參考文獻 |
[1] J. Akiyama, Three developing topics in graph theory, Doctoral Dissertation,
University of Tokyo, 1980.
[2] J. Akiyama and M. Kano, Path factors of a graph, in: F. Harary and J.
Maybee, eds., Graphs and Aplications: Proc. First Colorado Sympos. on
Graph Theory(Wiley, New York, 1985),1-21.
[3] J. Akiyama, G. Exoo and F. Harary, Covering and packing in graphs III:
cyclic and acyclic invariants, Math. Slovaca 30 (1980),405-417.
[4] I. Algor and N. Alon, The Star Arboricity of Graphs, Discrete Math. 75
(1989), 11-22.
[5] N. Alon, C. McDiarmid and B. Reed, Star arboricity, Combinatorica 12
(1992), 375-380.
[6] B. Alspach and H. Gavlas, Cycle decompositions of Kn and Kn − I, J.
Combin. Theory Ser.B 81 (2001),77-99.
[7] B. Alspach, H. Gavlas, M. ˇ Sajna and H. Verrall, Cycle decompositions.
IV. Complete directed graphs and fixed length directed cycles, J. Combin.
Theory Ser.A 103 (2003),165-208.
[8] Y. Aoki, The star-arboricity of the complete regular multipartite graphs,
Discrete Math. 81 (1990),115-122.
[9] D. Archdeacon, M. Debowsky, J. Dinitz and H. Gavlas, Cycle systems
in the complete bipartite graph minus a one-factor, Discrete Math. 284
(2004),37-43.
[10] L. W. Beineke, Graph decompositions, Congr. Num. 115 (1996),213-226.
[11] J. C. Bermond and D. Sotteau, Graph decompositions and G-designs,
Fifth British Combinatorial Conf., Aberdeen Congr. Num. XV (1975),53-
72.
[12] J. C. Bermond, K. Heinrich and M.-L. Yu, Existence of resolvable path
designs, Europ. J. Combinatorics 11 (1990),205-211.
[13] J. C. Bermond, Cycles dans les graphes et G-configurations, Thesis, University
of Paris XI (Orsay), Paris (1975).
[14] J. A. Bondy, Basic Graph Theory: Paths and Circuits, in Handbook of
Combinatorics, Vol.1, Amsterdam, Elsevier, 1995.
[15] J. Bos´ak, Decompositions of Graphs, Kluwer, Dordrecht, Netherlands,
(1990).
[16] D. De Caen and D. G. Hoffman, Impossibility of decomposing the complete
graph on n points into n − 1 isomorphic complete bipartite graphs,
SIAM J. Discrete. Math. 2 (1989),48-50.
[17] N. J. Cavenagh, Decompositions of complete tripartite graphs into kcycles,
Australas. J. Combin. 18 (1998)193-200.
[18] N. J. Cavenagh and E. J. Billington, Decompositions of complete multipartite
graphs into cycles of even length, Graphs. Combin. 16 (2000)49-65.
[19] G. J. Chang, B. L. Chen, H. L. Fu, K. C. Huang, Linear k-arboricities on
trees, Discrete Appl. Math. 103 (2000),281-287.
[20] B. L. Chen, K. C. Huang, On the linear k-arboricity of Kn and Kn,n,
Discrete Math. 254 (2002),51-61.
[21] L. Chiang, J.-J. Lin, Cycle decompositions of Crowns, Discrete Math. 220
(2000),251-255.
[22] F. R. K. Chung, G. L. Graham, Recent advances in graph decomposition,
in: H. N. V. Temperley(Ed.), Proceeding of the Eighth British Combinatorial
Conference(University College, Swansea, 1981) London Mathematic
Society Lecture Notes 52, Cambridge University Press, Cambridge,
(1981), 103-124.
[23] M. Debowsky, Results on planar hypergraphs and on cycle decompositions,
Master’s Thesis, University of Vermont (2002).
[24] B. Du, K1,p2 -factorization of complete bipartite graphs, discrete Math.
187 (1998),273-279.
[25] Y. Egawa, M. Urabe, T. Fukuda and S. Nagoya, A decomposition of complete
bipartite graphs into edge-disjoint subgraphs with star components,
Discrete Math. 58 (1986), 93-95.
[26] N. Enomoto, T. Miyamoto and K. Ushio, Ck-factorization of complete
bipartite graphs, Graph Comb. 4 (1988),111-113.
[27] O. Favaron and M. Kouider, Path partitions and cycle partitions of Eulerian
graphs of maximum degree 4, Stud. Sci. Math. Hung. 23 (1988),237-
244.
[28] H. Fleischner, Eulerian graphs and related topics, Part 1,Vol. 1,Ann. Discrete
Math. 45 Amsterdam, North-Holland (1990).
[29] H. Fleischner, Eulerian graphs and related topics, Part 1,Vol. 2,Ann. Discrete
Math. 50 Amsterdam, North-Holland (1991).
[30] M. Habib, P. Peroche, Some problems about linear arboricity, Discrete
Math. 41 (1982),219-220.
[31] R. Haggkvist, A lemma on cycle decompositions, Ann. Discrete Math. 27
(1985),227-232.
[32] R. Haggkvist, Factors and path decompositions, Research report, No 13,
Dept. Math., Umea University. (2001).
[33] S. L. Hakimi, J. Mitchem and E. Schmeichel, Star Arboricity of Graphs,
Discrete Math. 149 (1996),93-98.
[34] H. Hanani, Balanced incomplete block designs, Discrete Math. 4
(1975),255-369.
[35] F. Harary, Covering and packing in graphs I, Ann. New York Acad. Sci.
175 (1970)198-205.
[36] K. Heinrich, J. Liu and M. Yu, P4-decompositions of regular graphs, J.
Graph Theory 31 (1999),135-143.
[37] K. Heinrich, J. Liu and C.Q. Zhang, Triangle-free circuit decompositions
and Petersen minors, J. Combin. Theory, Ser. B 72 (1998),197-207.
[38] A. W. Hilton, C. A. Rodger, Hamiltonian decompositions of complete
regular s-partite graphs, Discrete Math. 58(1986),63-78.
[39] J. D. Horton, Resolvable path designs, J. Combin. Theory, Ser. A 39
(1985),117-131.
[40] C. Huang, On Handcuffed designs, Research Report CORR75-10, University
of Waterloo.
[41] C. Huang and A. Rosa, On the existence of balanced bipartite designs,
Utilitas Math. 4 (1973)55-75.
[42] C. Huang, On the existence of balanced bipartite designs II, Discrete
Math. 9 (1974)147-159.
[43] C. Huang, Resolvable balanced bipartite designs, Discrete Math. 14
(1976),319-335.
[44] S. H. Y. Hung and N. S. Mendelsohn, Handcuffed designs, Discrete Math.
18 (1977),23-33.
[45] B. W. Jackson, Some cycle decompositions of complete graphs, Journal
of Combinatorics, Information and System Sciences 13 (1988),20-32.
[46] M. S. Jacobson, M. Truszczy´nski, and Z. Truza, Decompositions of regular
bipartite graphs, Discrete Math. 89 (1991),17-27.
[47] A. Kotzig, From the theory of finite regular graphs of degree three and
four, ˇ Casopis Pˇest Mat 82 (1957),76-92.
[48] M. Kouider and Z. Lonc, Path decompositions and perfect path double
covers, Australa. J. Combin. 19 (1999),261-274.
[49] C. S. Kumar, On P4−decomposition of graphs, Taiwanese J. of Math. 7
(2003),657-664.
[50] R. Laskar, B. Auerback, On decomposition of r-partite graphs into edgedisjoint
Hamilton circuits, Discrete Math.14 (1976),265-268. |