博碩士論文 93241002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.133.110.87
姓名 吳政訓(Cheng-Hsun Wu)  查詢紙本館藏   畢業系所 數學系
論文名稱 幾何布朗運動之推廣與應用
(A generalization of geometric Brownian motion with applications)
相關論文
★ 定點離散核估計★ 密度函數核估計之差的極限分布及其應用
★ 密度函數的直接核估計與間接核估計★ 前二階樣本動差之函數在m相關平穩過程上之統計推論
★ 平穩過程高階動差之極限分佈及應用★ 統計模型參數和之估計
★ 隨機過程參數和之估計★ 二組件組合產品之故障率的非母數估計
★ 穩定性密度函數之核估計★ 柏努力條件下常態分布之參數估計
★ (X,Y)及max{X,Y}之分布及特徵函數之估計★ 二維品質度量之直接與間接參數估計
★ 布朗運動之雙曲正弦與雙曲餘弦變換★ 布朗運動及布阿松過程之變異數分析
★ 布朗運動之線性和二次動向函數的同值檢定★ 兩個獨立的基本Lévy隨機過程之極值過程
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 布朗運動(Brownian motion)是一個實用的數學模型 (Wiener (1923), Levy
(1948), Ciesielski (1961)),在生物(Brown(1827))、物理(Eistein (1905),
Mazo (2002))、經濟與財務工程(Bachelier (1900), Black and Scholes (1973))
隨機微積分(Ito (1944))及許多領域上廣為研究及應用,成果豐碩, 影響深
遠。
雖然幾何布朗運動有著多元化的應用,但是無法涵蓋所有的隨機現象。因此推廣幾何布朗運動, 可以擴展適用範圍,此為本文之主要的目的。本文研究下列幾何布朗運動所推廣的隨機過程及其變化型式。
我們將研究此隨機過程之數學性質,討論其在財務工程的應用,並提出參數之統計推論。
摘要(英) Brownian motion is a rigorous mathematical model (Wiener (1923), Levy (1948),
Ciesielski (1961)) with fruitful applications ranging from biology (Brown (1827)),
physics (Einstein (1905), Mazo (2002)), economy and financial engineering
(Bachelier (1900), Black and Scholes (1973)), to stochastic calculus (Ito (1944)),
among others.
Functional of Brownian motion is also useful in stochastic modeling. This is
particularly true for geometric Brownian motion. For instance, it has been applied to
model prices of stock (page 365 in Karlin and Taylor (1975), Black and
Scholes(1973)), rice (Yoshimoto el al. (1996)), labor (page 363 in Karlin and Taylor
(1975)) and others (Shoji (1995)). See Yor (2001) for more details.
Although geometric Brownian motion has a great variety of applications, it can not
cover all the random phenomena. It is then desirable to find a general model with
geometric Brownian motion as a special model. The purpose of this paper is to
investigate the generalizations of geometric Brownian motion
and its variants.
For the processes mentioned above, we will first study their mathematical properties. Next, we will discuss their applications in financial engineering. In practice, the parameters are unknown and have to be inferred from
realizations of processes. We will present estimation and test procedures.
關鍵字(中) ★ 布朗運動
★ 幾何布朗運動
★ 永續憑證問題
★ 選擇權定價
★ 隨機過程之統計推論
★ 財務工程
關鍵字(英) ★ Brownian motion
★ geometric Brownian motion
★ perpetual warrants
★ option pricing
★ statistical inference for stochastic processes
★ financial engineering
論文目次 Contents
1 Introduction 1
2 Mathematical Properties of U(t) and X(t) 5
2.1 Distributional Properties . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Martingale Properties . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 First Passage Times . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Distributions of ¯ Tu and Tx . . . . . . . . . . . . . . . . . 16
2.3.2 Laplace Transforms of ¯ Tu and Tx . . . . . . . . . . . . . 21
3 Applications of X(t) in Financial Engineering 25
3.1 PerpetualWarrant Problem . . . . . . . . . . . . . . . . . . . . 27
3.2 Option Pricing Problem . . . . . . . . . . . . . . . . . . . . . . 30
3.3 The Optimal Portfolio SelectionProblem . . . . . . . . . . . . . 33
4 Statistical Inferences Based on U(t) and X(t) 39
4.1 Normal and Likelihood Based Inferences . . . . . . . . . . . . . 40
4.1.1 Statistical Inferences for a and b Based on Sampling
Scheme A . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.2 Statistical Inferences for c and d Based on Sampling
Scheme A . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.3 Statistical Inferences for c and d Based on Sampling
Scheme B . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1.4 Statistical Inferences for a and b Based on Sampling
Scheme C . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Quadratic Variation Based Inferences . . . . . . . . . . . . . . . 54
4.2.1 Statistical Inferences Based on Sampling Scheme C . . . 54
4.2.2 Statistical Inferences Based on Sampling Scheme D . . . 62
5 Theory and Applications of Y (t) 71
5.1 Mathematical Properties of Y (t) . . . . . . . . . . . . . . . . . . 72
5.1.1 Distributions and Moments of Y (t) . . . . . . . . . . . . 72
5.1.2 Martingale Properties of Y (t) . . . . . . . . . . . . . . . 78
5.1.3 First Passage Time of Y (t) . . . . . . . . . . . . . . . . . 79
5.2 Applications of Y (t) in Financial Engineering . . . . . . . . . . 81
5.2.1 The Properties of the Bankrupt Time . . . . . . . . . . . 82
5.2.2 The PerpetualWarrant Problem. . . . . . . . . . . . . . 84
5.2.3 The Option Pricing Problem . . . . . . . . . . . . . . . . 87
5.3 Statistical Inferences Based on Y (t) . . . . . . . . . . . . . . . . 94
5.3.1 Method ofMoment Based Inferences . . . . . . . . . . . 94
5.3.2 Quadratic Variation Based Inferences . . . . . . . . . . . 95
6 Theory and Applications of Zx(t) and Zy(t) 97
6.1 Mathematical Properties of Zx(t) and Zy(t) . . . . . . . . . . . 98
6.1.1 Distributional Properties . . . . . . . . . . . . . . . . . . 98
6.1.2 Martingale Properties . . . . . . . . . . . . . . . . . . . 102
6.1.3 First Passage Time . . . . . . . . . . . . . . . . . . . . . 103
6.2 Applications of Zx(t) and Zy(t) in Financial Engineering . . . . 106
6.2.1 PerpetualWarrants . . . . . . . . . . . . . . . . . . . . . 106
6.2.2 Option Pricing Problem . . . . . . . . . . . . . . . . . . 106
6.3 Statistical Inferences Based on Zx(t) and Zy(t) . . . . . . . . . . 107
6.3.1 Statistical Inferences for a and b . . . . . . . . . . . . . . 107
6.3.2 Statistical Inferences for c and d . . . . . . . . . . . . . . 109
6.3.3 Quadratic Variation Based Inferences . . . . . . . . . . . 111
7 Conclusions 113
A 119
B 121
C 125
D 129
E 131
F 133
G 137
H 141
I 143
參考文獻 References
[1] Anderson, T. W.(1984). An Introduction to Multivariate Statistical Analysis.
2nd ed., Wiley.
[2] Bachelier, L. (1900). Th´eotie de la sp´eculation. Ann. Sci. ´ Ecole N´orm.
Sup., 17, 21-86.
[3] Black, F. and Scholes, M. (1973). The pricing of options and corporate
liabilities. J. Polit. Econ., 81, 637-654.
[4] Brigo, D. and Mercurio, F. (2001). Displaced and mixture diffusions for
analytically-tractable smile models. In Mathematical Finance - Bachelier
Congress 2000, Geman, H., Madan, D.B., Pliska, S.R., Vorst, A.C.F., eds.
Springer Finance, Springer, Berlin, 151-174.
[5] Brigo, D. and Mercurio, F. (2002a). On stochastic differential equations
with marginal laws evolving according to mixtures of densities. Working
paper, Banca IMI.
[6] Brigo, D. and Mercurio, F. (2002b). Lognormal-mixture dynamics and
calibration to market volatility smiles. Int. J. Theor. Appl. Fin., 5, 427-
446.
[7] Brigo, D., Mercurio, F. and Sartorelli, G. (2003). Alternative asset-price
dynamics and volatility smile. Quant. Fin., 3, 173-183.
[8] Brown, R. (1827). A brief account of microscopical observations. London.
[9] Carr, P., Tari, M. and Zariphopoulou, T. (1999). Closed form option
valuation with smiles. Preprint. NationsBanc Montgomery Securities.
[10] Ciesielski, Z. (1961). Holder condition for realizations of Gaussian processes.
Trans. Amer. Math. Soc., 99, No. 3. 403-413.
[11] Chang, F. R. (2004). Stochastic Optimization in Continuous Time. Cambridge
University Press.
[12] Cheng, P. and Scaillet, O. (2007). Linear-quadratic jump-diffusion modeling.
Math. Fin., 17, No. 4. 575-598.
[13] Cox, J.C. (1975). Notes on options pricing I: constant elasticity of variance
diffusions. Working paper, Stanford University.
[14] Cox, J.C. and Ross, S.A. (1976). The valuation of options for alternative
stochastic processes. J. Fin. Econ., 3, 145-166.
[15] Einstein, A. (1905). On the movement of small particles suspend in a
stationary liquid demanded by the molecular-kinetic theory of heat. Ann.
Phys. 17, 549-560.
[16] Geman, H and Yor, M. (1996). Pricing and hedging double-barrier options:
a probabilistic approach. Math. Fin., 6, No. 4. 575-598.
[17] Guo, C. (1998). Option pricing under heterogeneous expectations. Fin.
Rev., 33, 81-92.
[18] Harrison, J.M. and Pliska, S.R. (1981). Martingales and stochastic integrals
in the theory of continuous trading. Stoch. Proc. and their Appl. 11,
215-260.
[19] Hull, J.C. and White, A. (1987). The pricing of options on assets with
stochastic volatilities. J. Fin. 42, 281-300.
[20] Ito, K. (1944). Stochastic integral. Proc. Imp. Acad. Tokyo, 20, 519-524.
[21] Kao, E. P. C. (1997). An Introduction to Stochastic Processes. Duxbury
Press.
[22] Karatzas, I. and Shreve, S. E. (1991). Brownian Motion and Stochastic
Calculus, 2nd Edition. Springer-Verlag New York.
[23] Karlin, S. and Taylor, H. (1975). A First Course in Stochastic Processes.
Academic Press, New York.
[24] Levy, P. (1948). Processus Stochastiques et Mouvement Brownien.
Gauthier-Vilrs, Paris.
[25] Mazo, R. M. (2002). Brownian Motion: Fluctuations, Dynamics, and
Applications. Clarendon Press. Oxford.
[26] Melick, W.R. and Thomas, C.P. (1997). Recovering an asset’s implied
PDF from option prices: an application to crude oil during the Gulf crisis.
J. Fin. Quant. Anal., 32, 91-115.
[27] Merton, R. C. (1971). Optimum consumption and portfolio rules in a
continuous-time model. J. Econ. Theory, 3, 373-413.
[28] Merton, R. C. (1973). Theory of rational option pricing. Bell J. Econ.
Manage. Sci., 4, No. 3, 141-183.
[29] Merton, R. C. (1990). Continuous-Time Finance. Blackwell Publishers.
[30] Musiela, M. and Rutkowski, M. (2005). Martingale Methods in Financial
Modelling, 2nd Edition. Springer-Verlag, Berlin and Heidelberg.
[31] Øksendal, B. (2000). Stochastic Differential Equations, 5th ed. Springer-
Verlag, New York.
[32] Protter, P. (2003). Stochastic Integration and Differential Equations. 2nd
Edition. Springer-Verlag, Berlin Heidelberg New York.
[33] Ritchey, P. (1990). Call option valuation for discrete normal mixtures. J.
Fin. Res., 13, 285-296.
[34] Ross, S. M. (1996). Stochastic Processes. John Wiley & Sons, Inc.
[35] Rubinstein, M. (1985). Nonparametric tests of alternative option pricing
models using all reported trades and quotes on the thirty most active
CBOE option classes from August 23, 1976 through August 31, 1978. J.
Fin. 40, 455-480.
[36] Shastri, K. and Wethyavivorn, K. (1987). The valuation of currency options
for alternative stochastic processes. J. Fin. Res. 10, 283-293.
[37] Shreve, S. E. (2004). Stochastic Calculus for Finance II, Continuous-Time
Models. Springer-Verlag New York.
[38] Shoji, I. (1995). Estimation and inference for continuous time stochastic
models. Doctoral Thesis, Institute of Statistical Mathematics, Tokyo.
[39] Steele, J. M. (2001). Stochastic Calculus and Financial Applications.
Springer-Verlag, New York.
[40] Taylor, S.J. and Xu, X. (1993). The magnitude of implied volatility smiles:
theory and empirical evidence for exchange rates. Rev. Fut. Mark. 13,
355-380.
[41] Wiener, R. (1923). Differential space. J. Math. Phys., 2, 131-174.
[42] Yamada, T. and Watanabe, S. (1971). On the uniqueness of solutions of
stochastic differential equations. J. Math. Kyoto Univ., 11, 155-167.
[43] Yor, M. (2001). Exponential Functionals of Brownian Motion and Related
Processes. Springer.
[44] Yoshimoto, A., Shoji, I. and Yoshimoto, Y. (1996). Application of a
stochastic control model to a free market policy of rice. Statistical Analysis
of time Series. Research Report No. 90, Institute of Statistical Mathematics.
Tokyo.
指導教授 許玉生(Yu-Sheng Hsu) 審核日期 2009-7-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明