博碩士論文 89342001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:88 、訪客IP:18.217.204.181
姓名 王仁佐(Ren-Zuo Wang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 向量式結構運動分析
(Vector Form Motion Anylysis of Structure)
相關論文
★ 貼片補強構件之層間應力分析★ 軌道不整檢測及識別方法
★ 混凝土結構分析之三維等效單軸組成材料模型★ 卵形顆粒法向與切向接觸之等效線性彈簧值之推導與驗證
★ 以四面體離散化多面體系統之接觸分析與模擬★ 軌道車輛三維動態脫軌係數之在線量測理論
★ 向量式DKMT厚殼元推導與模擬★ 向量式預力混凝土二維剛架元之數值模擬與驗證
★ 向量式有限元應用於懸索橋非線性動力分析★ 蛋形顆粒群之流固耦合分析
★ 複合版梁元素分析模型之橋梁動態識別法★ 三維等效單軸應變與應力之材料組成模型
★ 人行吊橋的現有內力評估及動力分析★ 薄殼結構非線性運動之向量式有限元分析法
★ 雷射掃描技術於鋼軌磨耗之檢測★ 動態加載下的等效單軸應變與 應力材料組成模型
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文根據向量式有限元(Vector Form Intrinsic Finite Element,(VFIFE)),簡稱V-5的基本理論,推導可完整且有效模擬結構大變形運動之方法。探討之內容根據結構元型式區分為平面桁架元與剛架元,以及空間桁架元與剛架元四種型式,此外也將材料彈塑性模型納入平面剛架元程序中並探討結構元間撞擊與接觸判斷及碎裂等問題,更進ㄧ歩應用於高壓管路揮擊問題之模擬分析。
此一新的計算方法之基本觀念,乃是將結構體離散為有限個質點之集合,毎個質點的獨立運動則依循由牛頓運動定律,再結合移動式基礎架構(convected material reference frame)與虛構反向剛體運動(fictitious reversed rigid body motion)的作用下,可定出隨體之變形座標(deformation coordinate)系統來合理求出結構元之內力,此些結構元內力滿足靜力平衡,並且將會約束質點之運動。V-5結構元節點與質點彼此的接合型式,可以是剛接、鉸接或其他各種型式,所以此一分析法亦可用來探討柔性多體動力(flexible multibody dynamics 或 FMD)與機構分析等問題,換言之,只要定義適當破壞準則作為解除質點與接點約束之依據,就能輕易模擬結構體由連續到不連續構形之破壞與多體運動行為。
有別於傳統之結構分析法,此一結構運動分析計算程序屬於向量力學,方法簡單與數值計算程序固定,不需建立結構勁度矩陣與任何迭代計算,即可求解具有幾何非線性與材料非線性之力學問題。除此之外亦不需對結構系統設立邊界條件,所以很容易在各個質點上直接施加外力與位移量,來進行各種結構的動靜力運動分析。透過與大量文獻中數值例題的比較驗証,充分顯示向量式有限元方法的特質與優越性,可提供工程分析人員另一有效之工具來處理工程中所面臨之具有挑戰性之非線性動力問題。
摘要(英) In this thesis, a vector form motion analysis method for structure is developed based on the theory of the Vector Form Intrinsic Finite Element (VFIFE, V-5) method. Formulations of the V-5 type planar and spatial truss and frame elements were derived. Besides, incremental elastic-plastic material models, contact analysis algorithm and failure mechanisms are also included into the simulation code. This newly proposed method has profound theoretical content and application simplicity on studying the spatiotemporal behaviors of structures with highly nonlinearity.
The V-5 method models the analyzed domain to be composed by finite particles and the Newton’s second law is applied to describe each particle’s motion. Thus, the calculation of the V-5 method becomes solving a set of decoupled vector form equations. In the theory of V-5, a convected reference frame, fictitious reversed rigid body motion and updated deformation coordinate system are used to separate the rigid body motion and pure deformation of the system. Then the internal force is calculated from the deformation of element and applied to the mass particle to constrain its motion with other particles. After combining with explicit time integration scheme, the V-5 method can effectively simulate the dynamic behaviors of multi-bodies system having large deformation. The connection between a mass particle and an element node can be rigid or jointed. These connections can be broken into separated bodies according to the failure criteria set in the code.
Different from conventional matrix form structure analysis methods, the vector type motion equation of each mass particle makes the analysis procedure of the V-5 dramatically simple. No iterations are required as conventional methods in nonlinear motion analysis. In addition, due to the nature of discrete independent particle point, it is not required to set essential boundary conditions of the system. It is very easy to prescribe the displacement and forcing conditions on each particle during the procedure of analysis.
Through the numerical analyses of a few benchmark problems with large rotation, elastic-plastic deformation, impact, self-contact, fracture characters, the V-5 method demonstrates its accuracy and efficiency on the analysis of structure motion. It is believed that the V-5 method can be a very effective tool for engineers on the structure motion analysis.
關鍵字(中) ★ 虛構反向剛體運動
★ 移動式基礎架構
★ 變形座標
關鍵字(英) ★ fictitious reversed rigid body motion
★ convected material reference frame
★ deformation coordinate
論文目次 第一章 前言
1-1 研究動機與目的 1
1-2 向量式有限元研究背景 7
1-3 論文內容 9
第二章 ㄧ維構件之平面運動基本理論與模擬
2-1 平面桁架結構離散模型 11
2-2 ㄧ維桁架元平面運動基本理論 16
2-2-1 平面桁架元之移動基本架構 16
2-2-2 平面桁架元節點變形位移與變形座標 19
2-2-3 平面桁架元節點等效內力 24
2-2-4 平面桁架元之質點運動方程式之差分式 27
2-3 平面桁架元數值算例 33
2-4 平面剛架結構離散模型 54
2-5 ㄧ維剛架元平面運動基本理論 59
2-5-1 平面剛架元之移動基本架構 59
2-5-2 平面剛架元節點變形位移與變形座標 61
2-5-3 平面剛架元節點等效內力 66
2-5-4 平面剛架元之質點運動方程式之差分式 72
2-6 平面剛架元數值算例 75
2-7 平面機構運動之數值算例 93
第三章 ㄧ維構件之空間運動基本理論與模擬
3-1 空間桁架元結構離散模型 117
3-2 ㄧ維桁架元空間運動基本理論 119
3-2-1 空間桁架元之移動基礎架構 121
3-2-2 空間桁架元之節點變形位移與變形座標 125
3-2-3 空間桁架元節點等效內力 130
3-2-4 空間桁架元之質點運動方程式之差分式 134
3-3 空間桁架元數值算例 136
3-4空間剛架元結構離散模型 152
3-5 ㄧ維剛架元空間運動基本理論 155
3-5-1 剛架元之空間剛體轉動與主軸方向 156
3-5-2 空間剛架元之變形座標 158
3-5-3 空間剛架元之內力計算方式與移動基礎架構 165
3-5-4 空間剛架元之質點運動方程式之差分式 171
3-6空間剛架元數值算例 176
第四章 ㄧ維構件之彈塑性基本理論與斷裂計算
4-1 ㄧ維構件彈塑性分析 185
4-2 彈塑性分析之數值範例 193
4-3 ㄧ維構件斷裂計算方法 210
4-4 斷裂計算之數值範例 211
第五章 高壓管路揮擊問題之應用
5-1 管路揮擊文獻回顧 222
5-2 ㄧ維剛架元平面運動之接觸判斷方法 227
5-2-1 剛架元對點接觸判斷 228
5-2-2 點對點接觸判斷 235
5-3 ㄧ維剛架元平面運動之撞擊力估算 237
5-3-1 正向接觸力 237
5-3-2 接觸剪力之計算 243
5-4 管路斷裂處之下噴力估算 245
5-5 數值範例 248
第六章 結論與建議
6-1 結論 270
6-2 建議 271
6-3 未來展望 272
參考文獻 273
參考文獻 Agrawal, O. P., Shabana, A. A., “Dynamic analysis of multibody systems using component modes,” Computers and Structures, Vol. 21, No. 6, pp. 1303-1312, (1985).
Agrawal, O. P., Shabana, A. A., “Application of deformable-body mean axis to flexible multibody system dynamics,” Computer Methods in Applied Mechanics Engineering, Vol. 56, pp. 217-245, (1986).
Argyris, J., “An excursion into large rotations,” Computer Methods in Applied Mechanics and Engineering , Vol. 32, pp. 85-155, (1982).
Argyris, J. H., Dunne, P. C., Scharpf, D. W., “On large displacement-small strain analysis of structures with rotational degree of freedom,” Computer Methods in Applied Mechanics Engineering, Vol. 14, pp. 401-451, Vol. 15, pp. 99-135, (1978).
Ashley, H., “Observation of the dynamic behavior of flexible bodies in orbit,” AIAA Journal, Vol. 5, No. 3, pp. 460-469, (1967).
Banerjee, A. K., Dickens, J. M., “Dynamics of an arbitrary flexible body in large rotation and translation,” Journal of Guidance, and Control, and Dynamics, Vol. 13, No. 2, pp. 221-227, (1990).
Bathe, K. J., Ramm, E., Wilson, E. L., “Finite element formulations for large deformation dynamic analysis,” International Journal for Numerical Methods in Engineering, Vol. 9, pp. 353-386, (1975).
Bathe, K. J., Finite Element Procedures in Engineering Analysis, Prentice Hall, Inc., New York, N.Y., (1982).
Bathe, K. J., Finite element procedures, New York: Prentice-Hall, (1996).
Bathe, K. J., Bolourchi, S., “Large displacement analysis of three-dimensional beam structures,” International Journal for Numerical Methods in Engineering, Vol. 14, pp. 961-986, (1979).
Baron, F., Venkatesan, M. S., “Nonlinear analysis of cable and struss structures,” Journal of Structural Division, Vol. 97, No. 2, pp. 679-710, (1971).
Belytschko, T., Glaum, L. W., “Applications of higher order corotational stretch theories to nonlinear finite element analysis,” Computers and Structures, Vol. 10, pp. 175-182, (1979).
Belytschko, T., Hsieh, B. J., “Non-linear transient finite element analysis with convected co-ordinates,” International Journal for Numerical Methods in Engineering, Vol. 7, pp. 255-271, (1973).
Belytschko, T., Neal, M. O., “Contact-impact by the pinball algorithm with penalty and lagrangian method,” International Journal for Numerical Methods in Engineering, Vol. 31, pp. 547-572, (1991).
Belytschko, T., Schwer, L., “Large displacement transient analysis of space frames,” International Journal for Numerical Methods in Engineering, Vol. 11, pp. 65-84, (1977).
Belytschko, T., Yeh, I. S., “The splitting pinball method for contact-impact problems,” Computer Methods in Applied Mechanics Engineering, Vol. 105, pp. 375-393, (1993).
Benson, D. J., Hallquist, J. O., “A single surface contact algorithm for the post-buckling analysis of shell structures,” Computer Methods in Applied Mechanics Engineering, Vol. 78, pp. 141-163, (1990).
Blandford, G. E., “Progressive failure analysis of inelastic space truss structures,” Computers and Structures, Vol. 58, No. 5, pp. 981-990, (1996).
Cardona, A., “Modelling of superelements in mechanism,” International Journal for Numerical Methods in Engineering, Vol. 32, pp. 1565-1593, (1991).
Cardona, A., Geradin, M., “A beam finite element nonlinear theory with finite rotations,” International Journal for Numerical Methods in Engineering, Vol. 26, pp. 2403-2438, (1988).
Cescotto, S., Frey, F., Fonder, G., “Total and updated Lagrangian descriptions in nonlinear structural analysis: a unified approach,” in Glowinski, R., Rodin, E. Y., and Zienkiewicz, O. C. (eds), Energy Methods in Finite Element Analysis, John Wiley, New York, N.Y., 283-296, (1979).
Chan, S. L., “Large deflection dynamic analysis of space frame,” Computers and Structures, Vol. 58, No. 2, pp. 381-387, (1996).
Chan, S. L., Kitipornchai, S., “Geometric nonlinear analysis of asymmetric thin-walled beam-columns,” Engineering Structures, Vol. 9, pp. 243-254, (1987).
Chiba, N., Sueyoshi, N., Matsunobu, T., Wadayama, T., Kaneko, J., “Pipe-whip experiment and numerical analysis,” 9th Structural Mechanics in Reactor Technology Lausanne Switzerland/August, pp. 17-21, (1987).
Chouard, P., Garcia, J. L., Sermet, E., “Experimental studies of pipe whip and impact,” EPRI NP-4534, Research Project, pp. 1324-13425, Final Report, (1987).
Chu, S. C., Pan, K. C., “Dynamic response of a high-speed slider-crank mechanism with an elastic connecting rod,” Journal of Engineering Industry, Vol. 97, ASME, pp. 542-550, (1975).
Cleghorn, W. L., Fenton, R. G., Tabarrok, B., “Finite element analysis of high-speed flexible mechanisms,” Journal of Mechanisms, Vol. 16, pp. 407-424, (1981).
Cooker, J. O., Buchert, K. P., “Reticulated space structures,” Journal of Structural Division, ASCE, Vol. 96, No. 3, pp. 687-700, (1970).
Crisfield, M. A., Non-linear Finite Element Analysis of Solids and Structures, Wiley, Chichester New York., (1991).
Crisfield, M. A., “A fast incremental/iterative solution procedure that handles snap-through,” Computers and Structures, Vol. 13, pp. 55-62, (1981).
Crisfield, M. A., “A consistent co-roational formulation for non-linear three-dimensional beam-elements,” Computer Methods in Applied Mechanics and Engineering, Vol. 81, pp. 131-150, (1990).
Crisfield, M. A., “Dynamic analysis of 3D beams with joints in presence of large rotations,” Computer Methods in Applied Mechanics and Engineering, Vol. 190, pp. 4195-4230, (2001).
Crisfield, M. A., Shi, J., “A co-rotational element/time-integration strategy for non-linear dynamics,” International Journal for Numerical Methods in engineering, Vol. 37, pp. 1897-1913, (1994).
Cundall, P. A., Strack, D. L., “A discrete numerical model for granular assemblies,” Geotechnique, Vol. 29, No. 1, pp. 47-65, (1979).
Dini, D., Lazzeri, L., “Modelling techniques for pipe whip analysis,” Nuclear Engineering and Design, Vol. 37, pp. 361-372, (1976).
Downer, J. D., Park, K. C., Chiou, J. C., “Dynamics of flexible beams for multibody systems: a computational procedure,” Computer Methods in Applied Mechanics Engineering, Vol. 96, pp. 373-408, (1992).
Doyle, J. F., Nonlinear Analysis Thin-walled Structures Statics Dynamics, and Stability, New York : Springer, pp. 235-238, (2001).
Driemeier, L., Proenca, S. P. B., Alves, M., “A contribution to the numerical nonlinear analysis of three-dimensional truss systems considering large strains, damage and plasticity,” Communications in Nonlinear Science and Numerical Simulation, Vol. 10, pp. 515-535, (2005).
Elias, Z. M., Theory and Methods of Structural Analysis, John Wiley & Sons, New York, N.Y., (1986).
Emmett, A. W., Hans, A. B., John, W. L., Pian, T. H. H., “Large Dynamic Deformations of Beams, Rings, Plates, and Shells,” AIAA Journal, Vol. 1, No. 8, pp. 1848-1857, (1963).
Epstein, M., Tene, Y., “Nonlinear analysis of pin-jointed space trusses,” Journal of Structural Division, ASCE, Vol. 97, No. 9, pp. 2189-2202, (1971).
Erdman, A. G., Sandor, G. N., Oakberg, R. G., “A general method for kineto-elastodynamic analysis and synthesis of mechanisms,” Journal of Engineering Industry, ASME, Vol. 94, pp. 1193-1205, (1972).
Felippa, C. A., Haugen, B., “A unified formulation of small-strain corotational finite elements: I. Theory,” Computer Methods in Applied Mechanics Engineering, Vol. 194, pp. 2285-2335, (2005).
Forman, S. E., Hutchinson, J. W., “Buckling of reticulated shell structures,” International Journal of Solids and Structures, Vol. 6, No. 7, pp. 909-932, (1970).
Fraeijs De Veubeke, B. M., “The dynamics of flexible bodies,” International Journal of Engineering Science, Vol. 14, pp. 895-913, (1976).
Freitas, J. A. T., Ribeiro, A. C. B., “Large displacement elastoplastic analysis of space trusses,” Computers and Structures, Vol. 44, No. 5, pp. 1007-1016, (1992).
Gallagher, R. H., Padlog, J., “Discrete element approach to structural instability analysis,” AIAA Journal, Vol. 1, No. 6, pp. 1437-1439, (1963).
Géradin, M., Cardona, A., “A superelement formulation for mechanism analysis,” Computer Methods in Applied Mechanics and Engineering, Vol. 100, pp. 1-29, (1992).
Givoli, D., Doukhovni, I., “Finite element-quadratic programming approach for contact problems with geometrical nonlinearity,” Computers and Structures, Vol. 61, No. 1, pp. 31-41, (1996).
Goldstein, H., Classical Mechanics, Mass Addison-Wesly, (1959).
Goldberg, J. E., Richard, R. M., “Analysis of nonlinear structures,” Journal of Structural Division, ASCE, Vol. 89, No. 4, pp. 333-351, (1963).
Goodman, R. E., Taylor, R., Brekke, T. L., “A model for the mechanics of jointed rock,” Journal of the Soil Mechanics & Foundations Division, ASCE, Vol. 94, pp. 637, (1968).
Gopalakrishna, H. S., Greimann, L. F., “Newton-Raphson procedure for the sensitivity analysis of nonlinear structural,” Computers and Structures, Vol. 30, No. 6, pp. 1263-1273, (1988).
Grotte, P. B., McMunn, J. C., Gluck, R., “Equations of motion of flexible spacecraft,” Journal of Spacecraft and Rockets, Vol. 8, No. 6, pp. 561-567, (1971).
Hallquist, J. O., Theoretical Manual for DYNA3D, Lawrence Livermore Laboratory Report, No. UCID-19401, University of California, (1982).
Hallquist, J. O., Goudreau, G. L., Benson, D. J., “ Sliding interfaces with contact-impact in large-scale Lagrangian computations,” Computer Methods in Applied Mechanics Engineering, Vol. 51, pp. 107-137, (1985).
Hensley, R. C., Azar, J. J., “Computer analysis of nonlinear truss structures,” Journal of Structural Division, ASCE, Vol. 94, No. ST9, pp. 1427-1439, (1968).
Hibbitt, H. D., “Anaysis of pipe whip,” EPRI, NP-1208, Research Project, pp. 1324-1321, Final Report, (1979).
Hibbitt, H. D., Marcal, P. V., Rice, J. R., “A finite element formulation for problem of large strain and large displacement,” Journal of Solids and Structures, Vol. 6, pp. 1069-1086, (1970).
Hill, C. D., Blandford, G. E., Wang, S. T., “Post-buckling Analysis of steel space trusses,” Journal of Structural Engineering, ASCE, Vol. 115, No. 4, pp. 900-919, (1989).
Hodge, P. G. Jr., Bathe, K. J., “Causes and consequences of nonuniqueness in an elastic/perfectly-plastic truss,” Journal of Applied Mechanics, ASME, Vol. 53, pp. 235-241, (1986).
Hodge, P. G. Jr., White, D. L., “Nonuniqueness in contained plastic deformation,” Journal of Applied Mechanics, ASME, Vol. 47, pp. 273-277, (1980).
Holzer, S. M., Plaut, R. H., Somers, A. E., White, S. W., “Stability of lattice structures under combined loads,” Journal of the Engineering Mechanics Division, ASCE, Vol. 106, No. 2, pp. 289-305, (1980).
Horrigmoe, G., Bergan, P. G., “Incremental variational principles and finite element models for nonlinear problemsn,” Computer Methods in Applied Mechanics Engineering, Vol. 7, pp. 201-217, (1976).
Howell, L. L., Midha, A., “Parametric deflaection approximations for end-loaded large-deflection beams in compliant mechanisms,” Journal of Mechanical Design, Vol. 117, pp. 156-165, (1995).
Howell, L. L., Midha, A., Norton, T. W., “Evaluation of equivalent spring stiffness for use in a pseudo-rigid-body model of large-deflection compliant mechanisms,” Journal of Mechanical Design, Vol. 118, pp. 126-131, (1996).
Hsiao, K. M., “Corotational total lagrangian formulation for three-dimensional beam element,” AIAA Journal, Vol. 30, No. 3, pp. 797-804, (1992).
Hsiao, K. M., Horng, H. J., “A corotational procedure that handles large rotations of spatial beam structures,” Computers and Structures, Vol. 27, No. 6, pp. 769-781, (1987).
Hsiao, K. M., Jang, J. Y., “Nonlinear dynamic analysis of elastic frames,” Computers and Structures, Vol. 33, pp. 1057-1063, (1989).
Hsiao, K. M., Jang, J. Y., “Dynamic analysis of planar flexible mechanisms by co-rotational formulation,” Computer Methods in Applied Mechanics Engineering, Vol. 87, pp. 1-14, (1991).
Hsiao, K. M., Lin, J. Y., Lin, W. Y., “A consistent co-rotational finite element formulation for geometrically nonlinear dynamic analysis of 3-D beams,” Computer Methods in Applied Mechanics and Engineering, Vol. 169, pp. 1-18, (1999).
Hsiao, K. M., Yang, R. T., Lee, C., “A consistent finite element formulation for non-linear dynamic analysis of planar beam,” International Journal for Numerical Methods in engineering, Vol. 37, pp. 75-89, (1994).
Hsu, L. C., Kuo, A. Y., “Nonlinear dynamic analysis of pipe whip tests,” EPRI NP-4535, Research Project, pp. 1324-1327, Final Report, (1986).
Ider, S. K., Amirouche, F. M. L., “Influence of geometric nonlinearities in the dynamics of flexible treelinke structures,” Journal of Guidance, and Control, and Dynamics, Vol. 12, No. 6, pp. 830-837, (1988).
Ider, S. K., Amirouche, F. M. L., “Nonlinear modeling of flexible mulitbody systems dynamics subjected to variable constraints,” Journal of Applied Mechanics, ASME, Vol. 56, pp. 444-450, (1989).
Imam, I., Sandor, G. N., Kramer, S. N., “Deflection and stress analysis in high speed planar mechanisms with elastic links,” Journal of Engineering Industry, ASME, Vol. 95, pp. 541-548, (1973).
Iura, M., Atluri, S. N., “Dynamic analysis of finitely stretched and rotated three-dimensional space-curved beams,” Computers and Structures, Vol. 5, pp. 875-889, (1988).
Jagannathan, D. S. , Epstein, H. I., Christiano, P., “Fictitious strains due to rigid body rotation,” Journal of Structural Division, ASCE, Vol. 101, No. 11, pp. 2472-2476, (1975a).
Jagannathan, D. S., Epstein, H. I., Christiano, P., “Nonlinear analysis of reticulated space trusses,” Journal of Structural Division, ASCE, Vol. 101, No. 12, pp. 2641-2658, (1975b).
Kane, Y. R., Levinson, D. A., “simulation of large motions of nonuniform beams in Orbit: Part II – the unrestrained beam,” The Journal of the Astronautical Sciences, Vol. 29, No. 3, pp. 213-244, (1981).
Kane, T. R., Ryan, R. R., “Dynamics of a cantilever beam attached to a moving base,” Journal of Guidance, and Control, and Dynamics, Vol. 10, No. 2, pp. 139-151, (1987).
Kassimali, A., Bidhendi, E., “Stability of trusses under dynamic loads,” Computers and Structures, Vol. 29, No. 3, pp. 381-392, (1988).
Key, S. W., “Finite element procedure for large deformation dynamic response of axisymmetric solids,” Computer Methods in Applied Mechanics Engineering, Vol. 4, pp. 195-218, (1974).
Key, S. W., “Computational methods for impact and penetration,” Nuclear Engineering and Design, Vol. 48, pp. 259-268, (1978).
Kim, S. E., Park, M. H., Choi, S. H., “Practical advanced analysis and design of three-dimensional truss bridges,” Journal of Constructional Steel Research, Vol. 57, pp. 907-923, (2001).
Kohnke, P., “Large deflection analysis of frame structures by fictitious forces,” International Journal for Numerical Methods in Engineering, Vol. 12, pp. 1279-1294, (1978).
Koichi, K., “Verification and further development of the LBB evaluation method for nuclear piping – verification of the LBB evaluation method by the international research program and new development of a Dynamic pipe fracture,” Research Fellow, Material Science Department, Komae Research Laborstory.
Krishnamoorthy, C. S., Ramesh, G.., Dinesh, K. U., “Post-buckling analysis of structures by three-parameter constrained solution techniques,” Finite element Analysis for Engineering Design, Vol. 22, pp. 109-142, (1996).
Kumar, V. K., Bainum, P. M., “Dynamics of a flexible body in Orbit,” Journal of Guidance and Control, Vol. 3, No. 1, pp. 90-91, (1980).
Kurihara, R., Ueda, S., Isozaki, T., Miyazaki, N., Kato, R., Saito, K., Miyazono, S., “Pipe rupture test results: 4 inch pipe whip test under BWR LOCA conditions– overhang length parameter tests,” JAERI-M 82-022, Japan Atomic Energy Research Institute, (1982).
Kurihara, R., Ueda, S., Yano, T., Isozaki, T., Miyazaki, N., Kato, R., Miyazono, S., “Experimental studies of 6-inch pipe whip tests under BWR LOCA conditions,” 7th Structural Mechanics in Reactor Technology Mariott Hotel Chicago, Illinois, U.S.A, pp. 22-26, (1983).
Leu, L. J., Yang, Y. B., “Effects of rigid body and stretching on nonlinear analysis of trusses,” Journal of Structural Engineering, ASCE, Vol. 116, No. 10, pp. 2582-2598, (1990).
Leu, L. J., Yang, Y. B., “Post-buckling analysis of steel space trusses,” Journal of Structural Engineering, ASCE, Vol. 117, No. 12, pp. 3824-3828, (1991).
Levy, R., Vilany, O., Acheampong, K. B., “Exact geometry considerations in buckling analysis of trusses,” Computers and Structures, Vol. 41, No. 6, pp. 1241-1248, (1991).
Liew, J. Y. R., Punniyakotty, N. M., Shanmugam, N. E., “Advanced analysis and design of structures,” Journal of Constructional Steel Research, Vol. 42, No. 1, pp. 21-48, (1997).
Litewka, P., Wriggers, P., “Frictional contact between 3D beams,” Compution Mechanics, Vol. 28, pp. 26-39, (2002a).
Litewka, P., Wriggers. P., “Contact between 3D beams with rectangular cross-sections,” International Journal for Numerical Methods in Engineering, Vol. 53, pp. 2019-2041, (2002b).
Liu, J. Y., Hong, J. Z., “Geometric stiffening of flexible link system with large overall motion,” Computers and Structures, Vol. 81, pp. 2829-2841, (2003).
Lo, S. H., “Geometrically nonlinear formulation of 3D finite strain beam element with large rotations,” Computers and Structures, Vol. 44, No. 1-2, pp. 147-157, (1992).
Loi, F. T., Pang, J. S., “Elastoplastic analysis of structures with nonlinear hardening: a nonlinear complementarity approach,” Computer Methods in Applied Mechanics Engineering, Vol. 107, pp. 299-312, (1993).
Mallett, R. H., Marcal, P. V., “Finite element analysis of nonlinear structures,” Journal of Structural Division, ASCE, Vol. 94, No. 9, pp. 2081-2105, (1968).
Mason, J. L., Tan, H. S., “Geometrically nonlinear analysis of space frames by an incremental iterative technique,” Computer Methods in Applied Mechanics Engineering, Vol. 47, pp. 261-282, (1984).
Mattiasson, K., “Numerical results from large deflection beam and frame problems analyzed by means of elliptic integrals,” International Journal for Numerical Methods in engineering, Vol. 17, pp. 145-153, (1981).
Meek, J. L., Loganathan, S., “Large displacement analysis of space-frame structures,” Computer Methods in Applied Mechanics Engineering, Vol. 72, pp. 57-75, (1989).
Meek, J. L., Tan, H. S., “Geometrically nonlinear analysis of space frames by an incremental iterative technique,” Computer Methods in Applied Mechanics and Engineering, Vol. 47, pp. 261-282, (1984).
Meek, J. L., Xue, Q., “A study on the instability problem for 2D-frames,” Computer Methods in Applied Mechanics Engineering, Vol. 136, pp. 347-361, (1996).
Midha, A., Erdman, A. G., “An approximate method for the dynamic analysis of elastic linkages,” Journal of Engineering Industry, Vol. 99, ASME, pp. 449-455, (1977).
Miyazaki, N., Ueda, S., “Analytical studies of blowdown thrust force and elastic – plastic behavior of pipe at pipe rupture accident,” International Journal of Pressure Vessels and Piping, Vol. 108, pp. 175-181, (1986).
Miyazaki, N., Kurihara, R., Kato, R., Isozaki, T., Ueda, S., “PRTHRUST-J1 code for calculation of blowdown thrust force and its experimental verification,” Nuclear Engineering and Design, Vol. 64, pp. 389-401, (1981).
Miyazaki, N., Saito, K., “Preliminary analysis for pipe whip (Run No.5319),” JAERI-M 8487; Japan Atomic Energy Research Institute, (1979).
Miyazaki, N., Ueda, S., Isozaki, T., Kato, R., Kurihara, R., Yano, T., Miyazono, S., “Pipe rupture test results: 4-inch pipe whip test under PWR LOCA conditions,” JAERI-M 82-125, Japan Atomic Energy Research Institute, (1982).
Miyazaki, N., Ueda, S., Isozaki, T., Kurihara, R., Yano, T., Kato, R., Miyazono, S., “Experimental and analytical studies of 4-inch pipe whip tests under PWP LOCA conditions,” 7th Structural Mechanics in Reactor Technology Mariott Hotel Chicago, Illinois, U.S.A, pp. 22-26, (1983).
Miyazaki, N., Ueda, S., Isozaki, T., Kurihara, R., Yano, T., Kato, R., Miyazono, S., “Experimental analytical studies of four-inch pipe whip tests under PWR LOCA conditions,” International Journal of Pressure Vessels and Piping, Vol. 15, pp. 125-150, (1984).
Mondkar, D. P., Powell, G. H., “Finite element Analysis of Non-linear static and dynamic response,” International Journal for Numerical Methods in engineering, Vol. 11, pp. 499-520, (1977).
Moody, F. J., “Prediction of blowdown thrust and jet forces,” ASME, paper 69/HT/31, (1969).
Murray, D. W., Wilson, E. L., “Finite element large deflection analysis of plates,” Journal of the Engineering Mechanics Division, ASCE, Vol. 95(EM1), pp. 143-165, (1969).
Noor, A. K., “Nonlinear analysis of space trusses,” Journal of Structural Division, ASCE, Vol. 100, No. 3, pp. 533-546, (1974).
Noor, A. K., Peters, M., “Instability analysis of space trusses,” Computer Methods in Applied Mechanics Engineering, Vol. 40, pp. 199-218, (1983).
Nutech Engineers Inc., Analysis of Pipe Whip, Electric Power Research Institute,
EPRI NP-1208, (1979).
Oden, J. T., Finite Elements of Nonlinear Continua, McGraw-Hill, New York., (1972).
Oran, C., “Tangent stiffness in plane frames,” Journal of Structural Division, ASCE, Vol. 99, No.6, pp. 987-1001, (1973a).
Oran, C., “Tangent stiffness in space frames,” Journal of Structural Division, ASCE, Vol. 99, No.6, pp. 973-985, (1973b).
Oran, C., Kassimalim, A., “Large deformations of framed structures under static and dynamic loads,” Computers and Structures, Vol. 6, pp. 539-547, (1976).
Owen, D. R. J., Finite Elements in Plasticity, U.K. Pineridge, Swansea, (1980).
Pai, P. F., Palazotto, A. N., “Large-deformation analysis of flexible,” International Journal of Solids and Structures, Vol. 9, pp. 1335-1353, (1996).
Palusamy, S., Patrick, W. L., Cloud, R. L., “Dynamic analysis of nonlinear pipe whip restraints,” Nuclear Engineering and Design, Vol. 31, pp. 106-116, (1974).
Papadrakakis, M., “Post-buckling analysis of spatial structures by vector interation methods,” Computers and Structures, Vol. 14, No. 5-6, pp. 393-402, (1981).
Papadrakakis, M., “Inelastic post-buckling analysis of trusses,” Journal of Structural Engineering, ASCE, Vol. 109, No. 9, pp. 2129-2147, (1984).
Park, K. C., Downer, J. D., Chiou, J. C., Farhat, C., “A modular multibody analysis capability for high-precision, active control and real-time applications,” International Journal for Numerical Methods in Engineering, Vol. 32, pp. 1767-1798, (1991).
Powell, G., Simons, J., “Improved iteration strategy for nonlinear structures,” International Journal for Numerical Methods in Engineering, Vol. 17, pp. 1455-1467, (1981).
Prinja, N. K., “Combined beam elements for large dynamic motion of whipping pipes with fluid-structure interaction,” Finite Elements in Analysis and Design, Vol. 11, pp. 117-152, (1992).
Rajasekaran, S., Murray, D. W., “Incremental finite element matrices,” Journal of Structural Engineering, ASCE, Vol. 99, No. 12, pp. 2423-2438, (1973).
Ramesh, G., Krishnamoorthy, C. S., “Post-buckling analysis of structures by dynamic relaxation,” International Journal for Numerical Methods in Engineering, Vol. 36, pp. 1339-1364, (1993).
Ramesh, G., Krishnamoorthy, C. S., “Inelastic post-buckling analysis of truss structures by dynamic relaxation method,” International Journal for Numerical Methods in Engineering, Vol. 37, pp. 3633-3657, (1994).
Rankin, C. C., Brogan F. A., “An element independent co-rotational procedure for the treatment of large rotations,” Journal of Pressure Vessel Technology, Vol. 108, pp. 165-172, (1986).
Reid, S. R., Wang, B., “Large deflection analysis of whipping pipes: I rigid, perfectly-plasti model,” Journal of Engineering Mechanics, ASCE, Vol. 121, No. 8, pp. 881-887, (1995).
Ren, W. X., Tan, X., Zheng, Z., “Nonlinear analysis of plane frames using rigid body-spring discrete element method,” Computers and Structures., Vol. 71, pp. 105-119, (1999).
Rice, D. L., Ting, E. C., “Large displacement transient analysis of flexible structures,” International Journal for Numerical Methods in Engineering, Vol. 36, pp. 1541-1562, (1993).
Richard, R. M., Goldberg, J. E., “Analysis of nonlinear structures : force method,” Journal of Structural Division, ASCE, Vol. 91, No. 9, pp. 33-48, (1965).
Riks, E., “The application of Newton’s method to the problem of elastic stability,” Journal of Applied Mechanics, ASME, Vol. 39, pp. 1060-1066, (1972).
Rothert, H., Dickel, T., Renner, D., “Snap-through buckling of reticulated space trusses,” Journal of Structural Division, ASCE, Vol. 107, No. 1, pp. 129-143, (1981).
Salmon, M. A., Verma, V., “Rigid plastic beam model for pipe whip analysis,” Journal of Engineering Mechanics Division, Vol. 102, No. 3, pp. 415-430, (1976).
See, T., McConnel, R. E., “Large displacement elastic buckling of space structures,” Journal of Structural Engineering, ASCE, Vol. 112, No. 5, pp. 1052-1069, (1986).
Shabana, A. A., Hussien, H. A., Escalona, J. L., “Application of the absolute nodal coordinate formulation to large rotation and large deformation problems,” Journal of Mechanical Design, ASME, Vol. 120, pp. 188-195, (1998).
Sharifi, P., Popov, E. P., “Nonlinear finite element analysis of sandwich shell of revolution,” AIAA Journal, Vol. 11, pp. 715-722, (1973).
Shi, G. H., Discontinuous deformation analysis-a new numerical model for the statics and dynamics of block system, Ph. D. Dissertation, University of California, Berkeley, (1988).
Shi, G. H., “Manifold method of material analysis, Transactions of the Ninth Army Conference on Applied mathematics and Computing,” Minneapolis, Minnesota, USA, pp. 51-76, (1992).
Shi, G. H., “Manifold method,” Proceedings of the First International Forum on Discontinuous Deformation Analysis (DDA) and Simulations of Discontinuous Media, Berkeley, California, USA, pp. 52-104, (1996).
Shih, C., Wang, Y. K., Ting, E. C., “Fundamentals of a vector form intrinsic finite element: Part III. Convected material frame and examples,” Journal of Mechanics, Vol. 20, No. 2, pp. 133-143, (2004).
Simo, J. C., Quoc, L. V., “On the dynamics of flexible beams under large overall motions— the plane case: part I,” Journal of Applied Mechanics, ASME, Vol. 53, pp. 849-854, (1986a).
Simo, J. C., Quoc, L. V., “On the dynamics of flexible beams under large overall motions— the plane case: part II,” Journal of Applied Mechanics, ASME, Vol. 53, pp. 855-863, (1986b).
Simo, J. C., “A three-dimensional finite-strain rod model part II: computational aspects,” Computer Methods in Applied Mechanics and Engineering, Vol. 58, pp. 79-116, (1986c).
Simo, J. C., Quoc, L. V., “Dynamics of earth-orbiting flexible satellites with multibody components,” Journal of Guidance, Control, and Dynamics, Vol. 10, pp. 549-558, (1987b).
Simo, J. C., VU-Quoc, J. C., “The role of non-linear theories in transient dynamic analysis of flexible structures,” Journal of Sound and Vibration, Vol. 119, No. 3, pp. 487-508, (1987a).
Simo, J. C., VU-Quov, J. C., “On the dynamics in space of rods undergoing lagre motions – a geometrically exact approach,” Computer Methods in Applied Mechanics Engineering, Vol. 66, pp. 125-161, (1988).
Simo, J. C., Wriggers, P., Schweizerhof, K. H., Taylor, R. L., “Finite deformation post-buckling analysis involving inelasticity and contact constraints,” International Journal for Numerical Methods in Engineering, Vol. 23, pp. 779-800, (1986d).
Slaats, P. M. A., Jongh, J., de Sauren, A. A. H. J., “Model resucction tool for nonlinear structural dynamics,” Computer and Structures, Vol. 54, No. 6, pp. 1155-1171, (1995).
Smith, E. A., “Nonlinear analysis of space trusses,” Journal of Structural Engineering, ASCE, Vol. 120, No. 9, pp. 2717-2736, (1994).
Sogn, J. O., Haug, E. J., “Dynamic analysis of planar flexible mechanisms,” Computer Methods in Applied Mechanics Engineering, Vol. 24, pp. 359-381, (1980).
Strong, B. R., Baschiere, R. J., “Pipe rupture and steam/water hammer design loads for dynamic analysis of piping systems,” Nuclear Engineering and Design, Vol. 45, pp. 419-428, (1978).
Sun, S. M., Natori, M. C., “Numerical solution of large deformation problems involving stability and unilateral constraints,” Computers and Structures, Vol. 58, No. 6, pp. 1245-1260, (1995).
Sun, S. M., Natori, M. C., Park, K. C., “A computational procedure for flexible beams with frictional contact constraints,” International Journal for Numerical Methods in Engineering, Vol. 36, pp. 3781-3800, (1993).
Szilard, R., “An energy balancing strategy for solution of combined geometrical and material nonlinearity problems,” Computers and Structures, Vol. 23, No. 2, pp. 147-162, (1986).
Tang, S. C., Yeung, K. S., Chon, C. T., “On the tangent stiffness matrix in convected coordinate system,” Computers and Structures, Vol. 12, pp. 849-856, (1980).
Teh, L. H., “Beam element verification for 3D elastic steel frame analysis,” Computers and structures, Vol. 82, pp. 1167-1179, (2004).
Thompson, B. S., Sung, C. K. “A survey of finite element techniques for mechanism design,” Journal of Mechanisms, Vol. 21, pp. 351-359, (1986).
Ting, E. C., Shih, C., Wang, Y. K., “Fundamentals of a vector form intrinsic finite element: Part I. basic procedure and a plane frame element,” Journal of Mechanics, Vol. 20, No. 2, pp. 113-122, (2004a).
Ting, E. C., Shih, C., Wang, Y. K., “Fundamentals of a vector form intrinsic finite element: Part II. plane solid elements,” Journal of Mechanics, Vol. 20, No. 2, pp. 123-132, (2004b).
Turcic, D. A., Midha, A., “Dynamic analysis of elastic mechanism systems. Part I: applications,” Journal of Dynamic systems, Measurement, and control, ASME, Vol. 106, pp. 249-254, (1984a).
Turcic, D. A., Midha, A., Bosnik, J. R., “Dynamic analysis of elastic mechanism systems. Part II experimental results,” Journal of Dynamic systems, Measurement, and control, ASME, Vol. 106, pp. 255-260, (1984b).
Turcic, D. A., Midha, A., “Generalized equations of motion for the dynamic analysis of elastic mechanism systems,” Journal of Dynamic systems, Measurement, and control, ASME, Vol. 106, pp. 243-248, (1984c).
Turkalj, G., Brnic, J., Orsic, J. P., “ESA formulation for large displacement analysis of framed structures with elastic-plasticity,” Computers and Structures, Vol. 82, pp. 2001-2013, (2004).
Ueda, S., Isozaki, T., Miyazaki, N., Kurihara, R., Kato, R., Saito, K., “Pipe rupture test results: 4inch pipe whip test under BWR operational condition-clearance parameter experiments,” JAERI-M 9496, Japan Atomic Energy Research Institute, (1981).
Vu-Quoc, L., Simo, J. C., “Dynamics of earth-orbiting flexible satellites with multibody components,” Journal of Guidance, and Control, and Dynamics, Vol. 10, No. 6, pp. 549-558, (1987).
Wallrapp, O., Schwertassek, R., “Representation of geometric stiffening in multibody system simulation,” International Journal for Numerical Methods in Engineering, Vol. 32, pp. 1833-1850, (1991).
Wang, B., Reid, S. R., “Large deflection analysis of whipping pipes: II rigid, perfectly-plasti model with elastic root spring,” Journal of Engineering Mechanics, ASCE, Vol. 121, No. 8, pp. 888-895, (1995).
Washizu, K., Variational Methods in Elasticity and Plasticity, 3rd edn, Pergamon Press., (1982).
Watson, L. T., Holzer, S. M., “Quadratic convergence of Crisfield’s method,” Computers and Structures, Vol. 17, No. 1, pp. 69-72, (1983).
Wempner, G. A., “Discrete approximations related to nonlinear theories of solids,” International Journal of Solids and Structures, Vol. 7, pp. 1581-1599, (1971).
William, W. Jr., Paul R. J., Structural Dynamics by Finite Elements, Englewood Cliffs, N.J. Prentice-Hall., (1987).
Winfrey, R. C., “Elastic link mechanismdynamics,” Journal of Engineering Industry, ASME, Vol. 93, pp. 1193-1205, (1971).
Wood, R. D., Zienkiewicz, O. C., “Geometrically nonlinear finite element analysis of beams, frames, arches and axisymmetric shells,” Computers and Structures, Vol. 7, pp. 725-735, (1977).
Wright, D. J., “Membrane Forces and Buckling in reticulated shells,” Journal of Structural Division, ASCE, Vol. 91, No. 1, pp. 173-201, (1965).
Wriggers, P., Van, Vu. T., Stein, E., “Finite element formulation of large deformation impact-contact problems with friction,” Computers and Structures, Vol. 37, pp. 319-331, (1989).
Wriggers, P., Zavarise, G., “On contact between three-dimensional beams undergoing large deflections,” Communications in Numerical Methods in Engineering, Vol. 13, pp. 429-438, (1997).
Wriggers, P., Zavarise, G., “Contact with friction between beams in 3-D space,” International Journal for Numerical Methods in Engineering, Vol. 49, pp. 977-1006, (2000).
Wu, R. W. H., Emmett, A. W., “Finite-element analysis of large elastic-plastic transient deformations of simple structures,” AIAA Journal, Vol. 9, No. 9, pp. 1719-1724, (1971).
Wu, R. W. H., Emmett, A. W., “Nonlinear transient Responses of Structures by the spatial Finite-element,” AIAA Journal, Vol. 11, No. 8, pp. 1110-1117, (1973).
Wu, R. W. H., Emmett, A. W., “Theoretical and Experimental Studies of Transient Elastic-Plastic Large Deflections of Geometrically Stiffened Rings,” Journal of Applied Mechanics, (1975).
Wu, S. C., Haug, E. J., “Geometric non-linear substructuring for dynamics of flexible mechanical systems,” International Journal for Numerical Methods in Engineering, Vol. 26, pp. 2211-2226, (1988).
Wu, X. Q., Liu, C., Yu, T. X., “A bifurcation phenomenon in an elastic-plastic symmetrical shallow truss subjected to a symmetrical load,” International Journal of Solids and Structures, Vol. 23, No. 9, pp. 1225-1233, (1987).
Xu, T., Lowen, G. G., “A new analytical for the determination of the transient response in elastic mechanisms,” Journal of Mechanical Design, Vol. 115, pp. 119-124, (1993).
Yamada, Y., “Constitutive modellings of inelastic behavior and numerical solution of nonlinear problems by the finite element method, ” Computers and Structures, Vol. 8, pp. 533-543, (1978).
Yang, Y. B., Chiou, H. T., “Analysis with beam elements,” Journal of Engineering Mechanics, ASCE, Vol. 113, pp. 1404-1419, (1987a).
Yang, Y. B., Chiou, H. T., “Rigid body motion test for nonlinear analysis with beam elements,” Journal of Structural Engineering, ASCE, Vol. 113, No. 9, pp. 1404-1419, (1987b).
Yang, Y. B., Kuo, S. R., Theory & Analysis of Nonlinear Framed Structures, Prentice-Hall, (1994).
Yang, T. Y., Lianis, G., “ Large displacement analysis of viscoelastic beams and frames by the finite-element method,” Journal of Applied Mechanics, Vol. 74, pp. 635-640, (1974).
Yang, Y. B., McGuire, W., “Stiffness matrix for geometric nonlinear analysis,” Journal of Structural Engineering, ASCE, Vol. 112, No. 4, pp. 853-877, (1986a).
Yang, Y. B., McGuire, W., “Joint rotation and geometric nonlinear analysis,” Journal of Structural Engineering, ASCE, Vol. 112, No. 4, pp. 879-905, (1986b).
Yang, Z., Sadler, J. P., “Large – displacement finite element analysis of flexible linkages,” Journal of Mechanical Design, Vol. 112, pp. 175-182, (1990a).
Yang, Z., Sadler, J. P., “A numerically efficient algorithm for steady-state response of flexible mechanism systems,” Journal of Mechanical Design, Vol. 115, pp. 848-855, (1993).
Yang, T. Y., Saigal, S., “A simple element for static and dynamic response of beams with material and geometric nonlinearities,” International Journal for Numerical Methods in engineering, Vol. 20, pp. 851-867, (1984).
Yang, Y. B., Shieh, M. S., “Solution method for nonlinear problems with multiple critical points,” AIAA Journal, Vol. 28, pp. 2110-2116, (1990b).
Yang, Y. B., Yang, C. T., Chang, T. P., Chang, P. K., “Effect of member buckling and yielding on ultimate strengths of space trusses,” Engineering Structures, Vol. 19, No. 2, pp. 179-191, (1997).
Yankelevsky, D. Z., “Elastic-plastic behavior of a shallow two bar truss,” International Journal of Mechanical Sciences, Vol. 41, pp. 663-675, (1999).
Yano, T., Miyazaki, N., Isozaki, T., “Transient nlysis of blowdown thrust force under PWR-LOCA conditions,” Nuclear Engineering and Design, Vol. 75, pp. 157-168, (1982).
Yoon, S., Wowe, R. M., Greenwood, D. T., “Geometric elimination of constraint violations in numerical simulation of lagrangian equation,” Journal of Mechanical Design, Vol. 116, pp. 1058-1064, (1994).
Zhang, H., Zhang, X., Chen, J. S., “A new algorithm for numerical solution of dynamic elastic-plastic hardening and softening problems,” Computers and Structures, Vol. 81, pp. 1739-1749, (2003).
Zhu, K., Al-Bermani, F. G. A., Kitipornchai, S., “Nonlinear dynamic analysis of lattice structures,” Computers and Structures, Vol. 52, No. 1, pp. 9-15, (1994).
Zielinski, A. P., Frey, F., “On linearization in non-linear structural finite element analysis,” Computers and Structures, Vol. 79, pp. 825-838, (2001).
Zienkiewicz, O. C., The finite element method in structural and continuum mechanics : numerical solution of problems in structural and continuum mechanics, London ; New York : McGraw-Hill, c1967
Zienkiewicz, O. C., “Incremental displacement in non-linear analysis,” International Journal for Numerical Methods in Engineering, Vol. 3, pp. 587-588, (1971).
呂良正,“桁架及構架之非線性理論”,國立台灣大學土木工程學研究所碩士論文,1989。
吳思穎,“向量式剛架有限元於二維結構之大變位與接觸行為分析”,國立中央大學土木工程學系碩士論文,2004。
郭世榮,“空間構架的靜力及動力穩定理論”,國立台灣大學土木工程學研究所博士論文,1991。
指導教授 王仲宇(Chung Yue Wang) 審核日期 2005-10-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明