博碩士論文 89342004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:3.144.116.195
姓名 李嶸泰(Jung-Tai Lee)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 動力夯實之有效影響深度與地表振動阻隔研究
(The Research on Effective Influence Depth and Isolation of ground virbration Caused by Dynamic Compaction)
相關論文
★ 砂土層中潛盾機地中接合漏水引致地層下陷之案例探討★ 動力壓密工法施工引致地表振動之阻隔
★ 音波式圓錐貫入試驗於土層界面判定之應用★ 孔洞開挖後軟弱地盤之沉陷行為
★ 超載對打設排水帶後軟弱地盤壓密行為之影響★ 山岳隧道湧水處理之研究
★ 砂土中基樁側向位移之改良研究★ 圓錐貫入試驗中土壤音壓之研究
★ 水泥混合處理砂質土壤液化特性之改良研究★ 扶壁改善深開挖擋土壁體變形行為之研究
★ 微音錐應用於土壤音射特性之研究★ 黏性土壤受定量擠壓變形後之力學行為
★ 黏土中短樁側向位移之改良研究★ 砂土經水泥改良後之力學性質
★ 黏土中模型樁側向位移之改良研究★ 黏土中基樁側向位移改良之數值模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究利用圓桶形土槽模擬夯擊試驗,探討動力夯實工法施工有效之影響深度,試驗時改變多項夯擊條件,得到夯擊中心之夯擊應力隨深度變化之關係式。此一關係式配合夯擊荷載之推估公式,可評估夯擊之有效影響深度。經與麥寮六輕土壤改良實際案例之現地試驗結果比較後,得知此評估方式在考量現場與室內試驗土層差異之相關修正後,可得到一良好之預估結果。
此外,由動力夯實施工引致之波傳阻隔試驗結果得知,夯擊瞬間所測得土層表面不同水平距離處之振幅,因幾何與材料阻尼效應,使其隨距離之增加而迅速衰減。將夯擊能量加入振幅衰減公式中可獲得一個合理之經驗公式,利用此經驗公式配合前人發展出之判斷準則,即可評估所選取之夯擊能量在施工時是否會對鄰房造成損傷。
隔振設施之阻隔效果研究試驗結果得知,對於被動阻隔所探討的振源與隔振溝間之距離,理論上是愈遠愈好,但若受限於施工地區的大小時,則最少須大於3倍的振波波長。在主動阻隔方面,經不同深度之隔振溝的試驗可知,若欲使隔振溝設置後,能降低地表加速度振幅至無隔振溝存在時的0.25倍,則其深度至少須為0.7倍的振波波長,但當隔振溝深度大於0.9倍的振波波長時,隔振效果已無明顯的增加。
摘要(英) Dynamic compaction method was introduced to Taiwan in 1993, and has been applied to soil improvement operation in civil engineering successfully. However, the models of prediction effective influence depth had not been developed completely. Thus, the purpose of this research was to study the effective influence depth prediction model of dynamic compaction method. Besides, due to the high tension of environmental consciousness, and the currently increasing events of adjacent building damage caused by constructional operation, how to effectively prevent or reduce wave propagation caused by site operation would be an important issue. Therefore, in this study a series of small-scale compaction model tests and in-site exam on hydraulic-filled reclaimed land at Taichung harbor were carried out in order to elucidate the isolation of wave propagation.
In this study, dynamic compaction model tests in circular chamber were conducted to investigate the effective influence depth of sandy soil improved by dynamic compaction method. By changing the conditions of compaction, the formula related to the center of impact stress and depth was obtained. This formula coupled with the formula of impact load could predict the effective influence depth. In comparison with the experimental results of the Sixth Oil Refinery ground modification at Mai-liao, the prediction method had obtained good results after related modifications in taking into account of the differences of soil layer conditions between in-situ and lab tests.
Besides, according to the results of isolation of wave propagation tests, the amplitude measured from different horizontal distances on the ground surface at the moment of impact decayed quickly with the increase of the horizontal distance due to the geometrical and material damping effect. By adding the impact energy to the equation of wave decay, a reasonable experimental formula was obtained. Using this formula and the judgment guideline proposed by predecessor, the influences of impact energy on the adjacent building could be evaluated.
Results from the study of effective isolation equipments showed that in the aspect of passive isolation, the farther the distance between the impact source and the isolation trench the better the isolation effect theoretically. However, if the size of operation area was restricted, the distance should be at least 3 times greater than that of the wavelength. In the aspect of active isolation, the results of different depth of isolation trench tests indicated that with the installation of isolation trench, if one wanted to reduce the accelerated amplitude of ground surface to 0.25 times of that without isolation trench, the depth of isolation trench should be at least 0.7?R. However, when the depth of isolation trench was greater than 0.9?R, there was no significant increase in the effect of isolation.
關鍵字(中) ★ 有效影響深度
★ 夯擊應力
★ 夯擊荷載
★ 波傳阻隔
★ 隔振溝深度
★ 隔振溝與振源之距離
★ 動力夯實工法
關鍵字(英) ★ dynamic compaction method
★ effective influence depth
★ impact stress
★ impact load
★ isolation of wave propagation
★ depth of isolation trench
★ distance between isolation trench and impact cen
論文目次 目 錄
內 容
中文摘要 -------------------------------------------------------------------- Ⅰ
英文摘要 -------------------------------------------------------------------- Ⅱ
目錄 ------------------------------------------------------------------------ Ⅲ
照片目錄 -------------------------------------------------------------------- Ⅷ
表目錄----------------------------------------------------------------------- Ⅹ
圖目錄--------------------------------------------------------------------- ⅩⅡ
符號說明 ------------------------------------------------------------------ ⅩⅩ
第一章 緒論------------------------------------------------------------------1
1.1 前言------------------------------------------------------------------1
1.2 研究動機與目的--------------------------------------------------------2
1.3 研究方法--------------------------------------------------------------3
1.4 論文內容--------------------------------------------------------------6
第二章 文獻回顧--------------------------------------------------------------7
2.1 概述------------------------------------------------------------------7
2.2 改良機制--------------------------------------------------------------8
2.2.1 飽和土之改良機制---------------------------------------------------8
2.2.1.1 動力壓密模型----------------------------------------------------8
2.2.1.2 夯擊能量的傳遞機制----------------------------------------------9
2.2.1.3 土壤強度提高之機制---------------------------------------------10
2.2.1.4 孔隙水壓變化之機制---------------------------------------------10
2.2.2 非飽和土之改良機制------------------------------------------------11
2.2.2.1 有效影響深度之推估---------------------------------------------13
2.3 動力荷載下土體中之應力分布-------------------------------------------16
2.4 振波在土壤中之衰減模式-----------------------------------------------18
2.4.1 振幅大小及衰減之主要影響因素--------------------------------------19
2.4.2 振動之阻隔研究----------------------------------------------------22
2.5 相關之實驗及數值研究 -------------------------------------------------23
2.5.1 夯擊能量作用於砂土之應力分布--------------------------------------23
2.5.2 關於振波傳遞阻隔之研究--------------------------------------------26
第三章 試驗設備及方法-------------------------------------------------------40
3.1 室內試驗-------------------------------------------------------------40
3.1.1 試驗土樣之物理性質------------------------------------------------40
3.1.2霣降試體-----------------------------------------------------------40
3.1.2.1 霣降設備-------------------------------------------------------41
3.1.2.2 標定相對密度之步驟---------------------------------------------42
3.1.3 圓桶形土槽夯擊模型試驗--------------------------------------------42
3.1.3.1 試驗儀器與設備-------------------------------------------------43
3.1.3.2 試體之製作-----------------------------------------------------44
3.1.3.3 試驗方法-------------------------------------------------------45
3.1.4 隔振溝深度對波傳阻隔之影響----------------------------------------46
3.1.4.1 試驗儀器與設備-------------------------------------------------46
3.1.4.2 試體之製作-----------------------------------------------------47
3.1.4.3 試驗步驟-------------------------------------------------------48
3.1.5 隔振溝與振源間距離對阻隔效果之影響試驗----------------------------49
3.1.5.1 試體之製作-----------------------------------------------------49
3.1.5.2 試驗方法-------------------------------------------------------49
3.1.6 阻礙物之減振效果試驗----------------------------------------------50
3.1.6.1 試體製作-------------------------------------------------------51
3.1.6.2 試驗方法-------------------------------------------------------51
3.2 現地試驗-------------------------------------------------------------51
3.2.1 量測地點與地質狀況------------------------------------------------52
3.2.2 量測規劃與配置----------------------------------------------------52
3.2.3 量測儀器----------------------------------------------------------52
3.2.4 施工機具----------------------------------------------------------53
3.3 資料之誤差與消除-----------------------------------------------------53
第四章 砂土中之夯擊應力分布與有效影響深度之推估-----------------------------76
4.1 影響砂土試體相對密度之因素-------------------------------------------76
4.2 砂土受夯擊之應力分布-------------------------------------------------78
4.2.1 夯擊荷載之探討----------------------------------------------------78
4.2.2 陷坑之損耗能量----------------------------------------------------80
4.2.3 夯擊點中心之夯擊應力----------------------------------------------82
4.2.4 夯擊應力隨水平距離之變化------------------------------------------85
4.2.5 等夯擊應力曲線----------------------------------------------------87
4.2.5.1 砂土中正規化等夯擊應力曲線-------------------------------------87
4.2.6 微音錐貫入試驗----------------------------------------------------89
4.2.7 有效影響深度之推估------------------------------------------------89
4.2.8 施工案例探討------------------------------------------------------91
4.3 小結-----------------------------------------------------------------93
第五章 砂土中夯擊之波動傳遞與阻隔------------------------------------------115
5.1 波動振幅在砂土中之衰減模式------------------------------------------115
5.1.1 振幅衰減公式之選擇-----------------------------------------------115
5.1.2 以最大地動速度PGV作為判斷準則之原因------------------------------116
5.1.3 波動振幅衰減模式之建立-------------------------------------------117
5.1.3.1夯擊次數的影響-------------------------------------------------117
5.1.3.2 相對密度之影響------------------------------------------------119
5.1.3.3 夯擊能量之影響------------------------------------------------119
5.1.4 衰減公式之適用性-------------------------------------------------120
5.2 隔振溝對於波傳阻隔之效果--------------------------------------------122
5.2.1 隔振溝深度對波傳阻隔之影響試驗-----------------------------------122
5.2.1.1 振波在砂土試體中的性質----------------------------------------123
5.2.1.2 不同隔振溝深度之影響------------------------------------------124
5.2.1.3 不同夯擊能量之影響--------------------------------------------125
5.2.1.4 不同相對密度之影響--------------------------------------------126
5.2.2 隔振溝與振源的距離對於阻隔效果之影響-----------------------------126
5.2.2.1 不同振源與隔振溝之距離----------------------------------------127
5.2.2.2 不同夯擊能量之影響--------------------------------------------127
5.2.2.3 不同相對密度之影響--------------------------------------------128
5.2.3 隔振溝與阻礙物之比較---------------------------------------------128
5.3 台中水力回填廠區之現地試驗結果分析----------------------------------129
5.3.1 最大地動速度隨距離之衰減-----------------------------------------129
5.3.2 不同夯擊次數對地表振動之影響-------------------------------------130
5.3.3 隔振溝對波傳阻隔之影響-------------------------------------------130
5.4 小結----------------------------------------------------------------131
第六章 結論與建議----------------------------------------------------------172
6.1 結論----------------------------------------------------------------172
6.2 建議----------------------------------------------------------------175
參考文獻-------------------------------------------------------------------177
參考文獻 參考文獻
1.山田正俊,「重錘落下締固め工法(動壓密工法)」,土質工學會,「軟弱地盤改良工法に関する現況と動向講習會」演講資料,第89-97頁,(1982)。
2.土質工學會,「土質調查法」,土質工學會,日本,第189-219頁(1982)。
3.中國冶金工業部建築研究總院,「地基處理技術-強力夯實法與振動水沖法」,中國冶金工業出版社,中國北京,第1-138頁,(1989)。
4.石逸清,「非平底夯錘對動力夯實效率影響之實驗研究」,碩士論文,中原大學土木工程研究所,中壢(2000)。
5.史美筠,「強夯法施工參數的確定及施工中震動影響問題」,土建專題情報資料-軟土地基處理與強夯法,中國建築技術發展中心文獻部,第30-33頁,(1988)。
6.李建中,「打樁引致之地表振動」,土木水利,第十卷,第四期,第46-59頁(1984)。
7.李咸亨,「震波之量測」,地工技術雜誌,第17期,第57-69頁(1987)。
8.李奕,「動力壓密工法施工中能量問題探討」,碩士論文,國立海洋大學河海工程研究所,基隆(1994)。
9.佐藤厚子、西川純一、山澤文雄,「衝擊加速度による改良盛土の品質管理事例」,土與基礎,第48期,第21-23頁,(2000)。
10.阪口旭、西海宏、服部征夫、住吉正信,「動壓密工法によるタソク基礎工事」,土質工學會技術手帳,第5-11頁,(1979)。
11.呂協宜,「反覆錘擊對砂土力學性質之改良機制」,碩士論文,國立中央大學土木工程研究所,中壢(1998)。
12.河海大學,「交通土建軟土地基工程手冊」,人民交通出版社,北京,第443-458頁(2001)。
13.周國鈞,地基處理技術第一冊,中國冶金工業出版社,北京,第1-138頁(1989)。
14.林鴻文,「動力壓密工法之改良效果及其力學機制」,碩士論文,國立中央大學土木工程研究所,中壢(1996)。
15.林建良,「動力壓密工法中夯擊能量與影響深度之推估及其施工準則之建立」,碩士論文,國立海洋大學河海工程研究所,基隆(1996)。
16.范維垣、史美筠、裘以惠,「關於強夯加固地基的幾個問題」,地基處理學術會議論文集,第7-15頁,(1980)。
17.胡金鳴,「公害振動的預測技術」,建宏出版社,台北,第12-141頁(1988)。
18.倪勝火、徐俊雄、蔡佩勳,「填充槽溝阻隔效應之實驗研究與分析」,中華民國第十七屆全國力學會議,(1995)。
19.康裕明、吳一民,「落體震源的特性探討」,第六屆大地工程學術研討會論文集,第255-263頁(1995)。
20.陳俶季、張天祥、李奕,「動力壓密工法改良抽砂回填地之能量-影響深度之關係」,第十六屆海洋工程研討會論文集,高雄,第232-263頁,(1994)。
21.陳俶季、張天祥、李奕,「動壓密工法施加夯能與土質改良深度之關係」,中國土木水利工程學刊,第八卷,第三期,第463-470頁(1996)。
22.陳俶季、張榮昌、李建南,「砂質地盤動力夯實後之液化潛能」,工程科技通訊,第六十六期,第127-132頁(2003)。
23.陳景文、廖哲民,「以動力壓密工法改良海埔新生地工程性質之探討」,第十八屆海洋工程研討會論文集,台北,第748-757頁,(1997)。
24.陳景文、廖哲民,「乾砂承受動力夯擊時之應力分佈」,中國土木水利工程學刊,第十一卷,第二期,第267-277頁(1999)。
25.陳海島,「砂土地盤動力夯實之探討」,工程月刊,第七十二卷,第八期,第44-63頁(1999)。
26.黃建順、鍾毓東,「土壤改良-動力壓密法」,地工技術雜誌,第4期,第73-87頁(1983)。
27.黃俊鴻、李建中、杜東岳、徐力平,「打樁對結構物影響之安全距離」,結構工程,第十六卷,第三期,第83-109頁(2001)。
28.黃俊鴻、張惠文、杜東岳,「動力夯實施工引致之地盤振動特性」,中國土木水利工程學刊,第十五卷,第三期,第567-578頁(2003)。
29.張吉佐、曾文德、許建裕,「台灣濱海工業區的地盤改良工法」,地工技術雜誌,第93期,第53-68頁(2002)。
30.張惠文、溫年通、李嶸泰,「砂土承受夯擊時之波動傳遞與阻隔效果」,中華民國力學學會第23屆全國力學會議論文集,新竹市,第354-361頁(1999)。
31.張永鈞,平涌潮,孔繁峰,張峰,「強夯法處理大塊拋石地基的試驗研究」,中國第三屆全國地基處理學術討論會論文集,秦皇島,第395-400頁(1992)。
32.馮道偉,「動力夯實之夯擊參數」,中國土木水利學刊,第十二卷,第三期,第83-89頁(2000)。
33.溫年通,「砂土承受夯擊時之波動傳遞與阻隔效果」,碩士論文,國立中央大學土木工程研究所,中壢(1999)。
34.蔡佩勳,「槽溝對方形振動基礎的震波阻隔效應之研究」,博士論文,國立成功大學土木工程研究所,台南(1996)。
35.蔡佩勳、梁瑞盛,「開口槽溝對基礎振動之隔震效應研究」,第九屆大地工程學術研討會論文集,桃園,第A010-1~A010-6頁(2001)。
36.葉文謙、吳建閩、鍾毓東、余明山,「液化風險與土壤改良評估案例」,地工技術雜誌,第67期,第43-54頁(1998)。
37.鳴海直信,「最近軟弱地盤對策工法設計施工例-動力壓密工法」,建設月刊,第69-78頁(1987)。
38.熊雲嵋,「震測折射法在大地工程上之應用」,地工技術雜誌,第2期,第46-54頁(1983)。
39.熊雲嵋,「Menard壓力計之介紹及應用」,地工技術雜誌,第16期,第32-38頁(1986)。
40.潘少昀、黃子明,「台朔麥寮機械廠動力壓密地盤改良」,地工技術雜誌,第51期,第35-50頁(1995)。
41.潘少昀、黃子明,「動力壓密工法在海埔新生地地盤改良工程之應用」,第六屆大地工程學術研討會論文集,第1071-1082頁(1995)。
42.簡枝龍,「壕溝阻隔地表剪力波之有效性」,碩士論文,國立中央大學土木工程研究所,中壢(1986)。
43.鍾毓東、葉嘉鎮、吳偉康、余明山,「深層夯實改良應用於新生地之案例」,地工技術雜誌,第51期,第67-78頁(1995)。
44.Ahmad, S., Al-Hussaini, T. M. and Fishman, K. L., "Investigation of Active Isolation of Machine Foundations by Open Trenches," Journal of Geotechnical Engineering, ASCE, Vol. 122, No.6, pp. 454-461 (1996).
45.Al-Hussaini, T. M. and Ahmad, S, "Active Isolation of Machine Foundations by In-Filled Trench Barriers," Journal of Geotechnical Engineering, ASCE, Vol.122, No.4, pp. 288- 294 (1996).
46.Barkan, D. D., "Dynamic of Bases and foundations," McGraw-Hill, New York (1962).
47.Das, M. B., "Principles of Geotechincal Engineering," PWS Publishing Company, Boston (1994).
48.Emad, K. and Manolis, G. D., "Shallow Trenches and Propagation of Surface Waves," Journal of the Engineering Mechanics Division, ASCE, Vol.111, No.2, pp. 279-282 (1985).
49.Ewing, W.M., Jardetzky, W. S. and Press, P., "Elastic Waves in Layered Media," McGraw-Hill, (1957).
50.Feng, T. W., Chen, K. H., Su, Y. T. and Shi, Y. C., "Laboratory investigation of efficiency of conical-based pounders for dynamic compaction," Journal of Geotechnique, Vol.50, No.6, pp.667-674 (2000).
51.Gu, Q. and Lee, F. H., "Ground response to dynamic compaction of dry sand," Journal of Geotechnique, Vol.52, No.7, pp.481-493 (2002).
52.Hu, R. L., Yeung, M. R., Lee, C. F. and Wang, S. J., "Mechanical behavior and microstructural variation of loess under dynamic compaction," Journal of Engineering Geology, Vol.59, pp.203-217 (2001).
53.Jessberger, H. L., and Beine, R. A., "Heavy Tamping : Theoretical and Practical Concepts," Proceedings of the 10th ICSMFE, Stockholm, pp.695-699 (1981).
54.Jessberger, H. L., and Godecke, H. J., "Theoretical Concept Saturation of Cohesive Soils by Dynamic Consolidation," Proc. 9th ICSMFE, Tokyo, Vol.3, pp. 449-451 (1977).
55.Lee, F. H. and Gu, Q., "Method for Estimating Dynamic Compaction Effect on Sand," Journal of Geotechnical and Geoenvironmental Engineering, Vol. 130, No. 2, pp.139-152(2004).
56.Leonards, G. A., Gutler, W. A., and Holtz, R. D., "Dynamic Compa- ction of Granular Soils," Journal of the Geotechnical Engineering Division, ASCE, Vol.106, No.GT1, pp.35-44, (1980).
57.Lukas, R. G., "Geotechnical Engineering Circular No.1-Dynamic Compaction," U.S. Department of Transportation, Federal Highway Administration (1995).
58.Lysmer, J., and Richart, F. E., "Dynamic Response of Footings to Vertical Loading," Journal of Soil Mech. and Found. Div., Proc. ASCE, Vol.92, No.SM1, pp. 65-91 (1966).
59.Lysmer, J., and Wass, G., "Shear waves in plane infinite surface," Journal of the Engineering Mechanics Division, ASCE, Vol.98, No.1, pp. 351-358 (1972).
60.May, T. W. and Bolt, B. A., "The Effectiveness of Trench in Reducing Seismic Motion," Earthquake Engineering and Structure Dynamic, Vol.10, No.2, pp.652-674 (1982).
61.Mayne, P. W., Jones, J. S., and Dumas, J. C., "Ground Response to Dynamic Compaction," Journal of Geotechnical Engineering, ASCE, Vol.110, No.6, pp.757-774, (1984).
62.Menard, L. and Broise, Y., "Theoretical and Practical Aspects of Dynamic Consolidation," Journal of Geotechnique, Vol.25, No.1, pp.3-18 (1975).
63.Merrifield, C. M. and Davies, M. C. R., "A study of low-energy dynamic compaction: field trials and centrifuge modelling," Journal of Geotechnique, Vol.50, No.6, pp.675-681 (2000).
64.Mitchell, J. K., "State of the Art Report on Soil Improvement," Proceedings of the 10th ICSMFE, Stockholm, Vol.4, pp.509-521, (1981).
65.Mitchell, J. K. et. al., "Performance of improved ground during earthquakes," Soil improvement of earthquake hazard mitigation, Geotechnical Special Publication of ASCE, No.49, pp.1-36 (1995).
66.Segol G., Lee, P. C. Y., and Abel, J. F., "Amplitude Reduction of Surface Wave by Trenches," Journal of the Engineering Mechanics Division,” ASCE, Vol.104, No.3, pp. 621-641 (1978).
67.Theissen, J. R. and Wood, W. C., "Vibration in Structures Adjacent to Pile Driving," Dames and Moore Engineering Bulletin, No.60, pp.4-21 (1982).
68.Wetzel, R. A. and Vey, E., "Axi-symmetric Stress Wave Propagation in Sand," Journal of the Soil Mechanics and Foundation Division, ASCE, Vol.96, No.SM5, pp.1763-1786 (1970).
69.Woods, R. D., "Screening of Surface Waves in Soils," Journal of the Soil Mechanics and Foundations Division, Proceedings of the ASCE, Vol.94, No.SM4, pp.951-979 (1968).
70.Wiss, J. F., "Construction Vibrations: State-of-the-Art," Journal of the Geotechnical Engineering Division, Proceedings of the ASCE, Vol. 107, GT2, pp. 167-182 (1981).
71.Zheng, Y. R., Chu, J., Lu, X. and Feng, Y. X., "Improvement of Soft Ground by Dynamic Compaction," Geotechnical Engineering- Bangkok, Vol. 35, No. 1, pp.39-46 (2004).
(中文按筆劃順序排列,英文按字母順序排列)
指導教授 張惠文(Huei-Wen Chang) 審核日期 2005-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明