博碩士論文 89342002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.119.110.136
姓名 陳柏成(Po-Cheng Chen)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 非線性系統之遺傳演算智慧型控制器設計
(GA-Based Intelligent Controller Design for Nonlinear Systems)
相關論文
★ 國際巨災保險制度之研究★ 我國推動地方層級災害防救專責單位之問題探討-以桃園縣為例
★ 公共危險物品保安監督之探討-以新竹縣為例★ 長期照顧機構消防安全設計與防火避難設施之研究
★ 考慮土壤結構互制效應並裝設減振裝置的高層建築氣動力反應之研究★ 結合模糊控制與類神經網路探討非線性結構控制的穩定性
★ 觀光產業天然災害風險評估與管理★ 天然災害風險管理決策方法建立—以地震災害為例
★ 颱洪災害風險評估推測事件資料庫之建置及應用★ 火災現場指揮幕僚運作探討-以桃園市政府消防局為例
★ 科學園區地震緊急應變計畫之研擬★ 地震災害風險評估及地震保險之風險管理
★ 園區建築物耐震能力評估★ 整合性多目標地震風險評估系統之建立
★ 適應性模糊滑動模態控制在結構工程上應用之研究★ 高樓結構裝設調和液柱阻尼器減振效應之風洞實驗研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文將探討非線性系統之智慧型控制器設計上的一些課題,並提出解決方案。一般而言,設計適應性控制器所遇到的重大難題,是如何決定其控制規則及適應性法則,以確保能迅速且強健地控制非線性系統。
首先,吾人將非線性系统的穩定性分析降階為線性矩陣不對稱(LMI)求解問題,提出具有 性能之適應性控制器設計,由遺傳演算法決定控制規則和後件部(consequent)參數初始值,並根據Lyapunov穩定準則使系統狀態變數達到所要求的 追蹤性能,進而穩定非線性系統。
接下來,為處理多變數非線性系統之穩定性控制問題,吾人採用奇異激勵(singular perturbation)概念,將非對稱多變數系统解耦(decouple)成數個較低階數且具不同時間常數的獨立子系統後,後件部決策參數的初始值由遺傳演算法決定,並將邊界層函數引入所推導之改良式適應性法則,確保系統狀態誤差收斂在一定值區間。
最後,為處理類神經網路(neural networks)控制複雜非線性系统常遇到的強健性問題,吾人先以放射狀基底函數網路(radial basis function networks)近似一個非線性控制裝置,由遺傳演算法決定其輸出鍵結權值(weights)之初始值,再根據Lyapunov穩定性準則推導之改良式適應性法則來確保對非線性系統之穩定控制。
綜上所述,本論文提出下列控制設計方法:(1)具 追蹤性能之遺傳演算適應性模糊滑動模式控制器設計、(2)遺傳演算適應性模糊滑動模式控制器設計及(3)遺傳演算適應性類神經控制器設計。
吾人所提出的智慧型控制系统的設計程序與改良方法可藉由電腦模擬來說明,可顯示出所提出控制方法及改良式控制器的強健性和效能,皆達到預期的控制目標。
摘要(英) Abstract
In this thesis, we investigate and discuss some intelligent controller designs for nonlinear systems, proposing several strategies. Generally, the biggest difficulty encountered when designing an adaptive controller which is actually capable of rapidly and robustly controlling nonlinear systems is the selection of the control rules and of the most appropriate initial values for the parameter vector.
The first step is to reduce the stability analysis of the nonlinear system into linear matrix inequality (LMI) problem solutions, for which we then propose an adaptive control strategy incorporated into an tracking control scheme. The control rules and the consequent parameters are decided via the use of genetic algorithms (GA). Then, based on the Lyapunov’s stability criterion, we utilize the rules and parameters that guarantee the best tracking performance throughout the entire system states.
After this we use the most singular perturbation scheme to decouple a non-square multi-variable system into several reduced-order isolated square multi-variable subsystems for multi-variable nonlinear system stability analysis. The initial values of the consequent parameter vector are decided via genetic algorithms. The boundary-layer function is introduced into these modified updating laws to cover parameter errors and modeling errors, and to guarantee that the state errors converge into a specified error bound.
Finally, we look at the type of robust problem often met with in designing a neural network controller for complex and nonlinear systems, wherein we use radial basis function networks to approximate the control plant for nonlinear systems. The initial values of the consequent weight vector are decided via GA after which a modified adaptive law is derived based on Lyapunov’s stability criterion to simultaneously stabilize and control the nonlinear systems.
Focusing on the fore-mentioned general topics, we mention the following control strategies: (1) the GA-Based Adaptive Fuzzy Sliding Mode Controller (GA-Based AFSMC); (2) the GA-Based Adaptive Fuzzy Sliding Mode Controller (GA-Based AFSMC); (3) the GA-Based Adaptive Neural Network Controller (GA-Based ANNC).
The design procedure for the proposed intelligent control systems (with some modified methods) is illustrated by computer simulations the results of which are utilized to demonstrate the control methodology, as well as the robustness and efficiency of the constructed controllers.
關鍵字(中) ★ 非線性系統
★ 模糊控制
★ 遺傳演算
★ 類神經網路
★ 適應性法則
關鍵字(英) ★ nonlinear system
★ fuzzy control
★ genetic algorithms
★ neural networks
★ adaptive rules
論文目次 摘 要 I
Abstract II
誌 謝 IV
Contents V
List of Figures VII
CHAPTER 1 Introduction 1
1.1 Motivation 1
1.2 Literature Review 2
1.3 Scope of the Presented Study 6
1.4 Related Work and Background 7
1.4.1 Reference Modeling of a Nonlinear Dynamic System 7
1.4.2 Fuzzy Logic and Fuzzy Sliding Model Control System 12
1.4.3 Genetic Algorithm (GA) 14
1.4.4 Neural Networks 18
1.4.5 Adaptive Control 24
1.4.6 Singular Perturbation Model 26
1.4.7 Smooth Control Input 30
CHAPTER 2 GA-Based Adaptive Fuzzy Sliding Mode Controller 34
2.1 The Problem Formulation 34
2.2 Development of a GA-Based FSMC 39
2.3 GA-Based Adaptive Fuzzy Sliding Mode Controller Design 42
2.4 Examples and Simulation Results 49
CHAPTER 3 GA-Based Adaptive Fuzzy Sliding Mode Controller 55
3.1 The Problem Formulation 55
3.2 GA-Based Adaptive Fuzzy Sliding Mode Controller Design 60
3.3 The GA-Based Decoupled AFSMC Design 64
3.4 Simulation Results 72
3.4.1 The Example of GA-Based AFSMC 72
3.4.2 Examples of GA-Based DAFSMC 76
CHAPTER 4 GA-Based Adaptive Neural Network Controller 97
4.1 The Problem Formulation 97
4.2 Radial Basis Function Network 100
4.3 Development of a GA-Based Neural Network Control Theory 103
4.4 GA-Based ANNC for Nonlinear Systems 104
4.5 The GA-Based Decoupled ANNC Design 111
4.6 Examples and Simulation Results 115
4.6.1 The Example of GA-Based ANNC 115
4.6.2 Examples of GA-Based Decoupled ANNC 119
CHAPTER 5 Conclusions 132
5.1 Conclusions 132
5.2 Recommendations for Future Research 134
References 135
參考文獻 References
[1]V. I. Utkin, Sliding Modes and their Application in Variable Structure Systems, Moscow: MIR Publishers, 1978.
[2]J. J. E. Slotine, and W. Li, Applied Nonlinear Control, Englewood Cliffs, NJ: Prentice Hall, 1991.
[3]Hassan K. Khalil, Nonlinear Systems, Prentice-Hall, 1996.
[4]L. X. Wang, A Course in Fuzzy Systems and Control, Englewood Cliffs, NJ: Prentice Hall, 1997.
[5]W. J. Wang, and H. R. Lin, “Fuzzy control design for the trajectory tracking on nonlinear systems”, IEEE Trans. Fuzzy Syst., vol. 7, pp. 53-62, 1999.
[6]Goldberg, D. E., Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, 1989.
[7]S. C. Lin, “Stable Self-Learning Optimal Fuzzy Control System Design and Application”, Ph. D. Dissertation, Department of Electrical Engineering, National Taiwan University, Taiwan, 1997.
[8]P. C. Chen, “Genetic Algorithm for Control of Structure System”, Masters Thesis, Department of Civil Engineering, Chung Yuan University, Taiwan, 1998.
[9]Karr, C. L., “Genetic algorithms for fuzzy controller”, AI Expert, pp. 26-33, Feb., 1991.
[10]T. Yabuta and T. Yamada, “Learning Control Using Neural Networks”, Proc. of the IEEE Int. Conf. Robotics and Automation, Sacramento, CA, Apt., pp. 740-745, 1991.
[11]T. Poggio and F. Girosi, “Regularization Algorithms for Learning that are Equivalent to Multilayer Networks”, Sci., vol. 247, pp. 978-982, Feb., 1990.
[12]W. S. Lin and C. H. Tsai, “Neuralfuzzy-Model-Following Control of MIMO Nonlinear Systems”, IEEE Proc. Control Theory Appl. vol. 146, pp. 157-164, 1999.
[13]G. F. Franklin, J. D. Powell, and A. E. Baeini, Feedback Control of Dynamic Systems, Addison-Wesley, 1986.
[14]R. Hecht-Nielsen, “Theory of the Backup-propagation Neural Network”, Proc. of the IEEE Int. Conf. Neural Networks, vol. 1, pp. 593-605, 1989.
[15]C. C. Ku and K. Y. Lee, “Diagonal Recurrent Neural Networks for Dynamic Systems Control”, IEEE Trans. on Neural Networks, vol. 6, pp. 144-156, 1995.
[16]P. J. Werbos, “Back Propagation through Time: What it does and how to do it”, Proc. of the IEEE, vol. 78, pp. 1550-1560, 1990.
[17]R. Palm, “Robust control by fuzzy sliding mode”, Automatica, vol. 30, pp. 1429-1437, 1994.
[18]G. J. Klir, and B. Yuan, Fuzzy Sets and Fuzzy Logics: Theory and Applications, Englewood Cliffs, NJ: Prentice Hall 1995.
[19]Y. T. Kim, and Z. Bien, “Robust self-learnind fuzzy controller design for a class of nonlinear MIMO systems”, Fuzzy Sets and Syst., vol. 111, pp. 117-135, 2000.
[20]Y. Xia and Y. Jia, “Robust sliding-mode control for uncertain time delay system: an LMI approach”, IEEE Trans. Automat. Contr., vol. 48, pp. 1086-1092, 2003.
[21]M. C. Saaj, B. Bandyopadhyay, and H. Unbehauen, “A new algorithm for discrete-time sliding-mode control using fast output sampling feedback”, IEEE Trans. Ind. Electron., vol. 49, pp. 518-523, 2002.
[22]A. S. Poznyak, Y. B. Shtessel, and C. J. Gallwgos, “Min-max sliding mode control for multimodel linear time varying systems”, IEEE Trans. Automat. Contr., vol. 48, pp. 2141-2150, 2003.
[23]W. Wang, J. Yi, D. Zhao, and D. Liu, “Design of a stable sliding-mode controller for a class of second-order underactuated systems”, IEEE Proc. Control Theory Appl., vol. 151, pp. 683-690, 2004.
[24]B. Yoo and W. Ham, “Adaptive fuzzy sliding mode control of nonlinear system”, IEEE Trans. Fuzzy Syst. vol. 6, pp. 315-321, 1998.
[25]S. Tong and H. X. Li, “Fuzzy adaptive sliding-mode control for MIMO nonlinear systems”, IEEE Trans. Fuzzy Syst., vol. 11, pp. 354-360, 2003.
[26]S. Labiod, M. S. Boucherit, and T. M. Gurra, “Adaptive fuzzy control of a class of MIMO nonlinear systems”, Fuzzy Sets and Syst., vol. 151, pp. 59-77, 2005.
[27]J. Wang, A. S. Rad, and P. T. Chan, “Indirect adaptive fuzzy sliding mode control: Part and Part “, Fuzzy Sets and Syst., vol. 122, pp. 21-43, 2001.
[28]C. C. Kung, and F. S. Chen, “Design of distance-based fuzzy sliding mode controller with adaptive fuzzy rule insertion”, Proc. IFSA World Congress and 20th NAFIPS, British Columbia, CA, pp. 900-905, 2001.
[29]C. C. Kung, and C. C. Chen, “Grey fuzzy sliding mode controller design with genetic algorithm”, Proc. 36th IEEE Conf. Decision and Control, pp. 2748-2753, 1997.
[30]G. Feng, S. G. Cao, and N. W. Rees, “Stable adaptive control of fuzzy dynamic systems”, Fuzzy Sets and Syst., vol. 131, pp. 217-224, 2002.
[31]G. C. Goodwin, and K. S. Sin, Adaptive Filtering Prediction and Control, Englewood Cliffs, NJ: Prentice Hall, 1984.
[32]K. M. Koo, “Stable adaptive fuzzy controller with time-varying dead-zone”, Fuzzy Sets and Syst., vol. 121, pp. 161-168, 2001.
[33]F. Y. Hsu, and L. C. Fu, “A novel adaptive fuzzy variable structure control for a class of nonlinear systems via backstepping”, Fuzzy Sets and Syst., vol. 122, pp. 83-106, 2001.
[34]B. S. Chen, C. H. Lee, and Y. C. Chang, “ tracking design of nonlinear SISO systems: adaptive fuzzy approach”, IEEE Trans. Fuzzy Syst., vol. 4, pp. 32-43, 1996.
[35]C. S. Tseng, and B. S. Chen, “ decentralized fuzzy model reference tracking control design for nonlinear interconnected systems”, IEEE Trans. Fuzzy Syst., vol. 9, pp. 795-809, 2001.
[36]S. K. Nguang, and P. Shi, “ fuzzy output feedback control design for nonlinear systems: an LMI approach”, IEEE Trans. Fuzzy Syst., vol. 11, pp. 331-340, 2003.
[37]Y. Yang, and C. Zhou, “Adaptive fuzzy stabilization for strict-feedback canonical nonlinear systems via backstepping and small-gain approach”, IEEE Trans. Fuzzy Syst., vol. 13, pp. 104-114, 2005.
[38]S. Boyd, E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, Philadelphia, PA: SIAM, 1994.
[39]P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali, LMI Control Toolbox User’s Guide, MA: The Math Works, Natick, 1995.
[40]K. Tanaka, and H. O. Wang, Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach, NJ: John Wiley & Sons, Inc., 2001.
[41]M. Vidyasagr, Nonlinear Systems Analysis, Prentice Hall, NJ: Englewood Cliffs, 1993.
[42]T. Poggio and F. Girosi, “A Theory for Approximation and Learning”, Mass. Inst. Technol., A. I. Memo 1140, 1989.
[43]E. K. Blum and L. K. Li, “Approximation Theory and Feedforward Network”, Neural Networks, vol. 4, pp. 511-515, 1991.
[44]D. S. Chen and C. Jain, “A Robust Back Propagation Learning Algorithm for Function Approximation”, IEEE Trans. on Neural Networks, vol. 5, pp. 467-479, 1994.
[45]K. Funahashi and Y. Nakamura, “Approximation of Dynamical Systems by Continuous-time Recurrent Neural Network”, Neural Networks, vol. 6, pp. 801-806, 1993.
[46]C. L. Hwang, “Neural-Network-Based Variable Structure Control of Electrohydraulic Servosystems Subject to Huge ties without Persistent Excitation”, IEEE Trans. on Mechatronics, vol. 4, pp. 50-59, 1999.
[47]E. J. Hartman, J. D. Kowalski, and J. M. Kowalski, “Layered Neural Networks with Gaussian Hidden Units as Universal Approximations”, Neural Computation, vol. 2, pp. 210-215, 1990.
[48]K. M. Hornik, M. Stinchcombe, and H. White, “Multilayer Feedforward Networks are Universal Approximator”, Neural Networks, vol. 2, pp. 359-366, 1989.
[49]M. J. D. Powell, “Radial Basis Functions for Multivariable Interpolation: A Review”, Algorithms for Approximation, J. C. Mason and M. G. Cox, Eds. Oxford, U. K.: Clarendon, pp. 143-167, 1987.
[50]M. J. D. Powell, “The Theory of Radial Functions for Multivariable Approximation in 1990”, Advances in Numerical Analysis II, W. Light, Eds. Oxford, U. K.: Oxford Univ. Press, 1992.
[51]J. Park and I. W. Sandberg, “Universal Approximation Using Radial-Basis-Function Network”, Neural Computation, vol. 3, pp. 246-257, 1991.
[52]C. C. Liu and F. C. Chen, “Adaptive control of nonlinear continuous time systems Using Neural Networks General Relative Degree and MIMO Case”, Int. J. Contr., vol. 58, pp. 317-335, 1993.
[53]J. H. Chow, and P. V. Kokotovic, “A Decomposition of Near-Optimum Regulators with Slow and Fast Modes”, IEEE Trans. Automat. Contr., vol. AC-21, pp. 701-705, 1976.
[54]J. M. Zurada, Introduction to Artificial Neural Networks, St. Paul: West Publishing Company, 1992.
[55]M. T. Hagan, H. B. Demuth and M. Beale, Neural Network Design, Boston: PWS Publishing Company, 1996.
[56]J. S. R. Jang, C. T. Sun and E. Mizutani, Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Upper Saddle River, NJ: U. S. A.: Prentice Nall, 1997.
[57]K. J. Hunt, D. Sbarbaro, R. Zbikowski and P. J. Gowthrop, “Neural networks for control systems – a survey”, Automatica, vol. 28, pp. 1083-1112, 1992.
[58]C. T. Lin and C. S. G. Lee, Neural fuzzy systems: a neuro-fuzzy synergism to intelligent systems, Upper Saddle River, NJ: U. S. A.: Prentice Hall, 1999.
[59]K. S. Narendra, “Adaptive control of dynamical systems using neural networks”, Handbook of Intelligent Control, Neural, Fuzzy, and Adaptive Approaches, Edited by D. A. White and D. A. Sofge, New York: Multiscience, pp. 141-184, 1992.
[60]R. M. Sanner and J. J. E. Slotine, “Gaussian networks for direct adaptive control”, Proceedings of the 1991 American Control Conference, Sofge, Green Valley, AZ: U. S. A., pp. 2153-2159, June, 1991.
[61]R. M. Sanner and J. J. E. Slotine, “Stable adaptive control and recursive identification using radial Gaussian networks”, Proceedings of the 30th IEEE Conference on Decision and Control, Brighton, England, pp. 11-13, December, 1991.
[62]M. M. Polycarpou and P. A. Ioannou, “Neural networks as on-line Approximators of nonlinear systems”Proceedings of the 31th IEEE Conference on Decision and Control, Tucson, Arizona, U. S. A., pp. 16-18, December, 1992.
[63]R. M. Sanner and J. J. E. Slotine, “Gaussian networks for direct adaptive control”, IEEE Trans. on Neural Networks, vol. 3, pp. 837-863, 1992.
[64]E. Tzirkel-Hancock and F. Fallside, “Stable control of nonlinear systems using neural networks”, Int. J. of Robust and Nonlinear Control, vol. 2, pp. 63-86, 1992.
[65]R. M. Sanner and J. J. E. Slotine, “Stable adaptive control of robot manipulators using neural networks”, Neural Computation, vol. 7, pp. 753-790, 1995.
[66]M. M. Polycarpou, “Stable adaptive neural control scheme for nonlinear systems”, IEEE Trans. Automat. Contr., vol. 41, pp. 447-451, 1996.
[67]N. Sadegh, “A perceptron network for functional identification and control of nonlinear systems”, IEEE Trans. on Neural Networks, vol. 4, pp. 1045, 1993.
[68]F. L. Lewis, K. Liu and A. Yesildirek, “Neural net robot controller with guaranteed tracking performance”, IEEE Trans. on Neural Networks, vol. 6, pp. 703-715, 1995.
[69]J. F. Canete, A. G. Cerezo and I. G. Moral, “Direct control with radial basis function network: stability analysis and applications”, Int. J. Contr., vol. 70, pp. 385-404, 1998.
[70]M. Zhihong, H. R. Wu and M. Palaniswami, “An adaptive tracking controller using neural networks for a class of nonlinear systems”, IEEE Trans. on Neural Networks, vol. 9, pp. 947-955, 1998.
[71]M. H. Stone, “The generalized Weierstrass approximation theorem”, Mathematics Magazine, vol. 21, pp. 167-184, pp. 237-254, 1948.
[72]A. N. Kolmogorov, “On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition’, Dokl. Akad. Nauk. SSSR, vol. 114, pp. 953-956, 1957.
[73]D. A. Sprecher, “On the structure of continuous functions of several variables”, Trans. of the American Mathematical Society, vol. 115, pp. 340-355, 1965.
[74]V. Kurkova, “Kolmogorov’s theorem and multilayer neural networks”, Neural Networks, vol. 5, pp. 501-506, 1992.
[75]H. M. Feng, “Design of fuzzy control systems with some tuning methods”, Ph. D. Dissertation, Department of Information Engineering, Tam kang University, Taiwan, 2000.
[76]J. C. Lo and Y. H. Kuo, “Decoupled Fuzzy Sliding Mode Control”, IEEE Trans. Fuzzy Syst., vol. 6, pp. 426-435, 1998.
[77]S. Y. Chen, F. M. Yu, and H. Y. Chung, “Decoupled Fuzzy Controller Design with Single-Input Fuzzy Logic”, Fuzzy sets and syst., vol. 129, pp. 335-342, 2002.
[78]F. H. Hsiao, C. W. Chen, Y. W. Liang and W. L. Chiang, “T-S Fuzzy Controllers for Nonlinear Interconnected Systems with Multiple Time Delays”, IEEE Trans. on Circuits and Syst., vol. 52, pp. 1883-1893, September, 2005.
[79]K. S. Narendra, and A. M. Annaswamy, “A New Adaptive Law for Robust Adaption without Persistent Excitation”, IEEE Trans. Automat. contr., vol. AC-32, pp. 134-145, Feb., 1987.
[80]L. C. Hung, and H. Y. Chung, “Decoupled control using neural network-based sliding-mode controller for nonlinear systems”, Expert Syst. with Applications, vol. 32, pp. 1168-1182, 2007.
指導教授 蔣偉寧(Wei-Ling Chiang) 審核日期 2009-2-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明