博碩士論文 104326022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.135.184.109
姓名 陳彥銘(Yang-Ming Chen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 2016~2017年東亞背景、生質燃燒傳輸及高山雲霧水氣膠水溶性離子短時間變化
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 氣膠水溶性無機離子散射太陽光直接影響地球輻射平衡,當成為雲凝結核又間接影響降雨、雲滴散光。生質燃燒普遍在全球各地都有發生,煙團氣膠水溶性無機離子長程傳輸後的短時間變化值得關注。本文於2016年秋季及2017年春季在鹿林山大氣背景觀測站(2,862 m a.s.l.)以自動監測設備觀測PM2.5水溶性無機離子並結合現場相關量測項目進行分析。
2016年秋季在沒有山谷風循環時PM10質量濃度為4.6 ± 2.1 ug m-3,水溶性無機離子只有SO42-高於偵測極限,平均濃度為0.8 ± 0.6 ug m-3;PM10和PM1散光係數分別為14.8 ± 13.5與9.6 ± 9.1 M m-1,吸光係數分別為1.4 ± 0.9與1.1 ± 0.8 M m-1,可視為秋季東亞高山大氣背景數值。發生山谷風時氣膠水溶性離子SO42-、NO3-、NH4+濃度明顯上升。
2017年春季扣除生質燃燒與山谷風循環後,PM2.5質量濃度、PM10和PM1光學係數、PM2.5水溶性無機離子濃度都較2016年秋季為高。發生山谷風時,各測項數值也都比秋季高,顯示春季大氣背景濃度較高於秋季。春季生質燃燒事件中PM2.5質量濃度上升至22.0 ± 8.3 ug m-3,指標物種K+濃度明顯增加為0.3 ± 0.1 μg m-3,其餘三種無機離子SO42-、NO3-、NH4+濃度分別增加為4.3 ± 1.9、1.1 ± 1.0、1.7 ± 0.8 ug m-3,PM10和PM1散光係數分別上升至164.4 ± 46.4與108.2 ± 30.3 M m-1,吸光係數分別達21.8 ± 7.7與16.8 ± 6.3 M m-1,利用ISORROPIAⅡ模式顯示氣膠水溶性無機離子結合型態可能為硫酸銨、硫酸氫銨、硫酸鉀、硝酸銨、硝酸鉀。最後,針對氣膠水溶性無機離子和大氣輻射衰減的探討,本文發現低相對濕度、非靜風、現址無雲霧的環境,大氣氣膠水溶性無機離子對大氣氣膠光學厚度具有重大影響。
摘要(英) Light scattering from aerosol water-soluble inorganic ions (WSIIs) directly influences solar radiation budget of the Earth. In addition, aerosol WSIIs may indirectly affect light scattering and precipitation of cloud droplets when they act as cloud condensation nuclei. As biomass burning (BB) occurs commonly around the glBBe, short-interval variations of WSIIs from the long-range transported BB smoke are thus interesting to investigate. This work monitored short-interval values of PM2.5 WSIIs and accompanied with the related measuring items at the Lulin Atmospheric Background Station (2,862 m a.s.l.) for analysis in autumn 2016 and spring 2017.
The campaign in autumn 2016 showed that PM10 mass concentration was averaged at 4.6 ± 2.1 ug m-3 excluding the influence of mountain-valley wind. Among various PM2.5 WSIIs, SO42- was the sole ion exceeding detection limit with an average of 0.8 ± 0.6 ug m-3. Light-scattering coefficients of PM10 and PM1 were averaged at 14.8 ± 13.5 and 9.6 ± 0.8 M m-1, respectively. In contrast, PM10 and PM1 light-absorption coefficients were 1.4 ± 0.9 M m-1 and 1.1 ± 0.8 M m-1, respectively. These aerosol properties characterized background air of a high-elevation site in East Asia in autumn 2016. Note that the levels of WSIIs such as SO42-, NO3-, and NH4+ increased greatly when mountain-valley wind occurred.
In the field study of spring 2017, however, PM2.5 mass concentration, PM10 and PM1 optical coefficients, and PM2.5 WSIIs all exceeded the corresponding values in autumn 2016 when excluding the influences of BB and mountain-valley wind. Similarly, all measurements in spring 2017 exceeded that in autumn 2016 under the influence of mountain-valley wind, which was prBBably due to higher background values. During the BB events in spring 2017, levels of PM2.5 mass increased to 22.0 ± 8.3 ug m-3 and K+, a BB tracer, also increased greatly to 0.3 ± 0.1 μg m-3. The mean levels of other three major WSIIs, namely, SO42-, NO3-, and NH4+, were 4.3 ± 1.9, 1.1 ± 1.0, and 1.7 ± 0.8 ug m-3, respectively. Moreover, PM10 and PM1 light-scattering coefficients increased to 164.4 ± 46.4 and 108.2 ± 30.3 M m-1, respectively. The light-absorption coefficients were 21.8 ± 7.7 and 16.8 ± 6.3 M m-1, respectively. For the possible associated compound forms of WSIIs, the ISORROPIAⅡ model simulation came up with ammonium sulfate, ammonium bisulfate, potassium sulfate, ammonium nitrate, and potassium nitrate. Finally, the investigation of aerosol WSIIs on atmospheric radiation degradation showed that WSIIs influenced aerosol optical depth greatly.
關鍵字(中) ★ 氣膠水溶性無機離子短時間變化
★ 生質燃燒煙團長程傳輸
★ 雲霧事件
★ 山谷風
★ AOD與PM2.5水溶性無機離子
關鍵字(英) ★ Short-interval variations of aerosol water-soluble inorganic ions
★ ong-range transport of biomass burning smoke
★ fog events
★ mountain-valley wind
★ AOD and PM2.5 water-soluble inorganic ions
論文目次 摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 XI
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 生質燃燒 3
2.1.1 生質燃燒氣膠長程傳輸 3
2.1.2 生質燃燒氣膠化學成分特性 4
2.1.3 生質燃燒氣膠粒徑變化 5
2.1.4 生質燃燒氣膠光學特性 5
2.2 氣膠光學厚度(aerosol optical depth, AOD) 6
2.3 氣膠水溶性無機離子 6
2.3.1 氣膠中和狀況與結合型態 7
2.4 高山地區氣膠與氣體 9
2.4.1 雲霧動態變化 10
2.4.2 山谷風循環 12
2.5 氣膠水溶性離子連續監測儀器 12
2.5.1 平行板濕式固氣分離器 13
2.5.2 即時氣膠水溶性離子監測儀器 14
2.6 模擬氣膠含水量與pH值 15
2.6.1 氣膠pH值 15
2.6.2 氣膠含水量模擬 16
第三章 研究方法 17
3.1 研究架構 17
3.2 採樣地點與採樣週期 19
3.3 採樣設備與方法 21
3.3.1 短時間氣膠水溶性無機離子監測 21
3.4 大氣氣膠連續監測系統 25
3.4.1 自動監測儀器 25
3.4.2 NOAA氣膠觀測系統 26
3.4.3 積分式散光儀(Integrating Nephelometer) 27
3.4.4 微粒碳吸收光度計(PSAP) 30
3.4.5 粒徑分布監測系統 34
3.4.6 其他連續監測儀器 37
3.5 氣流軌跡模式(NOAA Hysplit) 39
3.6 ISORROPIAⅡ模式分析 41
第四章 結果與討論 42
4.1 鹿林山氣膠水溶性無機離子短時間變化 42
4.1.1 短時間自動監測與手動量測水溶性無機離子比對 42
4.1.2 鹿林山氣象資料、氣體、氣膠、水溶性無機離子動態變化 46
4.1.3 山谷風、雲霧及生質燃燒事件辨識方法 54
4.1.4 鹿林山氣膠水溶性離子不同軌跡來源短時間變化 56
4.2 鹿林山秋季山谷風事件氣膠、氣體及氣象參數動態變化 61
4.2.1 第一次山谷風事件(2016年11月2日) 68
4.2.2 第二次山谷風事件(2016年11月4日) 77
4.2.3 彙整秋季鹿林山山谷風事件氣膠、氣體動態變化 86
4.3 鹿林山春季生質燃燒事件氣膠、氣體及氣象參數動態變化 90
4.3.1 第一次生質燃燒事件(3月2日至3月7日) 90
4.3.2 第二次生質燃燒事件(3月11日至3月14日) 105
4.3.3 第三次生質燃燒事件(4月4日至4月7日) 120
4.3.4 彙整鹿林山生質燃燒事件氣體資料與氣膠動態特性 134
4.4 鹿林山春季山谷風事件氣膠、氣體及氣象參數動態變化 140
4.4.1 3月27日至3月28日山谷風事件 140
4.4.2 4月2日至4月3日山谷風事件 153
4.4.3 彙整秋季與春季鹿林山山谷風事件氣膠、氣體動態變化 165
4.5 探討不同污染源及高山氣膠水溶性無機離子成分比值、氣膠數目濃度與體積濃度 171
4.6 探討鹿林山不同環境條件短時間氣膠化學成分與AOD關係 178
第五章 結論與建議 186
5.1 結論 186
5.2 建議 189
第六章 參考文獻 190
附錄一、2016秋季與2017年春季鹿林山觀測期間逆推軌跡圖 198
附錄二、2017年春季鹿林山觀測期間火點圖 214
附錄三、口試委員意見與回覆 219
參考文獻 Benedict, K.B., Day, D., Schwandner, F.M., Kreidenweis, S.M., Schichtel, B., Malm, W.C., Collett, J.L., 2013. BBservations of atmospheric reactive nitrogen species in Rocky Mountain National Park and across northern Colorado. Atmospheric Environment 64, 66-76.
Bian, Y.X., Zhao, C.S., Ma, N., Chen, J., Xu, W.Y., 2014. A study of aerosol liquid water content based on hygroscopicity measurements at high relative humidity in the North China Plain. Atmospheric Chemistry and Physics 14, 6417-6426.
Bond, T.C., Anderson, T.L., Campbell, D., 1999. Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols. Aerosol Science & Technology 30, 582-600.
Bond, T.C., Streets, D.G., Yarber, K.F., Nelson, S.M., Woo, J.H., Klimont, Z., 2004. A technology?based glBBal inventory of black and organic carbon emissions from combustion. Journal of Geophysical Research: Atmospheres 109, D14203. DOI:10.1029/2003JD003697.
Boreddy, S.K., Kawamura, K., Okuzawa, K., Kanaya, Y., Wang, Z., 2017. Temporal and diurnal variations of carbonaceous aerosols and major ions in biomass burning influenced aerosols over Mt. Tai in the North China Plain during MTX2006. Atmospheric environment 154, 106-117.
Bougiatioti, A., Stavroulas, I., Kostenidou, E., Zarmpas, P., Theodosi, C., Kouvarakis, G., Canonaco, F., Prevot, A., Nenes, A., Pandis, S., 2014. Processing of biomass-burning aerosol in the eastern Mediterranean during summertime. Atmospheric Chemistry and Physics 14, 4793-4807.
Brandt, R., Schwab, J., Casson, P., Roychowdbury, U., Wolfe, D., 2016. Atmospheric chemistry measurements at Whiteface Mountain, NY: ozone and reactive trace gases. Aerosol Air Qual Res 16, 873-884.
Budhavant, K.B., Rao, P.S.P., Safai, P.D., Leck, C., Rodhe, H., 2016. Black carbon in cloud-water and rain water during monsoon season at a high altitude station in India. Atmospheric Environment 129, 256-264.
Cheng, S.-h., Yang, L.-x., Zhou, X.-h., Xue, L.-k., Gao, X.-m., Zhou, Y., Wang, W.-x., 2011. Size-fractionated water-soluble ions, situ pH and water content in aerosol on hazy days and the influences on visibility impairment in Jinan, China. Atmospheric Environment 45, 4631-4640.
Chuang, M.-T., Lee, C.-T., Chou, C.C.-K., Lin, N.-H., Sheu, G.-R., Wang, J.-L., Chang, S.-C., Wang, S.-H., Chi, K.H., Young, C.-Y., 2014a. Carbonaceous aerosols in the air masses transported from Indochina to Taiwan: Long-term BBservation at Mt. Lulin. Atmospheric Environment 89, 507-516.
Chuang, M.-T., Lee, C.-T., Chou, C.C.K., Lin, N.-H., Sheu, G.-R., Wang, J.-L., Chang, S.-C., Wang, S.-H., Chi, K.H., Young, C.-Y., Huang, H., Chen, H.-W., Weng, G.-H., Lai, S.-Y., Hsu, S.-P., Chang, Y.-J., Chang, J.-H., Wu, X.-C., 2014b. Carbonaceous aerosols in the air masses transported from Indochina to Taiwan: Long-term BBservation at Mt. Lulin. Atmospheric Environment 89, 507-516.
de Oliveira Alves, N., Vessoni, A.T., Quinet, A., Fortunato, R.S., Kajitani, G.S., Peixoto, M.S., de Souza Hacon, S., Artaxo, P., Saldiva, P., Menck, C.F.M., 2017. Biomass burning in the Amazon region causes DNA damage and cell death in human lung cells. Scientific reports 7, 10937. DOI:10.1038/s41598-017-11024-3
Deng, C., Zhuang, G., Huang, K., Li, J., Zhang, R., Wang, Q., Liu, T., Sun, Y., Guo, Z., Fu, J., 2011. Chemical characterization of aerosols at the summit of Mountain Tai in Central East China. Atmospheric Chemistry and Physics 11, 7319-7332.
Draxler, R., Rolph, G., 2013. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website. Silver Spring, MD: NOAA Air Resources Laboratory. ready. arl. noaa. gov/HYSPLIT. php.
Drewnick, F., Schwab, J.J., Hogrefe, O., Peters, S., Husain, L., Diamond, D., Weber, R., Demerjian, K.L., 2003. Intercomparison and evaluation of four semi-continuous PM2.5 sulfate instruments. Atmospheric Environment 37, 3335-3350.
Du, W., Sun, Y.L., Xu, Y.S., Jiang, Q., Wang, Q.Q., Yang, W., Wang, F., Bai, Z.P., Zhao, X.D., Yang, Y.C., 2015. Chemical characterization of submicron aerosol and particle growth events at a national background site (3295 m a.s.l.) on the Tibetan Plateau. Atmospheric Chemistry and Physics 15, 10811-10824.
Engling, G., ZHANG, Y.N., CHAN, C.Y., SANG, X.F., Lin, M., HO, K.F., LI, Y.S., LIN, C.Y., Lee, J.J., 2011. Characterization and sources of aerosol particles over the southeastern Tibetan Plateau during the Southeast Asia biomass?burning season. Tellus B 63, 117-128.
Feng, J., Guo, Z., Zhang, T., Yao, X., Chan, C.-K., Fang, M., 2012. Source and formation of secondary particulate matter in PM2. 5 in Asian continental outflow. Journal of Geophysical Research: Atmospheres 117, D03302. DOI:10.1029/2011JD016400.
Fountoukis, C., Nenes, A., 2007. ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+–Ca 2+–Mg 2+–NH 4+–Na+–SO 4 2?–NO 3?–Cl?–H 2 O aerosols. Atmospheric Chemistry and Physics 7, 4639-4659.
Gao, X., Xue, L., Wang, X., Wang, T., Yuan, C., Gao, R., Zhou, Y., Nie, W., Zhang, Q., Wang, W., 2012. Aerosol ionic components at Mt. Heng in central southern China: abundances, size distribution, and impacts of long-range transport. The Science of the total environment 433, 498-506.
Giulianelli, L., Gilardoni, S., Tarozzi, L., Rinaldi, M., Decesari, S., Carbone, C., Facchini, M.C., Fuzzi, S., 2014. Fog occurrence and chemical composition in the Po valley over the last twenty years. Atmospheric Environment 98, 394-401.
Guo, H., Xu, L., Bougiatioti, A., Cerully, K.M., Capps, S.L., Hite Jr, J., Carlton, A., Lee, S.-H., Bergin, M., Ng, N., 2015. Fine-particle water and pH in the southeastern United States. Atmospheric Chemistry & Physics 15, 5211-5228.
Hao, L., Romakkaniemi, S., Kortelainen, A., Jaatinen, A., Portin, H., Miettinen, P., Komppula, M., Leskinen, A., Virtanen, A., Smith, J.N., 2013. Aerosol chemical composition in cloud events by high resolution time-of-flight aerosol mass spectrometry. Environmental science & technology 47, 2645-2653.
Jiang, S., Ye, X., Wang, R., Tao, Y., Ma, Z., Yang, X., Chen, J., 2018. Measurements of nonvolatile size distribution and its link to traffic soot in urban Shanghai. Sci Total Environ 615, 452-461.
Keene, W.C., Pszenny, A.A., Galloway, J.N., Hawley, M.E., 1986. Sea?salt corrections and interpretation of constituent ratios in marine precipitation. Journal of Geophysical Research: Atmospheres 91, 6647-6658.
Lee, C.-T., Chuang, M.-T., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, S.-C., Wang, S.-H., Huang, H., Chen, H.-W., Liu, Y.-L., 2011a. The enhancement of PM 2.5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan. Atmospheric environment 45, 5784-5794.
Lee, C.-T., Chuang, M.-T., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, S.-C., Wang, S.-H., Huang, H., Chen, H.-W., Liu, Y.-L., Weng, G.-H., Lai, H.-Y., Hsu, S.-P., 2011b. The enhancement of PM2.5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan. Atmospheric Environment 45, 5784-5794.
Lee, T., Yu, X.-Y., Kreidenweis, S.M., Malm, W.C., Collett, J.L., 2008. Semi-continuous measurement of PM2.5 ionic composition at several rural locations in the United States. Atmospheric Environment 42, 6655-6669.
Li, J., 2003. Individual aerosol particles from biomass burning in southern Africa: 2, Compositions and aging of inorganic particles. Journal of Geophysical Research 108. D13, 8484. DOI:10.1029/2002JD002310.
Li, Z., Liu, Y., Lin, Y., Gautam, S., Kuo, H.-C., Tsai, C.-J., Yeh, H., Huang, W., Li, S.-W., Wu, G.-J., 2017. Development of an Automated System (PPWD/PILS) for Studying PM2.5 Water-Soluble Ions and Precursor Gases: Field Measurements in Two Cities, Taiwan. Aerosol and Air Quality Research 17, 426-443.
Lin, Y.C., Lin, C.Y., Lin, P.H., Engling, G., Lin, Y.C., Lan, Y.Y., June Chang, C.W., Kuo, T.H., Hsu, W.T., Ting, C.C., 2013. Influence of Southeast Asian biomass burning on ozone and carbon monoxide over subtropical Taiwan. Atmospheric Environment 64, 358-365.
Liu, Z., Xie, Y., Hu, B., Wen, T., Xin, J., Li, X., Wang, Y., 2017. Size-resolved aerosol water-soluble ions during the summer and winter seasons in Beijing: Formation mechanisms of secondary inorganic aerosols. Chemosphere 183, 119-131.
Loria-Salazar, S.M., Panorska, A., Arnott, W.P., Barnard, J.C., Boehmler, J.M., Holmes, H.A., 2017. Toward understanding atmospheric physics impacting the relationship between columnar aerosol optical depth and near-surface PM2. 5 mass concentrations in Nevada and California, USA, during 2013. Atmospheric Environment 171, 289-300.
Ma, Y., 2004. Developments and improvements to the particle-into-liquid-sampler (PILS) and its applications to Asian outflow studies. Georgia Institute of Technology.
Mwaniki, G.R., Rosenkrance, C., Wallace, H.W., JBBson, B.T., Erickson, M.H., Lamb, B.K., Hardy, R.J., Zalakeviciute, R., VanReken, T.M., 2014a. Factors contributing to elevated concentrations of PM2.5 during wintertime near Boise, Idaho. Atmospheric Pollution Research 5, 96-103
Mwaniki, G.R., Rosenkrance, C., Wallace, H.W., JBBson, B.T., Erickson, M.H., Lamb, B.K., Hardy, R.J., Zalakeviciute, R., VanReken, T.M., 2014b. Factors contributing to elevated concentrations of PM 2.5 during wintertime near Boise, Idaho. Atmospheric Pollution Research 5, 96-103.
Ng, N.L., Herndon, S.C., Trimborn, A., Canagaratna, M.R., Croteau, P., Onasch, T.B., Sueper, D., Worsnop, D.R., Zhang, Q., Sun, Y., 2011. An Aerosol Chemical Speciation Monitor (ACSM) for routine monitoring of the composition and mass concentrations of ambient aerosol. Aerosol Science and Technology 45, 780-794.
Orsini, D.A., Ma, Y., Sullivan, A., Sierau, B., Baumann, K., Weber, R.J., 2003. Refinements to the particle-into-liquid sampler (PILS) for ground and airborne measurements of water soluble aerosol composition. Atmospheric Environment 37, 1243-1259.
Ou-Yang, C.-F., Lin, N.-H., Lin, C.-C., Wang, S.-H., Sheu, G.-R., Lee, C.-T., Schnell, R.C., Lang, P.M., Kawasato, T., Wang, J.-L., 2014. Characteristics of atmospheric carbon monoxide at a high-mountain background station in East Asia. Atmospheric Environment 89, 613-622.
Ou Yang, C.-F., Lin, N.-H., Sheu, G.-R., Lee, C.-T., Wang, J.-L., 2012. Seasonal and diurnal variations of ozone at a high-altitude mountain baseline station in East Asia. Atmospheric Environment 46, 279-288.
Pani, S.K., Wang, S.H., Lin, N.H., Tsay, S.C., Lolli, S., Chuang, M.T., Lee, C.T., Chantara, S., Yu, J.Y., 2016. Assessment of aerosol optical property and radiative effect for the layer decoupling cases over the northern South China Sea during the 7?SEAS/Dongsha Experiment. Journal of Geophysical Research: Atmospheres 121, 4894-4906.
Pathak, R., Wu, W., Wang, T., 2009. Summertime PM 2.5 ionic species in four major cities of China: nitrate formation in an ammonia-deficient atmosphere. Atmospheric Chemistry and Physics 9, 1711-1722.
Pathak, R.K., Louie, P.K., Chan, C.K., 2004. Characteristics of aerosol acidity in Hong Kong. Atmospheric Environment 38, 2965-2974.
Pathak, R.K., Wang, T., Ho, K., Lee, S., 2011a. Characteristics of summertime PM2. 5 organic and elemental carbon in four major Chinese cities: Implications of high acidity for water-soluble organic carbon (WSOC). Atmospheric Environment 45, 318-325.
Pathak, R.K., Wang, T., Wu, W.S., 2011b. Nighttime enhancement of PM2.5 nitrate in ammonia-poor atmospheric conditions in Beijing and Shanghai: Plausible contributions of heterogeneous hydrolysis of N2O5 and HNO3 partitioning. Atmospheric Environment 45, 1183-1191.
Raizenne, M., Neas, L.M., Damokosh, A.I., Dockery, D.W., Spengler, J.D., Koutrakis, P., Ware, J.H., Speizer, F.E., 1996. Health effects of acid aerosols on North American children: pulmonary function. Environmental health perspectives 104, 506.
Ram, K., Sarin, M., 2011. Day–night variability of EC, OC, WSOC and inorganic ions in urban environment of Indo-Gangetic Plain: implications to secondary aerosol formation. Atmospheric Environment 45, 460-468.
Rengarajan, R., Sudheer, A., Sarin, M., 2011. Aerosol acidity and secondary organic aerosol formation during wintertime over urban environment in western India. Atmospheric environment 45, 1940-1945.
Roy, A., Chatterjee, A., Tiwari, S., Sarkar, C., Das, S.K., Ghosh, S.K., Raha, S., 2016. Precipitation chemistry over urban, rural and high altitude Himalayan stations in eastern India. Atmospheric Research 181, 44-53.
Saleh, R., Hennigan, C., McMeeking, G., Chuang, W., RBBinson, E., Coe, H., Donahue, N., RBBinson, A., 2013. Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions. Atmospheric Chemistry and Physics 13, 7683-7693.
Seinfeld, J.H., Pandis, S.N., 2016. Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons.
Sheu, G.-R., Lin, N.-H., Wang, J.-L., Lee, C.-T., Ou Yang, C.-F., Wang, S.-H., 2010. Temporal distribution and potential sources of atmospheric mercury measured at a high-elevation background station in Taiwan. Atmospheric Environment 44, 2393-2400.
Stein, A., Draxler, R.R., Rolph, G.D., Stunder, B.J., Cohen, M., Ngan, F., 2015. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society 96, 2059-2077.
Sun, Y., Wang, Z., Fu, P., Jiang, Q., Yang, T., Li, J., Ge, X., 2013. The impact of relative humidity on aerosol composition and evolution processes during wintertime in Beijing, China. Atmospheric Environment 77, 927-934.
Takegawa, N., Miyazaki, Y., Kondo, Y., Komazaki, Y., Miyakawa, T., Jimenez, J., Jayne, J., Worsnop, D., Allan, J., Weber, R., 2005. Characterization of an Aerodyne Aerosol Mass Spectrometer (AMS): Intercomparison with other aerosol instruments. Aerosol Science and Technology 39, 760-770.
Tan, H., Cai, M., Fan, Q., Liu, L., Li, F., Chan, P., Deng, X., Wu, D., 2017. An analysis of aerosol liquid water content and related impact factors in Pearl River Delta. Science of the Total Environment 579, 1822-1830.
Tao, J., Zhang, L., Gao, J., Wang, H., Chai, F., Wang, S., 2015. Aerosol chemical composition and light scattering during a winter season in Beijing. Atmospheric Environment 110, 36-44.
Von Schneidemesser, E., Monks, P.S., Allan, J.D., Bruhwiler, L., Forster, P., Fowler, D., Lauer, A., Morgan, W.T., Paasonen, P., Righi, M., 2015. Chemistry and the linkages between air quality and climate change. Chem. Rev 115, 3856-3897.
Wang, J., Christopher, S.A., 2003. Intercomparison between satellite?derived aerosol optical thickness and PM2. 5 mass: implications for air quality studies. Geophysical research letters 30, NO. 21, 2095. DOI:10.1029/2003GL018174
Wang, Y., Guo, J., Wang, T., Ding, A., Gao, J., Zhou, Y., Collett, J.L., Wang, W., 2011. Influence of regional pollution and sandstorms on the chemical composition of cloud/fog at the summit of Mt. Taishan in northern China. Atmospheric Research 99, 434-442.
Weber, R., Orsini, D., Daun, Y., Lee, Y.-N., Klotz, P., Brechtel, F., 2001. A particle-into-liquid collector for rapid measurement of aerosol bulk chemical composition. Aerosol Science & Technology 35, 718-727.
Xue, J., Lau, A.K., Yu, J.Z., 2011. A study of acidity on PM 2.5 in Hong Kong using online ionic chemical composition measurements. Atmospheric environment 45, 7081-7088.
Xue, J., Yuan, Z., Lau, A.K., Yu, J.Z., 2014. Insights into factors affecting nitrate in PM2. 5 in a polluted high NOx environment through hourly BBservations and size distribution measurements. Journal of Geophysical Research: Atmospheres 119, 4888-4902.
Yang, M., Howell, S., Zhuang, J., Huebert, B., 2009. Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China–interpretations of atmospheric measurements during EAST-AIRE. Atmospheric Chemistry and Physics 9, 2035-2050.
Yao, X., Ling, T.Y., Fang, M., Chan, C.K., 2006. Comparison of thermodynamic predictions for in situ pH in PM2. 5. Atmospheric Environment 40, 2835-2844.
Yu, X., Ma, J., Kumar, K.R., Zhu, B., An, J., He, J., Li, M., 2016. Measurement and analysis of surface aerosol optical properties over urban Nanjing in the Chinese Yangtze River Delta. Science of The Total Environment 542, 277-291.
Zauscher, M.D., Wang, Y., Moore, M.J., Gaston, C.J., Prather, K.A., 2013. Air quality impact and physicochemical aging of biomass burning aerosols during the 2007 San Diego wildfires. Environ Sci Technol 47, 7633-7643.
Zhang, L., Jin, L., Zhao, T., Yin, Y., Zhu, B., Shan, Y., Guo, X., Tan, C., Gao, J., Wang, H., 2015a. Diurnal variation of surface ozone in mountainous areas: Case study of Mt. Huang, East China. Sci Total Environ 538, 583-590.
Zhang, T., Cao, J., Tie, X., Shen, Z., Liu, S., Ding, H., Han, Y., Wang, G., Ho, K., Qiang, J., 2011. Water-soluble ions in atmospheric aerosols measured in Xi′an, China: seasonal variations and sources. Atmospheric Research 102, 110-119.
Zhang, Y., Tang, L., Wang, Z., Yu, H., Sun, Y., Liu, D., Qin, W., Canonaco, F., Prevot, A., Zhang, H., 2015b. Insights into characteristics, sources, and evolution of submicron aerosols during harvest seasons in the Yangtze River delta region, China. Atmospheric Chemistry and Physics 15, 1331-1349.
Zheng, J., Hu, M., Du, Z., Shang, D., Gong, Z., Qin, Y., Fang, J., Gu, F., Li, M., Peng, J., Li, J., Zhang, Y., Huang, X., He, L., Wu, Y., Guo, S., 2017a. Influence of biomass burning from South Asia at a high-altitude mountain receptor site in China. Atmospheric Chemistry and Physics 17, 6853-6864.
Zheng, Y., Che, H., Zhao, T., Zhao, H., Gui, K., Sun, T., An, L., Yu, J., Liu, C., Jiang, Y., 2017b. Aerosol optical properties BBservation and its relationship to meteorological conditions and emission during the Chinese National Day and Spring Festival holiday in Beijing. Atmospheric Research 197, 188-200.
Zhou, Y., Wang, T., Gao, X., Xue, L., Wang, X., Wang, Z., Gao, J., Zhang, Q., Wang, W., 2010. Continuous BBservations of water-soluble ions in PM2.5 at Mount Tai (1534 m?a.s.l.) in central-eastern China. Journal of Atmospheric Chemistry 64, 107-127.
林家慶,2008。鹿林山空氣品質背景監測之背景值分析, 大氣物理所碩士論文。國立中央大學
許博閔,2011。鹿林山大氣背景站不同氣團氣膠光學特性, 環境工程研究所碩士論文。國立中央大學。
林書輝,2013。 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化, 環境工程研究所碩士論文。 國立中央大學。
張士昱。2013。乾、濕兩用之氣體吸附裝置。中華民國發明專利第M467055號。
蔡茗宇,2014。 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性,環境工程研究所碩士論文。 國立中央大學。
蔡承佑,2016.。 2014年鹿林山氣膠水溶性無機離子短時間動態變化特性, 環境工程研究所碩士論文。 國立中央大學。
姜明辰,2016。2015年鹿林山氣膠水溶性無機離子短時間動態變化特性, 環境工程研究所碩士論文。 國立中央大學。
張士昱。2016。氣膠收集裝置。中華民國發明專利第M515102號。
陳威任,2018。 2015~2016年背景、生質燃燒及雲霧事件影響下鹿林山氣膠水溶性無機離子短時間動態變化,環境工程研究所碩士論文。 國立中央大學。
邱鈞煦,2018。 2017鹿林山氣膠長程傳輸特性解析,環境工程研究所碩
士論文。 國立中央大學。
指導教授 李崇德(Chung-Te Lee) 審核日期 2018-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明