatalytic degradation of cellulose bleaching euent by supported TiO2 and ZnO”, Chemosphere, 41, 1193-1197 (2000).
Zhou M., Gao X., Hu Y., Chen J., Hu X., “Uniform hamburger-like mesoporous carbon-incorporated ZnO nanoarchitectures: One-pot solvothermal synthesis, high adsorption and visible-light photocatalytic decolorization of dyes”, Applied Catalysis B: Environmental, 138-139, 1–8 (2013).
蔡來福,以電漿輔助化學氣相沉積法室溫成氧化鋅薄膜之研究,國立中央大學光電科學研究所,碩士論文,1999.
張俊鴻,以EDTA、藻酸鈉對砷及鉻污染土壤萃取效率之研究,中央大學碩士論文,2006。
林麗娟,X光繞射原理及其應用,工業材料86期,100-109,1994。
指導教授 李俊福(Jiunn-Fwu Lee) 審核日期 2018-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明