博碩士論文 103326012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.226.172.61
姓名 陳又新(You-Sin Chen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 下水污泥與工業區廢水污泥共同蒸氣氣化產能效率與重金屬分佈特性之研究
(The study on energy yield and metals partitioning characterization by co-steam gasification of sewage sludge and industrial wastewater sludge)
相關論文
★ 大學生對綠建材認知與態度之研究★ 塑膠廢棄物催化裂解產能效率與裂解油物種特性變化之評估研究
★ 應用高壓蒸氣技術製備抗菌輕質材料及其 特性評估研究★ 加速碳酸鹽反應對都市垃圾焚化灰渣捕捉二氧化碳之可行性評估研究
★ 應用無機聚合物技術探討都市垃圾焚化飛灰 無害化之可行性研究★ 動畫與教學介入對桃園市某國小六年級學童環境行動影響之研究
★ 應用自製催化劑評估廢車破碎殘餘物氣化產能效率及污染物排放特性★ 應用熱裂解技術評估廢車破碎殘餘物轉換能源效率及重金屬排放特性
★ 應用揮發性有機物自動採樣技術評估工業區異味污染物來源及指紋之可行性研究★ 評估傳統濕式洗滌塔對印刷電路板防焊製程之揮發性有機氣體去除效率之研究
★ 污水處理廠逸散微粒之物理、化學及生物特性分析★ 應用熱氣清淨系統提升稻稈氣化過程合成氣品質及污染物去除之可行性研究
★ 台北都會區PM1.0微粒物理特徵描述與含碳氣膠來源分析★ 以無人飛行載具(UAV)平台探討空氣污染物之垂直分佈特徵及搭載之氣膠儀器性能評估
★ 淨水污泥與漿紙污泥煅燒灰共同製備輕質化 材料之抗菌特性評估研究★ 評估機械處理(MT)技術製備一般事業廢棄物固態衍生燃料之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用氣化處理技術探討下水污泥與工業區污水處理廠衍生之污泥(以下簡稱廢水污泥),在控制當量比(equivalence ratio, ER)、氣化溫度(600~800℃)、廢水污泥摻混比例(0~60%),以及蒸氣生質物比(Steam/Biomass, S/B) (0、0.5及1.0)等條件下,下水污泥與廢水污泥共同蒸氣氣化反應過程,合成氣及產氣組成特性、產物分佈特性、產能效率及重金屬排放分佈特性之影響。此外,本研究亦利用熱重-紅外線光譜儀,在改變不同升溫速率條件下,探討兩種污泥共同熱處理過程之反應動力,以及物種官能基之變化。
根據熱重-紅外線光譜試驗分析結果可知,熱反應主要區分為三個階段,分別為200~400℃之纖維素/半纖維素分解階段,400~600℃木質素之分解階段,以及800~900℃之固定碳分解階段。其中裂解反應條件過程,主要由脫揮發、脫氫等反應,產生羰基、芳香族類,以及含O-H和C-H鍵之官能基產物。當反應條件改為二氧化碳之反應氣氛時,則會在第三階段發生Boudouard反應,氣相物種亦有C-O鍵結之官能基物種產生。至於以ER為0.3之空氣氣化反應條件時,除前述之物種外,氣相產物增加醚類及有機酸等物種之產生。反應活化能分析結果顯示,反應活化能隨廢水污泥比例增加而降低,其中裂解條件之反應活化能自44.5 kJ/mol降至22.1 kJ/mol,而反應條件改為二氧化碳及空氣氣化時,反應活化能則分別由37.7 kJ/mol及40.7 kJ/mol降至19.5 kJ/mol及19.1 kJ/mol,其說明增加廢水污泥比例,能使反應活化能降低,而氣化反應相較於裂解反應,亦較易將污泥轉化成氣相產物。
根據下水污泥與廢水污泥之共同氣化反應結果顯示,氣化反應溫度為800℃,廢水污泥比例由0%增加至40%時,合成氣之氫氣組成比例約自9.10 vol.%增加至12.46 vol.%,穩定階段之冷燃氣效率則由37.89 %增加至60.85 %。控制不同S/B及廢水污泥比例之條件下,隨著蒸氣量增加,有助於下水污泥及廢水污泥共同氣化之反應,其中穩定階段之冷燃氣效率最高可達60.85%。根據氣化產物之能量分佈特性結果顯示,產物能量分佈以氣體產物為主,約佔30~50%,而固體產物與液體產物之能量分佈比例皆小於10%。此外,氣化反應溫度為800℃,且控制不同廢水污泥添加比例與蒸氣生質物比之條件下,總能源回收效率約介於31.59~50.91%,同時,增加廢水污泥比例,能有效地提昇能源轉換效率。根據氣化產物之重金屬分佈特性結果可知,廢水污泥添加比例增加,固體殘餘物之Cu、Zn及Cr等重金屬含量亦隨之增加,至於重金屬Pb含量則呈現降低之現象,此與污泥之化學特性有關。此外,揮發溫度較高之金屬(如Cu、Cr等),則主要分佈於固體產物。
整體而言,本研究不僅建立下水污泥與廢水污泥之基本特性分析與反應動力參數外,同時確認廢水污泥可作為下水污泥共同氣化之原料,提昇兩者污泥共同氣化產能效率之可行性。本研究具體之試驗分析結果,應可提供作為未來相關有機污泥廢棄物轉換能源應用技術之選擇參考依據。
摘要(英) This research investigates that evaluation on energy yields and metals partitioning characterization in co-gasification of sewage sludge (SS) and industrial wastewater sludge (IS) using fluidized bed gasifier with controlling temperature (600~800℃), IS ratio (0% to 60%), and steam-to-biomass ratio (S/B)(0 to 1.0).The functional group of gaseous speciation, thermal and kinetic characteristics in co-gasification of SS and IS by a thermal gravimetric analysis connected with a Fourier-transformed infrared spectrometer (TGA-FTIR) were also discussed.
The experimental results indicated that the thermal decomposition stages of tested sludge were including cellulose/semi-cellulose cracking stage (200~400℃), lignin decomposition stage (400~600℃), and fixed carbon volatilization stage (800~900℃) by TGA-FTIR. In the case of pyrolysis condition, the functional group of carbonyl, aromatic, O-H, and C-H were identified via devolatilization and dehydration reaction during thermal conversion process. When the CO2 used as reaction atmosphere, the functional group of C-O was identified in the gaseous products resulting in Boudouard reaction. In the case of gasification reaction (ER 0.3), the above functional groups were also identified in thermal conversion. However, the functional groups of ether and organic acid were extra speciation identified in the gaseous products. Based on the analysis results of pyrolysis condition, the activation energy was significantly decreased from 44.5 kJ/mol to 22.1 kJ/mol with IS addition ratio increasing from 0% to 100%. In the case of CO2 and air gasification, the activation energy was also decreased from 37.7 kJ/mol to 19.5 kJ/mol and from 40.7 kJ/mol to 19.1 kJ/mol with an increase in IS addition ratio, respectively. This is because the catalytic effect on the promotion of thermal reaction resulting in IS contains some Fe/Mn contents.
In the case of gasification temperature 800℃, the hydrogen production was increased from 9.1 vol. % to 12.46 vol.% with the IS addition ratio increasing from 0% to 40%. The cold gas efficiency (CGE) was significantly increased from 37.89% to 60.85%. Meanwhile, the energy conversion and CGE were increased with the steam-to-biomass ratio increasing. This is due to the steam will enhance the water gas reaction in the gasification process. Based on the energy distribution analysis results, the energy yield was approximately 30%~50% produced from gaseous products in co-gasification of tested sludge. In the case of gasification temperature 800℃, the total energy recovery rate was approximately ranged from 31.59% to 50.91%. By increasing IS addition ratio, it could enhance the total energy recovery rate in co-gasification. The metals partitioning results indicated that the Cu, Zn, and Cr were partitioned in solid phase with an increase in IS addition ratio. However, Pb partitioning percentage of solid phase was decreasing with IS addition ratio increasing. The metals partitioning characteristics were affected by sludge and metals physicochemical properties. In summary, the basic characterization of sewage sludge and industrial wastewater sludge and their kinetic parameters during thermal process were established, but also the confirmation on performance of industrial wastewater sludge used as co-gasification material and feasibility of improving energy yield. Therefore, the results of this study could provide the good information for energy conversion technologies selection of organic sludge waste.
關鍵字(中) ★ 下水污泥
★ 氣化
★ 共同氣化
★ 廢水污泥
★ 重金屬分佈
關鍵字(英) ★ sewage sludge
★ gasification
★ co-gasification
★ industrial wastewater sludge
★ heavy metals partitioning
論文目次 誌謝 i
摘要 iii
Abstract v
目錄 vii
圖目錄 xi
表目錄 xv
第一章 前言 1
第二章 文獻回顧 5
2-1 台灣地區污泥現況分析 5
2-1-1 下水污泥現況分析 6
2-1-2 工業區廢水污泥現況分析 9
2-1-3 污泥再利用現況 9
2-2 氣化技術原理及應用 15
2-2-1 氣化反應階段之探討 16
2-2-2 氣化操作因子對產氣效率之影響 18
2-2-3 下水污泥共同氣化提昇產能效率之探討 26
2-3 蒸氣氣化產能效率之評估 30
2-3-1 蒸氣含量對蒸氣氣化之影響 34
2-3-2 原料含水率對蒸氣氣化之影響 36
2-4 催化劑對蒸氣氣化效率之影響 39
2-4-1 催化劑之種類與選擇 43
2-4-2 催化劑之反應機制 48
第三章 研究材料與方法 55
3-1 實驗材料 55
3-1-1 下水污泥 55
3-1-2 廢水污泥 56
3-2 實驗方法 57
3-2-1 實驗設備 57
3-2-2 試驗操作條件 59
3-2-3 試驗流程 61
3-2-4 動力學分析 62
3-3 分析項目及方法 65
3-3-1 下水污泥與廢水污泥基本特性分析 65
3-3-2 氣化產物分析 69
3-3-3 評估指標 74
第四章 結果與討論 77
4-1 原料基本物化特性 77
4-1-1 下水污泥之基本性質分析 77
4-1-2 廢水污泥之基本性質分析 80
4-2 下水污泥與廢水污泥之熱動力分析 83
4-2-1 熱重損失之分析結果 83
4-2-2 反應活性及活化能之分析結果 85
4-2-3 下水污泥與廢水污泥熱反應過程之氣相物種分析 107
4-3 廢水污泥與下水污泥共同氣化產能效率之評估 117
4-3-1 氣化反應操作穩定性分析 117
4-3-2 共同氣化之產氣組成變化影響 124
4-3-3 共同氣化之液相產物特性分析 138
4-3-4 共同氣化之固相產物特性分析 149
4-3-5 質量平衡 157
4-4 共同氣化之產能效率評估 166
4-4-1 共同氣化之合成氣特性分析 166
4-4-2 能量分佈特性 172
4-5 氣化產物之污染物分佈特性 177
4-5-1 氣化產物之氯分佈特性 177
4-5-2 氣化產物之重金屬分佈特性 181
第五章 結論與建議 197
5-1 結論 197
5-1-1 廢水污泥比例與反應條件對熱反應行為與活化能之影響結果 197
5-1-2 廢水污泥比例與S/B 對氣化產氣組成之影響結果 197
5-1-3 廢水污泥比例與S/B 對氣化產能效率提昇之影響結果 198
5-1-4 廢水污泥比例與S/B 對污染物分佈特性之影響 199
5-2 建議 200
參考文獻 201
附錄 217
附錄一 共同氣化之氣體組成變化(600℃, SS:IS=100:0, S/B=0) 217
附錄二 共同氣化之氣體組成變化(700℃, SS:IS=100:0, S/B=0) 218
附錄三 共同氣化之氣體組成變化(800℃, SS:IS=100:0, S/B=0) 219
附錄四 共同氣化之氣體組成變化(800℃, SS:IS=80:20, S/B=0) 220
附錄五 共同氣化之氣體組成變化(800℃, SS:IS=60:40, S/B=0) 221
附錄六 共同氣化之氣體組成變化(800℃, SS:IS=40:60, S/B=0) 222
附錄七 共同氣化之氣體組成變化(800℃, SS:IS=100:0, S/B=0.5) 223
附錄八 共同氣化之氣體組成變化(800℃, SS:IS=80:20, S/B=0.5) 224
附錄九 共同氣化之氣體組成變化(800℃, SS:IS=60:40, S/B=0.5) 225
附錄十 共同氣化之氣體組成變化(800℃, SS:IS=40:60, S/B=0.5) 226
附錄十一 共同氣化之氣體組成變化(800℃, SS:IS=100:0, S/B=1.0) 227
附錄十二 共同氣化之氣體組成變化(800℃, SS:IS=80:20, S/B=1.0) 228
附錄十三 共同氣化之氣體組成變化(800℃, SS:IS=60:40, S/B=1.0) 229
附錄十四 共同氣化之氣體組成變化(800℃, SS:IS=40:60, S/B=1.0) 230
參考文獻 Ahmad, A.A., Zawawi, N.A., Kasim, F.H., Inayat, A., Khasri, A., 2016. Assessing the gasification performance of biomass: A review on biomass gasification process conditions, optimization and economic evaluation. Renewable and Sustainable Energy Reviews, 53, 1333-1347.
Aydar, E., Gul, S., Unlu, N., Akgun, F., Livatyali, H., 2014. Effect of the type of gasifying agent on gas composition in a bubbling fluidized bed reactor. Journal of the Energy Institute, 87, 35-42.
Azadi, P., Afif, E., Foroughi, H., Dai, T., Azadi, F., Farnood, R., 2013. Catalytic reforming of activated sludge model compounds in supercritical water using nickel and ruthenium catalysts. Applied Catalysis B: Environmental, 134, 265-273.
Aznar, M.P., Caballero, M.A., Sancho, J.A., Frances, E., 2006. Plastic waste elimination by co-gasification with coal and biomass in fluidized bed with air in pilot plant. Fuel Processing Technology, 87(5), 409-420.
Calvo, L.F., Otero, M., Jenkins, B.M., Garc?a, A.I., Moran, A., 2004. Heating process characteristics and kinetics of sewage sludge in different atmospheres. Thermochimica Acta, 409(2), 127-135.
Campoy, M., Gomez-Barea, A., Villanueva, A.L., Ollero, P., 2008. Air-steam gasification of biomass in a fluidized bed under simulated autothermal and adiabatic conditions. Industrial & Engineering Chemistry Research, 47(16), 5957-5965.
Cao, J.P., Huang, X., Zhao, X.Y., Wang, B.S., Meesuk, S., Sato, K., Wei, X.Y., Takarada, T., 2014. Low-temperature catalytic gasification of sewage sludge-derived volatiles to produce clean H2-rich syngas over a nickel loaded on lignite char. International Journal of Hydrogen Energy, 39, 9193-9199.
Chiang, K.Y., Lin, Y.X., Lu, C.H., Chien, K.L., Lin, M.H., Wu, C.C., Ton, S.S., Chen, J.L., 2013a. Gasification of rice straw in an updraft gasifier using water purification sludge containing Fe/Mn as a catalyst. International Journal of Hydrogen Energy, 38(28), 12318-12324.
Chiang, K.Y., Lu, C.H., Lin, M.H., Chien, K.L., 2013b. Reducing tar yield in gasification of paper-reject sludge by using a hot-gas cleaning system. Energy, 50, 47-53.
Chiang, K.Y., Lu, C.H., Liao, C.K., Ger, R.H.R., 2016. Characteristics of hydrogen energy yield by co-gasified of sewage sludge and paper-mill sludge in a commercial scale plant. International Journal of Hydrogen Energy, 41(46), 21641-21648.
Choi, Y.K., Cho, M.H., Kim, J.S., 2015. Steam/oxygen gasification of dried sewage sludge in a two-stage gasifier: Effects of the steam to fuel ratio and ash of the activated carbon on the production of hydrogen and tar removal. Energy, 91, 160-167.
Claude, V., Courson, C., Ko?hler, M., Lambert, S.D., 2016. Overview and essentials of biomass gasification technologies and their catalytic cleaning methods. Energy & Fuels, 30(11), 8791-8814.
Coats, A., Redfern, J., 1964. Kinetics parameters from thermogravimetric data. Nature 201, 68-69.
de Andres, J.M., Narros, A., Rodriguez, M.E., 2011. Air-steam gasification of sewage sludge in a bubbling bed reactor: Effect of alumina as a primary catalyst. Fuel Processing Technology, 92, 433-440.
de Andres, J.M., Roche, E., Narros, A., Rodriguez, M.E., 2016. Characterisation of tar from sewage sludge gasification. Influence of gasifying conditions: Temperature, throughput, steam and use of primary catalysts. Fuel, 180, 116-126.
de Lasa, H., Salaices, E., Mazumder, J., Lucky, R., 2011. Catalytic steam gasification of biomass: catalysts, thermodynamics and kinetics. Chemical Reviews, 111(9), 5404-5433.
Detournay, M., Hemati, M., Andreux, R., 2011. Biomass steam gasification in fluidized bed of inert or catalytic particles: Comparison between experimental results and thermodynamic equilibrium predictions. Powder Technology, 208(2), 558-567.
Di Felice, L., Courson, C., Niznansky, D., Foscolo, P.U., Kiennemann, A., 2010. Biomass gasification with catalytic tar reforming: a model study into activity enhancement of calcium-and magnesium-oxide-based catalytic materials by incorporation of iron. Energy & Fuels, 24(7), 4034-4045.
Ding, L., Zhang, Y., Wang, Z., Huang, J., Fang, Y., 2014. Interaction and its induced inhibiting or synergistic effects during co-gasification of coal char and biomass char. Bioresource Technology, 173, 11-20.
Doranehgard, M.H., Samadyar, H., Mesbah, M., Haratipour, P., Samiezade, S., 2017. High-purity hydrogen production with in situ CO2 capture based on biomass gasification. Fuel, 202, 29-35.
Dufour, A., Celzard, A., Fierro, V., Martin, E., Broust, F., Zoulalian, A., 2008. Catalytic decomposition of methane over a wood char concurrently activated by a pyrolysis gas. Applied Catalysis A: General, 346(1), 164-173.
El-Rub, A., Kamel, Z.Y., 2008. Biomass char as an in-situ catalyst for tar removal in gasification systems. University of Twente.
El-Rub, Z.A., Bramer, E.A., Brem, G., 2004. Review of catalysts for tar elimination in biomass gasification processes. Industrial & Engineering Chemistry Research, 43(22), 6911-6919.
Ergun, S. 1952, Fluid flow through packed columns, Chemical Engineering Progress, Vol. 48, pp. 89-94.
Erkiaga, A., Lopez, G., Amutio, M., Bilbao, J., Olazar, M., 2014. Influence of operating conditions on the steam gasification of biomass in a conical spouted bed reactor. Chemical Engineering Journal, 237, 259-267.
Farzad, S., Mandegari, M.A., Gorgens, J.F., 2016. A critical review on biomass gasification, co-gasification, and their environmental assessments. Biofuel Research Journal, 3(4), 483-495.
Freda, C., Cornacchia, G., Romanelli, A., Valerio, V., Grieco, M., 2018. Sewage sludge gasification in a bench scale rotary kiln. Fuel, 212, 88-94.
Fremaux, S., Beheshti, S.M., Ghassemi, H., Shahsavan-Markadeh, R., 2015. An experimental study on hydrogen-rich gas production via steam gasification of biomass in a research-scale fluidized bed. Energy Conversion and Management, 91, 427-432.
Gai, C., Guo, Y., Liu, T., Peng, N., Liu, Z., 2016. Hydrogen-rich gas production by steam gasification of hydrochar derived from sewage sludge. International Journal of Hydrogen Energy, 41(5), 3363-3372.
Gershman, B., 2013. Gasification of Non-Recycled Plastics from Municipal Solid Waste in the United States. Gershman, Brickner & Bratton, Inc. / 12038-01.
Gil-Lalaguna, N., Sanchez, J.L., Murillo, M.B., Rodriguez, E., Gea, G., 2014. Air–steam gasification of sewage sludge in a fluidized bed. Influence of some operating conditions. Chemical Engineering Journal, 248, 373-382.
Gorgec, A.G., Insel, G., Ya?ci, N., Do?ru, M., Erdincler, A., Sanin, D., Filibeli, A Keskinler, B., 2016. Comparison of energy efficiencies for advanced anaerobic digestion, incineration, and gasification processes in municipal sludge management. Journal of Residuals Science & Technology, 13(1), 57-64.
Gonzalez, J.F., Roman, S., Bragado, D., Calderon, M., 2008. Investigation on the reactions influencing biomass air and air/steam gasification for hydrogen production. Fuel Processing Technology, 89, 764-772.
Guan, G., Kaewpanha, M., Hao, X., Abudula, A., 2016. Catalytic steam reforming of biomass tar: Prospects and challenges. Renewable and Sustainable Energy Reviews, 58, 450-461.
Hamad, M.A., Radwan, A.M., Heggo, D.A., Moustafa, T., 2016. Hydrogen rich gas production from catalytic gasification of biomass. Renewable Energy, 85, 1290-1300.
Han, L., Zhang, Y., Lin, K., Jia, X., Zhang, H., Zhong, Y., Wang, Q., Li, Z., 2017. Developing a novel CaO-based sorbent for promoted CO2 capture and tar reduction. Energy & Fuels, 31(5), 5306-5317.
He, M., Xiao, B., Hu, Z., Liu, S., Guo, X., Luo, S., 2009. Syngas production from catalytic gasification of waste polyethylene: influence of temperature on gas yield and composition. International Journal of Hydrogen Energy, 34(3), 1342-1348.
Hernandez, J.J., Aranda, G., Bula, A., 2010. Gasification of biomass wastes in an entrained flow gasifier: Effect of the particle size and the residence time. Fuel Processing Technology, 91, 681-692.
Hernandez, J.J., Aranda, G., Barba, J., Mendoza, J.M., 2012. Effect of steam content in the air–steam flow on biomass entrained flow gasification. Fuel Processing Technology, 99, 43-55.
Hernandez, J.J., Ballesteros, R., Aranda, G., 2013. Characterisation of tars from biomass gasification: Effect of the operating conditions. Energy. 50, 333-342.
Hognon, C., Dupont, C., Grateau, M., Delrue, F., 2014. Comparison of steam gasification reactivity of algal and lignocellulosic biomass: Influence of inorganic elements. Bioresource Technology, 164, 347-353.
Howaniec, N., Smoli?ski, A., 2013. Steam co-gasification of coal and biomass - Synergy in reactivity of fuel blends Chars. International Journal of Hydrogen Energy, 38(36), 16152-16160.
Howaniec, N., Smoli?ski, A., 2014. Effect of fuel blend composition on the efficiency of hydrogen-rich gas production in co-gasification of coal and biomass. Fuel, 128, 442-450.
Hu, M., Gao, L., Chen, Z., Ma, C., Zhou, Y., Chen, J., Ma, S., Laghari, M., Xiao, B., Zhang, B., Guo, D., 2016. Syngas production by catalytic in-situ steam co-gasification of wet sewage sludge and pine sawdust. Energy Conversion and Management, 111, 409-416.
Huang, B.S., Chen, H.Y., Chuang, K.H., Yang, R.X., Wey, M.Y., 2012. Hydrogen production by biomass gasification in a fluidizedbed reactor promoted by an Fe/CaO catalyst. International Journal of Hydrogen Energy, 37, 6511-6518.
Jayaraman, K., Gokalp, I., 2015. Pyrolysis, combustion and gasification characteristics of miscanthus and sewage sludge. Energy Conversion and Management, 89, 83-91.
Jeong, H.J., Park, S.S., Hwang, J., 2014. Co-gasification of coal–biomass blended char with CO2 at temperatures of 900–1100℃. Fuel, 116, 465-470.
Jiang, L.B., Yuan, X.Z., Li, H., Chen, X.H., Xiao, Z.H., Liang, J., Leng, L.J., Guo, Z., Zeng, G.M., 2016. Co-pelletization of sewage sludge and biomass: Thermogravimetric analysis and ash deposits. Fuel Processing Technology, 145, 109-115.
Kajitani, S., Zhang, Y., Umemoto, S., Ashizawa, M., Hara, S., 2009. Co-gasification reactivity of coal and woody biomass in hightemperature gasification. Energy Fuels, 24(1), 145-151.
Karimi, A., Semagina, N., Gray, M.R., 2011. Kinetics of catalytic steam gasification of bitumen coke. Fuel, 90(3), 1285-1291.
Kistler, R.C., Widmer, F., Brunner, P.H., 1987. Behavior of chromium, nickel, copper, zinc, cadmium, mercury, and lead during the pyrolysis of sewage sludge. Environmental Science & Technology, 21(7), 704-708.
Klinghoffer, N.B., Castaldi, M.J., Nzihou, A., 2012. Catalyst properties and catalytic performance of char from biomass gasification. Industrial & Engineering Chemistry Research, 51(40), 13113-13122.
Li, H., Chen, Z., Huo, C., Hu, M., Guo, D., Xiao, B., 2015. Effect of bioleaching on hydrogen-rich gas production by steam gasification of sewage sludge. Energy Conversion and Management, 106, 1212-1218.
Lin, K.S., Chowdhury, S., Shen, C.C., Yeh, C.T., 2008. Hydrogen generation by catalytic gasification of motor oils in an integrated fuel processor. Catalysis Today, 136(3-4), 281-290.
Lin, K.S., Chowdhury, S., Wang, Z.P., 2010. Catalytic gasification of automotive shredder residues with hydrogen generation. Journal of Power Sources, 195(18), 6016-6023.
Liu, H., Zhang, Q., Hu, H., Li, A., Yao, H., 2014. Influence of residual moisture on deep dewatered sludge pyrolysis. International Journal of Hydrogen Energy, 39(3), 1253-1261.
Liu, Z.S., Lin, C.L., Chang, T.J., Weng, W.C., 2016. Waste-gasification efficiency of a two-stage fluidized-bed gasification system. Waste Management, 48, 250-256.
Lu, C.H., Chiang, K.Y., 2017. Gasification of non-recycled plastic packaging material containing aluminum: Hydrogen energy production and aluminum recovery. International Journal of Hydrogen Energy, 42(45), 27532-27542.
Martos, C., Dufour, J., Ruiz, A., 2009. Synthesis of Fe3O4 - based catalysts for the high-temperature water gas shift reaction. International Journal of Hydrogen Energy, 34(10), 4475-4481.
Matsuoka, K., Shimbori, T., Kuramoto, K., Hatano, H., Suzuki, Y., 2006. Steam reforming of woody biomass in a fluidized bed of iron oxide-impregnated porous alumina. Energy & Fuels, 20(6), 2727-2731.
Mohammed, M.A.A., Salmiaton, A., Azlina, W.W., Amran, M.M., Fakhru’l-Razi, A., 2011. Air gasification of empty fruit bunch for hydrogen-rich gas production in a fluidized-bed reactor. Energy Conversion and Management, 52(2), 1555-1561.
Molino, A., Chianese, S., Musmarra, D., 2016. Biomass gasification technology: The state of the art overview. Journal of Energy Chemistry, 25(1), 10-25.
Moon, J., Mun, T.Y., Yang, W., Lee, U., Hwang, J., Jang, E., Choi, C., 2015. Effects of hydrothermal treatment of sewage sludge on pyrolysis and steam gasification. Energy Conversion and Management, 103, 401-407.
Mostafavi, E., Mahinpey, N., Rahman, M., Sedghkerdar, M.H., Gupta, R., 2016. High-purity hydrogen production from ash-free coal by catalytic steam gasification integrated with dry-sorption CO2 capture. Fuel, 178, 272-282.
Mun, T.Y., Kim, J.S., 2013. Air gasification of dried sewage sludge in a two-stage gasifier. Part 2: Calcined dolomite as a bed material and effect of moisture content of dried sewage sludge for the hydrogen production and tar removal. International Journal of Hydrogen Energy, 38, 5235-5242.
Murakami, T., Suzuki, Y., Nagasawa, H., Yamamoto, T., Koseki, T., Hirose, H., Okamoto, S., 2009. Combustion characteristics of sewage sludge in an incineration plant for energy recovery. Fuel Processing Technology, 90(6), 778-783.
Narobe, M., Golob, J., Klinar, D., Franceti?, V., Likozar, B., 2014. Cogasification of biomass and plastics: pyrolysis kinetics studies, experiments on 100 kW dual fluidized bed pilot plant and development of thermodynamic equilibrium model and balances. Bioresource Technology, 162, 21-29.
Nemanova, V., Abedini, A., Liliedahl, T., Engvall, K., 2014. Cogasification of petroleum coke and biomass. Fuel, 117, 870-875.
Nilsson, S., Gomez-Barea, A., Ollero, P., 2013. Gasification of char from dried sewage sludge in fluidized bed: Reaction rate in mixtures of CO2 and H2O. Fuel, 105, 764-768.
Nipattummakul, N., Ahmed, I., Kerdsuwan, S., Gupta, A.K., 2010a. High temperature steam gasification of waste water sludge. Applied Energy, 87, 3729-3734.
Nipattummakul, N., Ahmed, I., Kerdsuwan, S., Gupta, A.K., 2010b. Hydrogen and syngas production from sewage sludge via steam gasification. Hydrogen Energy, 35, 11738-11745.
Nipattummakul, N., Ahmed, I., Kerdsuwan, S., Gupta, A.K., 2012. Steam gasification of oil palm trunk waste for clean syngas production. Applied Energy, 92, 778-782.
Nordgreen, T., Liliedahl, T., Sjostrom, K., 2006. Metallic iron as a tar breakdown catalyst related to atmospheric, fluidized bed gasification of biomass. Fuel, 85(5), 689-694.
Nordgreen, T., Nemanova, V., Engvall, K., Sjostrom, K., 2012. Iron-based materials as tar depletion catalysts in biomass gasification: Dependency on oxygen potential. Fuel, 95, 71-78.
Pan, Y.G., Velo, E., Roca, X., Manya, J.J., Puigjaner, L., 2000. Fluidized bed co-gasification of residual biomass/poor coal blends for fuel gas production. Fuel, 79(11), 1317-1326.
Parthasarathy, P., Narayanan, K.S., 2014. Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield-A review. Renewable Energy, 66, 570-579.
Peng, L., Wang, Y., Lei, Z., Cheng, G., 2012. Co-gasification of wet sewage sludge and forestry waste in situ steam agent. Bioresource technology, 114, 698-702.
Qian, L., Wang, S., Xu, D., Guo, Y., Tang, X., Wang, L., 2016. Treatment of municipal sewage sludge in supercritical water: A review. Water Research, 89, 118-131.
Ramos, A., Monteiro, E., Silva, V., Rouboa, A., 2018. Co-gasification and recent developments on waste-to-energy conversion: A review. Renewable and Sustainable Energy Reviews, 81, 380-398.
Rizkiana, J., Guan, G., Widayatno, W.B., Hao, X., Li, X., Huang, W., Abudula, A., 2014a. Promoting effect of various biomass ashes on the steam gasification of low-rank coal. Applied Energy, 133, 282-288.
Rizkiana, J., Guan, G., Widayatno, W.B., Hao, X., Huang, W., Tsutsumi, A., Abudula, A., 2014b. Effect of biomass type on the performance of cogasification of low rank coal with biomass at relatively low temperatures. Fuel, 134, 414-419.
Roche, E., de Andres, J.M., Narros, A., Rodriguez, M.E., 2014. Air and air-steam gasification of sewage sludge. The influence of dolomite and throughput in tar production and composition. Fuel, 115, 54-61.
Salbidegoitia, J.A., Fuentes-Ordonez, E.G., Gonzalez-Marcos, M.P., Gonzalez-Velasco, J.R., Bhaskar, T., Kamo, T., 2015. Steam gasification of printed circuit board from e-waste: Effect of coexisting nickel to hydrogen production. Fuel Processing Technology, 133, 69-74.
Saw, W., McKinnon, H., Gilmour, I., Pang, S., 2012. Production of hydrogen-rich syngas from steam gasification of blend of biosolids and wood using a dual fluidized bed gasifier. Fuel, 93, 473-478.
Schmid, J.C., Wolfesberger, U., Koppatz, S., Pfeifer, C., Hofbauer, H., 2012. Variation of Feedstock in a Dual Fluidized Bed Steam Gasifier-Influence on Product Gas, Tar Content, and Composition. Environmental Progress & Sustainable Energy, 31, 205-215.
Seggiani, M., Vitolo, S., Puccini, M., Bellini, A., 2012. Cogasification of sewage sludge in an updraft gasifier. Fuel, 93, 486-491.
Serrano, D., Kwapinska, M., Horvat, A., Sanchez-Delgado, S., Leahy, J.J., 2016. Cynara cardunculus L. gasification in a bubbling fluidized bed: The effect of magnesite and olivine on product gas, tar and gasification performance. Fuel, 173, 247-259.
Sharma, A., Matsumura, A., Takanohashi, T., 2015. Effect of CO2 addition on gas composition of synthesis gas from catalytic gasification of low rank coals. Fuel, 152, 13-18.
Shen, Y., 2015. Chars as carbonaceous adsorbents/catalysts for tar elimination during biomass pyrolysis or gasification. Renewable and Sustainable Energy Reviews, 43, 281-295.
Shen, Y., Wang, J., Ge, X., Chen, M., 2016. By-products recycling for syngas cleanup in biomass pyrolysis–An overview. Renewable and Sustainable Energy Reviews, 59, 1246-1268.
Sikarwar, V.S., Ji, G., Zhao, M., Wang, Y., 2017. Equilibrium Modeling of Sorption-Enhanced Cogasification of Sewage Sludge and Wood for Hydrogen-Rich Gas Production with in Situ Carbon Dioxide Capture. Industrial & Engineering Chemistry Research, 56(20), 5993-6001.
Stri?gas, N., Valin?ius, V., Pedi?ius, N., Po?kas, R., Zakarauskas, K., 2017. Investigation of sewage sludge treatment using air plasma assisted gasification. Waste Management, 64, 149-160.
Sun, Y., Liu, Q., Wang, H., Zhang, Z., Wang, X., 2017. Role of steel slags on biomass/carbon dioxide gasification integrated with recovery of high temperature heat. Bioresource Technology, 223, 1-9.
?wierczy?ski, D., Libs, S., Courson, C., Kiennemann, A., 2007. Steam reforming of tar from a biomass gasification process over Ni/olivine catalyst using toluene as a model compound. Applied Catalysis B: Environmental, 74(3), 211-222.
Syed-Hassan, S. S. A., Wang, Y., Hu, S., Su, S., Xiang, J., 2017. Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations. Renewable and Sustainable Energy Reviews, 80, 888-913.
Tang, Q., Bian, H., Ran, J., Zhu, Y., Yu, J., Zhu, W., 2015. Hydrogen-Rich Gas Production from Steam Gasification of Biomass using CaO and a Fe-Cr Water-Gas Shift Catalyst. Bioresources, 10(2), 2560-2569.
Tessier, A., Campbell, P.G., Bisson, M., 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844-851.
Theofanidis, S.A., Batchu, R., Galvita, V.V., Poelman, H., Marin, G.B., 2016. Carbon gasification from Fe–Ni catalysts after methane dry reforming. Applied Catalysis B: Environmental, 185, 42-55.
Theofanidis, S.A., Galvita, V.V., Poelman, H., Marin, G.B., 2015. Enhanced carbon-resistant dry reforming Fe-Ni catalyst: role of Fe. ACS Catalysis, 5(5), 3028-3039.
Thomsen, T.P., Sarossy, Z., Gobel, B., Stoholm, P., Ahrenfeldt, J., Frandsen, F.J., Henriksen, U.B., 2017. Low temperature circulating fluidized bed gasification and co-gasification of municipal sewage sludge. Part 1: Process performance and gas product characterization. Waste Management, 66, 123-133.
Tyagi, V.K., Lo, S.L., 2013. Sludge: A waste or renewable source for energy and resources recovery?. Renewable and Sustainable Energy Reviews, 25, 708-728.
Uddin, M.A., Tsuda, H., Wu, S., Sasaoka, E., 2008. Catalytic decomposition of biomass tars with iron oxide catalysts. Fuel, 87(4), 451-459.
Wang, D., Yuan, W., Ji, W., 2011. Char and char-supported nickel catalysts for secondary syngas cleanup and conditioning. Applied Energy, 88(5), 1656-1663.
Wang, L., Li, D., Koike, M., Koso, S., Nakagawa, Y., Xu, Y., Tomishige, K., 2011. Catalytic performance and characterization of Ni-Fe catalysts for the steam reforming of tar from biomass pyrolysis to synthesis gas. Applied Catalysis A: General, 392(1), 248-255.
Wang, Z., Hong, C., Xing, Y., Li, Y., Feng, L., Jia, M., 2018. Combustion behaviors and kinetics of sewage sludge blended with pulverized coal: With and without catalysts. Waste Management, 74, 288-296.
Werle, S., 2014. Impact of feedstock properties and operating conditions on sewage sludge gasification in a fixed bed gasifier. Waste Management & Research, 32, 954-960.
Werle, S., Dudziak, M., 2014. Gaseous fuels production from dried sewage sludge via air gasification. Waste Management & Research, 32, 601-607.
Xie, L.P., Li, T., Gao, J.D., Fei, X.N., Wu, X., Jiang, Y.G., 2010. Effect of moisture content in sewage sludge on air gasification. Fuel Chemistry and Technology, 38, 615-620.
Xiong, S., Zhuo, J., Zhang, B., Yao, Q., 2013. Effect of moisture content on the characterization of products from the pyrolysis of sewage sludge. Journal of Analytical and Applied Pyrolysis, 104, 632-639.
Xu, C.C., Donald, J., Byambajav, E., Ohtsuka, Y., 2010. Recent advances in catalysts for hot-gas removal of tar and NH3 from biomass gasification. Fuel, 89(8), 1784-1795.
Yan, F., Luo, S.Y., Hu, Z.Q., Xiao, B., Cheng, G., 2010. Hydrogen-rich gas production by steam gasification of char from biomass fast pyrolysis in a fixed-bed reactor: Influence of temperature and steam on hydrogen yield and syngas composition. Bioresource Technology, 101(14), 5633-5637.
Yao, D., Hu, Q., Wang, D., Yang, H., Wu, C., Wang, X., Chen, H., 2016. Hydrogen production from biomass gasification using biochar as a catalyst/support. Bioresource Technology, 216, 159-164.
Yao, Z., Ma, X., Wu, Z., Yao, T., 2017. TGA–FTIR analysis of co-pyrolysis characteristics of hydrochar and paper sludge. Journal of Analytical and Applied Pyrolysis, 123, 40-48.
Zab?ocka-Malicka, M., Rutkowski, P., Szczepaniak, W., 2015. Recovery of copper from PVC multiwire cable waste by steam gasification. Waste Management, 46, 488-496.
Zeng, J., Xiao, R., Zhang, H., Chen, X., Zeng, D., Ma, Z., 2017. Syngas production via biomass self-moisture chemical looping gasification. Biomass and Bioenergy, 104, 1-7.
Zhang, S., Asadullah, M., Dong, L., Tay, H.L., Li, C.Z., 2013. An advanced biomass gasification technology with integrated catalytic hot gas cleaning. Part II: Tar reforming using char as a catalyst or as a catalyst support. Fuel, 112, 646-653.
Zhang, X., Li, Y., Li, G., Hu, C., 2015. Preparation of Fe/activated carbon directly from rice husk pyrolytic carbon and its application in catalytic hydroxylation of phenol. RSC Advances, 5(7), 4984-4992.
Zhou, L., Wang, Y., Huang, Q., Cai, J., 2006. Thermogravimetric characteristics and kinetic of plastic and biomass blends co-pyrolysis. Fuel Processing Technology, 87(11), 963-969.
Zhu, M., Wachs, I.E., 2015. Iron-based catalysts for the high-temperature water–gas shift (HT-WGS) reaction: A review. ACS Catalysis, 6(2), 722-732.
王俊傑,李雙安,林華鈞,簡長清,王鯤生,KOH活化法對下水污泥製備吸附劑之影響,中華民國環境工程學會2008年廢棄物處理技術研討會,台北,2008。
內政部營建署,第五期下水道建設計畫下水污泥減量和再利用整體規劃與再利用管理辦法說明,內政部營建署,2015。
內政部營建署,全國公共污水處理廠資料管理系統,網址:http://sewagework.cpami.gov.tw/report/SewageWorkerYearReportI.aspx,網頁擷取日期:2016年12月。
行政院環境保護署,事業廢棄物申報管理系統,重點事業廢棄物產出及清理流向,網址:http://waste.epa.gov.tw/prog/IndexFrame.asp?Func=5,網頁擷取日期:2018年3月。
江康鈺,臺中市下水污泥處理再利用先期規劃委託專業服務案期末修正稿,臺中市政府水利局委託研究報告,2014。
江康鈺,陳雅馨,葛家賢,呂承翰,都市下水污泥轉換能源技術之回顧與評析,工業污染防治,Vol. 128,pp.31-64,2014。
江康鈺,簡聖?,呂承翰,姚彥丞,應用催化裂解技術轉換下水污泥為生質油之可行性研究,中華民國環境工程學會2015年廢棄物處理技術研討會,桃園,2015。
江康鈺,廖雋凱,呂承翰,催化劑對生質物氣化過程能源產率提升之影響探討,工業污染防治,Vol. 139,pp.93-119,2017。
胡雁翠,許國恩,朱敬平,污泥灰分組成分析與材料化再利用可行性探討,2016年綠色技術與工程實務研討會,2016。
黃聖賢,下水道污泥資源化再利用及處理處置技術探討,2007年台灣下水道工程實務研討會論文集,pp.47-57,2007。
程淑芬,下水道污泥含磷調查及最佳磷回收量之研究,內政部營建署下水道工程處,2013。
翁王昌,姚梓浩,何昌祐,邱正旻,林秋良,不同操作條件下廢棄物氣化過程之合成氣組成影響,中華民國環境工程學會2016年廢棄物處理技術研討會,台南,2016。
經濟部能源局,2012年能源產業技術白皮書,2012。
經濟部工業局,網頁資料,網址:http://proj.tgpf.org.tw/riw/index.asp,網頁擷取日期:2018年3月。
經濟部工業局觀音工業區服務中心,網頁資料,網址:https://www.moeaidb.gov.tw/iphw/kuangin/index.do?id=06,網頁擷取日期:2018年3月。
臺北市政府工務局衛生下水道工程處,網頁資料,網址:http://www.sso.gov.taipei/News_Content.aspx?n=AACA1DD3515C73D7&sms=C4B1D81C0A0892E0&s=4442E9C0B5609CB5,網頁擷取日期:2018年3月。
戴華山,黃建智,杜世彬,都市污水廠二級污泥燒結資源化之研究,中華民國環境工程學會2010年廢棄物處理技術研討會,屏東,2010。
顏美玉,工業區污水處理廠污泥再利用之探討,碩士論文,國立中興大學環境工程學系所,台中,2008。
顏慧敏,李孟翰,陳志偉,於望聖,孫世勤,朱敬平,台灣都市污水處理廠污泥減量與資源再利用推動現況,2014亞太城市建設實務論壇論文集,pp.80-86,2014。
指導教授 江康鈺(Kung-Yuh Chiang) 審核日期 2018-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明