參考文獻 |
參考文獻
1. Adam, V., D. Chudobova, K. Tmejova, K. Cihalova, S. Krizkova, R. Guran, M. Kominkova, M. Zurek, M. Kremplova, A. M. J. Jimenez, M. Konecna, D. Hynek, V. Pekarik and R. Kizek (2014). “An Effect of Cadmium and Lead Ions on Escherichia coli with the Cloned Gene for Metallothionein (MT-3) Revealed by Electrochemistry.” Electrochimica Acta 140, 11-19.
2. Allen, H. E., Hall, R. H. and Brisbin, T. D. (1980). “Metal Speciation. Effects on Aquatic Toxicity”. Environmental Science & Technology 14,
441–443.
3. Alvarez, P.J.J., Colvin, V., Lead J., and Stone V., (2009). “Research priorities to advance eco-responsible nanotechnology”. ACS nano, 3, 1616-1619.
4. Anderson, M. A. and Morel, F. M. M. (1978). “Growth limitation of a
coastal diatom by low zinc ion activity”. Nature 276, 70–71
5. Anderson, D.M. and Morel, F.M.M. (1978). “Copper sensitivity of Gonyaulax tamarensis”. Limnology and Oceanography, 23, 283-295.
6. Andreini, C., Banci, L., Bertini, I., and Rosato, A. (2006). “Zinc through the three domains of life. J. Proteome Res.” 5, 3173–3178.
7. Antonio, M. T., Corredor, L. and Leret, M. L. (2003). “Study of the activity of several brain enzymes like markers of the neurotoxicity induced by perinatal exposure to lead and/or cadmium”. Toxicology Letters 143, 331-340.
8. Austin, B. C., Wright, M. S., Stepanauskas, R., McArthur, J.V. (2006). “Co-selection of antibiotic and metal resistance”. Trends in Microbiology 14, 176-182.
9. Barkay, T., Gillman, M. and Turner, R. R. (1997). “Effects of dissolved organic carbon and salinity on bioavailability of mercury.” Applied and
Environmental Microbiology 63, 4267-4271
10. Barkay, T., K. Kritee, E. Boyd, and G. Geesey (2010). “A thermophilic bacterial origin and subsequent constraints by redox, light and salinity on the evolution of the microbial mercuric reductase.” Environmental
Microbiology 12, 2904-2917
11. Benoit, J.M., Mason, R.P. and Gilmour, C.C. (1999b). “Estimation of mercury-sulfide speciation in sediment pore waters using octanol-water partitioning and implications for availability to methylating bacteria”. Environmental Toxicology and Chemistry, 18, 2138-2141.
12. Benoit, J.M., Gilmour, C.C. and Mason, R.P. (2001). “The influence of sulfide on solid-phase mercury bioavailability for methylation by pure cultures of Desulfobulbus propionicus (1pr3)”. Environmental Science & Technology, 35, 127-132.
13. Benoit, J.M., Gilmour, C.C., Mason, R.P., and Heyes, A. (1999a). “Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters”. Environmental Science & Technology, 33, 951-957.
14. Bergomi, M., Vinceti, M., Nacci, G., Pietrini, V., Bratter, P., Alber, D., A. Ferrari, Vescovi, L., Guidetti, D., Sola, P., Malagu, S., Aramini, C. and G. Vivoli (2002). “Environmental Exposure to Trace Elements and Risk of Amyotrophic Lateral Sclerosis: A Population-Based Case–Control Study”.
Environmental Research 89, 116-123.
15. Binet, M. R., and Poole, R. K. (2000). “Cd(II), Pb(II) and Zn(II) ions regulate expres- sion of the metal-transporting P-type ATPase ZntA in Escherichia coli.” FEBS Lett, 473, 67–70.
16. Blust, R., Fontaine, A. and Decleir, W. (1991). “Effect of hydrogen ions and inorganic complexing on the uptake of copper by the brine shrimp Artemia franciscana”. Marine Ecology Progress Series 76, 273-282.
17. Bramhachari, P.V., Kavi Kishor, P.B., Ramadevi, R., Kumar, R., Rao, B.R., Dubey, S.K., 2007. “Isolation and characterization of mucous exopolysaccharide produced by Vibrio furnissii VB0S3.” Journal of
Microbiology and Biotechnology, 17, 44–51.
18. Bruins, M. R., Kapil, S. & Oehme, F. W. (2000). “Microbial resistance to metals in the environment”. Ecotoxicology and Environmental Safety 45,
198–207.
19. Campbell, P.G.C. (1995). “Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model”. In: Tessier, A., Turner, D.R. (Eds.), Metal Speciation and Bioavailability in Aquatic Systems. Wiley, Chichester, 45–102
20. Canterford, G. S. and Canterford, D. R. (1980). “Toxicity of heavy meatals to the marine diatom ditylum Bright Welii (WEST) Grunow: Correlation between toxicity and metal speciation”. Marine Biological Association of
the United Kingdom 60, 2828-1187.
21. Cesare, D. A., E. M. Eckert, S. D′Urso, R. Bertoni, D. C. Gillan, R. Wattiez and G. Corno (2016). “Co-occurrence of integrase 1, antibiotic and heavy metal resistance genes in municipal wastewater treatment plants”. Water Research 94, 208-214.
22. Chao, Y., and Fu, D. (2004). “Kinetic study of the antiport mechanism of an Escherichia coli zinc transporter.” ZitB. The Journal of Biological Chemistry 279, 12043–12050.
23. Chang, J.S., Law, R., Chang, C.C., 1997. “Biosorption of lead, copper and cadmium by biomass of Pseudomonas aeruginosa PU21.” Water Research,
31, 1651–1658.
24. Chizhikov, D. M. (1966), Cadmium, Pergamon, Oxford, pp.263
25. Collier, J. L. a. P. J. (1995). “A new chemically-defined medium for Bacillus subtilis (168) NCIMB 12900”. Letters in Applied Microbiology 22, 18-20.
26. Crea, F., Foti, C. Milea, D. and Sammartano, S. (2013). “Speciation of cadmium in the environment.” Metal Ions in Life Sciences 11, 63-83.
27. Cullen, J. T. and Maldonado, M. T. (2013). “Biogeochemistry of cadmium and its release to the environment.” Metal Ions in Life Sciences 11, 31-58.
28. Dawes, I. W. and Mandelstam, J. (1970). “Sporulation of Bacillus subtilis in Continuous Culture”. BACTERIOLOGY 103, 529-535
29. Deheyn, D. D., Latmani, R. B. and Latz, M. I. (2004). “Chemical speciation and toxicity of metals assessed by three bioluminescence-based assays using marine organisms”. Environmental Toxicology 19, 161-178
30. Deheyn, D.D., Latmani, R. B. and Latz, M.I. (2004). “Chemical speciation and toxicity of metals assessed by three bioluminescence-based assays using marine organisms”. Environmental Toxicology, 19, 161-178.
31. Domingos, R. F., Simon, D. F., Hauser, C. and Wilkinson, K. J. (2011)“Bioaccumulation and effects of CdTe/CdS quantum dots on Chlamydomonas reinhardtii - nanoparticles or the free ions?”, Environmental Science & Technology, 45, 7664-7669.
32. Dubertret, B., Skourides, P., Norris, D. J., Noireaux, V. A., Brivanlou, H., and Libchaber, (2002) “In vivo imaging of quantum dots encapsulated in phospholipid micelles”, Science, 298, 1759-1762.
33. Dupont, C. L., Grass, G., and Rensing, C. (2011). “Copper toxicity and the origin of bacterial resistance–new insights and applications.” Metallomics 3, 1109–1118.
34. Fulladosa, E., Villaescusa, I., Martinez ,M., Martinez and J.-C. Murat (2005). “Study of Cr(VI) and Cd(II) Ions Toxicity Using the Microtox Bacterial Bioassay”. Environmental Chemistry 725-734
35. Fulladosa, E., I. Villaescusa, Martinex, M. and Murat, J.-C. (2005). “Study of Cr(VI) and Cd(II) ions toxicity using the microtox bacterial bioassay”. In: Environmental Chemistry- Green Chemistry and Pollutants in Ecosystems. Lichtfouse E., J. Schwarzbauer and D. Robert Ed., Springer.
36. Goulle, J. P., Castermant, J., Mahieu, L., Bouige, D., Neveu, N., Bonneau, L., Laine, G., Guerbet, M., Lacroix, C. (2005) “Metallic Profile of Whole Blood and Plasma in a Series of 99 Healthy Children.” Forensic Science International.” 153, 39-44.
37. Goulle, J. P., E. Saussereau, L. Mahieu, D. Bouige, S. Groenwont, M. Guerbet, C. Lacroix 2009, “Application of Inductively Coupled Plasma Mass Spectrometry Multielement Analysis in Fingernail and Toenail as a Biomarker of Metal Exposure.” Journal of Analytical Toxicology, 33, 92-98
38. Grass, G., Wong, M. D., Rosen, B. P., Smith, R. L., and Rensing, C. (2002) “ZupT is a Zn(II) uptake system in Escherichia coli.” Journal of Bacteriology 184, 864–866.
39. Grass, G., Fan, B., Rosen, B. P., Franke, S., Nies, D. H., and Rensing, C. (2001). “ZitB (YbgR), a member of the cation diffusion facilitator family, is an addi- tional zinc transporter in Escherichia coli.” Journal of Bacteriology 183, 4664–4667.
40. Hamel, S.C., Buckley, B. and Lioy, P.J. (1998). “Bioaccessibility of metals in soils for different liquid to solid ratios in synthetic gastric fluid”. Environmental Science & Technology, 32, 358-362.
41. Hantke, K. (2005). Bacterial zinc uptake and regulators. Curr. Current Opinion in Microbiology 8, 196–202.
42. Hardman, R., (2006) “A Toxicologic Review of Quantum Dots: Toxicity Depends 102 on Physicochemical and Environmental Factors”, Environmental Health Perspectives, 114, 165-172.
43. Hodgkinson, V., and Petris, M. J. (2012). “Copper homeostasis at the host-pathogen interface.” The Journal of Biological Chemistry. 287, 13549–13555.
44. Hu, Z., Chandran, K., Grasso, D. and Smets, B. F. (2002). “Effect of nickel and cadmium speciation on nitrification inhibition”. Environmental Science & Technology, 36, 3074-3078.
45. Huang, J.W., Chen, J., Berti, W. R. and S.D., Cunningham (1997). “Phytoremediation of lead-contaminated soils: Role of synthetic chelates in lead phytoextraction”. Environmental Science & Technology, 31, 800-805.
46. Hudson, R. J. M. and Morel, F. M. M. (1990). “Iron transport in marine phytoplankton: Kinetics of cellular and medium coordination reactions”. Limnology Oceanography 35, 1002-1020.
47. Hudson, R. J. M. and Morel, F. M. M. (1993). “Trace metal transport by marine microorganisms: implications of metal coordination kinetics”. Deep-Sea Research 41, 129-150.
48. Jay, J. A., F. M. M. Morel, and Hemond, H. F. (2000). “Mercury speciation in the presence of polysulfides.” Environmental Science &
Technology 34, 2196-2200.
49. Jiang, L. F., Yao, T. M., Zhu,Z. L., Wang, C. and Ji, L. N. (2007). “Impacts of Cd(II) on the conformation and self-aggregation of Alzheimer′s tau fragment corresponding to the third repeat of microtubule-binding domain”.
Biochim Biophys Acta 1774, 1414-1421.
50. Kabata-Pendias, A., Pendias, H., 2001. Trace elements in soils and plants,
3rd. CRC Press, Boca Raton, FL, 413.
51. Karunanayakea, A. G., Todd, O. A., Crowley, M., Ricchetti, L., Anderson, R., Mohan, D. (2018). “Lead and cadmium remediation using magnetized and nonmagnetized biochar from Douglas fir”. Chemical Engineering
Journal 331, 480–491.
52. Kim, J. M., Baars, O. and Morel, F.M.M. (2015). “Bioavailability and electroreactivity of zinc complexed to strong and weak organic ligands”. Environmental Science & Technology, 49, 10894-10902.
53. Klein, J. S., and Lewinson, O. (2011). “Bacterial ATP-driven transporters of tran- sition metals: physiological roles, mechanisms of action, and roles in bacterial virulence.” Metallomics 3, 1098–1108.
54. Kloepfer, J. A, Mielke, R. E, Nadeau, J.L (2005). “Uptake of CdSe and CdSe / ZnS quantum dots into bacteria via purine-dependent mechanisms.” Applied and Environmental Microbiology 71, 2548-2557.
55. Knapp, C. W., Lima, L., Rieumont, S. O., Bowen, E. D., Werner and Graham, D. W. (2012). “Seasonal variations in antibiotic resistance gene transport in the almendares river, havana, cuba”. Frontiers in Microbiology 3, 396.
56. Knapp, C. W., McCluskey, S. M. Singh, B. K. Campbell, C. D. G. Hudson and Graham ,D. W. (2011). “Antibiotic resistance gene abundances correlate with metal and geochemical conditions in archived Scottish soils”.
PLoS ONE 11, e27300.
57. Kushwaha, A., N. Hans, S. Kumar and R. Rani (2018). “A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies.” Ecotoxicology and Environmental Safety 147, 1035-1045.
58. Ladomersky, E. and Petris, M. J. (2015). “Copper tolerance and virulence in bacteria.” Metallomics 7, 957-964.
59. Lao, U. L., Chen, A. M. R., Matsumoto, Mulchandani, A. and Chen, W. (2007). “Cadmium removal from contaminated soil by thermally responsive elastin (ELPEC20) Biopolymers”. Biotechnology and Bioengineering, 98, 349-355.
60. Lindsay, D., V. S. Brozel, and Holy, A. Von (2005). “Spore Formation in Bacillus Subtilis Biofilms.” Journal of Food Protection 68, 860–65.
61. Lindsay, D., Brozel, V. S. and Holy, A. V. (2005). “Spore Formation in Bacillus subtilis Biofilms”. Journal of Food Protection 68, 860–865.
62. Lyon, S. Mahendra, M. J. McLaughlin, and Lead, J. R. ,(2008) “Nanomaterials in the environment: behavior, fate, bioavailability, and effects”, Environmental Toxicology and Chemistry, 27, 1825-1851.
63. Ma, Z., Jacobsen, F. E., and Giedroc, D. P. (2009). “Coordination chemistry of bacterial metal transport and sensing.” Chemical Reviews 109, 4644–4681.
64. Maestri, E., Marmiroli, M., Visioli, G., Marmiroli, N., (2010) “Metal tolerance and hyperaccumulation:costs and trade-offs between traits and environment.” Environmental and Experimental Botany, 68, 1–13.
65. Mason, R.P., J.R. Reinfelder and F.M.M. Morel (1996). “Uptake, toxicity, and trophic transfer of mercury in a coastal diatom”. Environmental Science & Technology, 30, 1835-1845.
66. Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., J. J. Li, G.Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, ,(2005) “Quantum dots for live cells, in vivo imaging, and diagnostics”, Science, 307, 538-544.
67. Morel, F.M.M. (1983). Principles of Aquatic Chemistry. Wiley, New York.
68. Morel, F.M.M. and Hering, J.G. (1993). Principles and Applications of Aquatic Chemistry, 1st Edition. Wiley-Interscience.
69. Nies, D.H., (2003). “Efflux-mediated heavy metal resistance in prokaryotes”. FEMS Microbiological Reviews, 27, 313–339.
70. Niogi, S and Wood, C.M. (2004). “Biotic ligand model, a flexible tool for developing sit-specific water quality guidelines for metals”. Environmental Science & Technology, 38, 6177–6192.
71. Nriagu, J. O. (1990). Enviroment, 32, 7-33
72. Nriagu, J. O. and Pacyna, J. M. (1988). Nature 333, 134-139.
73. Nriagu, J. O. (1980) in Cadmium in the Enviroment, Part Ⅰ: Ecological Cycling, Ed J. O. Nriagu, John Wiley & Sons, New York, pp.35-70
74. Okuda, B., Iwamoto, Y., Tachibana , H., and M. Sugita (1997). “Parkinsonism after acute cadmium poisoning”. Clinical Neurology and
Neurosurgery 99, 263–265.
75. Oliver, J. D (2010). “Recent findings on the viable but nonculturable state in pathogenic bacteria.” FEMS Microbiol Rev 34, pp. 415-425.
76. Outten, C. E., and O’halloran, T. V. (2001). “Femtomolar sensitivity of metalloreg- ulatory proteins controlling zinc homeostasis.” Science 292, 2488–2492.
77. Pacyna, J. M., Pacyna,E. G. (2001). Environmental Reviews. 9, 269-298.
78. Pagenkopf, G.K. (1983). “Gill surface interaction model for trace-metal toxicity to fishes: Role of complexation, ph and water hardness”. Environmental Science & Technology, 17, 342–347.
79. Pal, C., Palme, J. B., Kristiansson, E. and Larsson, D. G. (2015). “Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential”. BMC Genomics, 16, 964.
80. Patzer, S. I., and Hantke, K. (2000). “The zinc-responsive regulator Zur and its control of the znu gene cluster encoding the ZnuABC zinc uptake system in Escherichia coli.” Journal of Inorganic Biochemistry 275, 24321–24332.
81. Patzer, S. I., and Hantke, K. (1998). “The ZnuABC high-affinity zinc uptake sys- tem and its regulator Zur in Escherichia coli.” Microbiology 28, 1199–1210.
82. Perry, R. D., and Silver, S. (1982). “Cadmium and manganese transport in Staphylococcus aureus membrane vesicles.” Journal of Bacteriology 150, 973-976
83. Pfister, B. B. N. R. (1986). “Cadmium transport by a-Cd2+-sensitive-and a Cd2+-resistant”. Canadian Journal of Microbiology 32, 539-542.
84. Pierzynski, G.M., Sims, J.T., Vance, G.F., 2000. Soils and Environmental
Quality, 2nd edition. CRC Press, London, UK.
85. Pugio, P., “Importance of Free Cadmium Ion.” American Chemical Society 12, 409
86. Qu, R. F., Wang, X. H., Feng, M.-B., Li, Y., Liu, H. X., Wang, L. S. and Wang, Z. H. (2013). “The toxicity of cadmium to three aquatic organisms (Photobacterium phosphoreum, Daphnia magna and Carassius auratus) under different pH levels”. Ecotoxicology and Environmental Safety, 95, 83-90.
87. Rademacher, C., and Masepohl, B. (2012). “Copper-responsive gene regulation in bacteria.” Microbiology 158, 2451–2464.
88. Rathnayake, I. V., M. Megharaj, G. S. Krishnamurti, N. S. Bolan and R. Naidu (2013). “Heavy metal toxicity to bacteria - are the existing growth media accurate enough to determine heavy metal toxicity”? Chemosphere 90, 1195-1200.
89. Rathnayake, I.V.N., Megharaj, M., Krishnamurti, G.S.R., Bolan, N.S. and Naidu, R. (2013). “Heavy metal toxicity to bacteria – Are the existing growth media accurate enough to determine heavy metal toxicity?”. Chemosphere, 90, 1195-1200.
90. Rayavulkan , Jiezhao, F., Jefferson, V., Sara preston , Graemei . P aton , Edward Tipping and S. Mcgrath (2000). “Copper Speciation and Impacts on Bacterial Biosensors in the Pore Water of Copper-Contaminated Soils.”
Environmental Science & Technology 34, 5115-5121
91. Rensing, C., Mitra, B., and Rosen, B. P. (1997). “The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase.” Proc. PNAS. 94, 14326–14331.
92. Satarug, S., Baker, J. R., Reilly, P. E. B., Moore, M. R., J. Willaims, D. Arch. (2002) “Cadmium levels in the lung, liver, kidney cortex, and urine samples from Australians without occupational exposure to metals.”
93. Sauve’, S.; Cook, N.; Hendershot, W. H.; McBride, M. B.(1996) “Cadmium uptake by crops estimated from soil total Cd and pH.” Environmental
Pollution 94, 154-157.
94. Schaefer, J. K., and F. M. M. Morel (2009). “High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens.” Nature
Geoscience 2, 123-126.
95. Schaefer, J. K., Rocks, S. S., Zheng, W., Liang, L. Gu, B. and F. M. Morel,(2011) “Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria. PNAS, vol. 108, pp. 8714-8719.
96. Sebastian, A. and Prasad, M. N. V. (2013). “Cadmium minimization in rice. A review.” Agronomy for Sustainable Development 34, 155-173.
97. Semple, K.T., Doick, K. J., Jones, K. C., Burauel, P., Craven, A. and Harms, H. (2004). “Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated”. Environmental Science & Technology 38, 228A-231A
98. Sharma, P., Dubey, R.S., (2005). “Lead toxicity in plants. Braz”. Journal of Plant Physiology 17, 35–52.
99. Sigel, A., H. Sigel and R. K. O. Sigel (2013 ). “Cadmium : From Toxicity
to Essentiality.”
100. Siles Cordero, M. T., A. Garcia de Torres, J. M. Cano Pavon, C. Bosch Ojeda, Mikrochim. Acta 1994, 116, 173-182
101. Stiefel , P., Emrich, S. S., Weber, K. M. and Ren, Q. (2015). “Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9
and propidium iodide.”, BMC Microbiology, 15, 36.
102. Sunda, W. G., Engel. D. W. and Thuotte, R. M. (1978). “Effect of Chemical Speciation on Toxicity of Cadmium to Grass Shrimp.” Environmental
Science & Technology 12, 409–413.
103. Sunda, W.G. and Guillard, R.R. (1976). “Relationship between cupric ion activity and the toxicity of copper to phytoplankton”. Journal of Marine Research, 34, 511-529.
104. Suresh, A.K., Pelletier, D.A. and Doktycz, M. J. (2013). “Relating nanomaterial properties and microbial toxicity”. Nanoscale, 5, 463-474.
Environmental Health, 57, 69-77
105. Taki, M., (2013) “Imaging and sensing of cadmium in cells.”, Metal Ions in
Life Sciences 11, 99-115.
106. Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). “Heavy Metals Toxicity and the Environment.” EXS, 101, 133–164.
107. Waisberg, M., P. Joseph, B. Hale and D. Beyersmann (2003). “Molecular and cellular mechanisms of cadmium carcinogenesis.” Toxicology 192, 95–117.
108. Wang,D.,Hosteen,O.,and Fierke,C.A (2012) “ZntR-mediatedtranscription of zntA responds to nanomolar intracellular free zinc.” Journal of Inorganic
Biochemistry 111, 173–181.
109. Wang, D., Hosteen, O., and Fierke, C. A. (2012). “ZntR-mediated transcription of zntA responds to nanomolar intracellular free zinc. ”
Journal of Inorganic Biochemistry 111, 173–181.
110. Wei, Y., and Fu, D. (2006). “Binding and transport of metal ions at the dimer interface of the Escherichia coli metal transporter YiiP.” The Journal of
Biological Chemistry 281, 23492–23502.
111. Worden, C.R., Kovac, W.K., Dorn, L.A. and Sandrin, T.R. (2009). “Environmental pH affects transcriptional responses to cadmium toxicity in Escherichia coli K012 (MG1655)”. FEMS Microbiology Letters, 293, 58-64.
112. Xu, Y., L. Feng, P. D. Jeffrey, Y. Shi and F. M. Morel (2008). “Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms.”
Nature 452, 56-61.
113. Zglinicki, T. V., C. Edwall, B. Lind, M. Nordberg, N. R. Ringertz and J. Wroblewski (1992). “Very low cadmium concentrations stimulate DNA
synthesis and cell growth.” Cell Science 103, 1073-1081.
114. Zhang, Z. W., Shimbo, S., Ochi, N., Eguchi, M. T., Watanabe, C. S. Moon, M. Ikeda, (1997, 2005)Science of the Total Environment., 179-187
115. 行政院環境保護署水污染防治法第七條第二項規定訂定放流水標準 環署水字第1060101625號 令 (民國 76 年 05 月 05 日)
116. 許育瑄 (2018)。藉由非抗性模式細菌對鎘之攝取機制探討量子點的生態毒性潛勢(碩士論文)。取自https://hdl.handle.net/11296/zhb754
117. 行政院環保署,2016,土壤及地下水污染整治年報。 |