博碩士論文 942201016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:73 、訪客IP:18.191.123.220
姓名 周宗翰(Tsung-han Chou)  查詢紙本館藏   畢業系所 數學系
論文名稱 單峰穩定型分布之冪數的經驗分布及核密度函數估計法
(Exponent Estimations for Unimodal Stable Distribution based on Empirical Distributions and Kernel Density Estimators)
相關論文
★ 定點離散核估計★ 密度函數核估計之差的極限分布及其應用
★ 密度函數的直接核估計與間接核估計★ 前二階樣本動差之函數在m相關平穩過程上之統計推論
★ 平穩過程高階動差之極限分佈及應用★ 統計模型參數和之估計
★ 隨機過程參數和之估計★ 二組件組合產品之故障率的非母數估計
★ 穩定性密度函數之核估計★ 柏努力條件下常態分布之參數估計
★ (X,Y)及max{X,Y}之分布及特徵函數之估計★ 二維品質度量之直接與間接參數估計
★ 布朗運動之雙曲正弦與雙曲餘弦變換★ 布朗運動及布阿松過程之變異數分析
★ 布朗運動之線性和二次動向函數的同值檢定★ 兩個獨立的基本Lévy隨機過程之極值過程
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 穩定型分布之冪數因未出現於密度函數或分布函數,故不易估計,本文介紹一些估計冪數的方法。我們發現,單峰穩定型分布之冪數為密度函數或分布函數之泛函,故可由核密度函數估計式或經驗分布估計之。我們將討論這些估計式的性質及應用。
摘要(英) The collection of stable distributions is a particular class of distributions studied in probability and statistics. Let $X,X_1,ldots,X_k$ denote a sequence of i.i.d. random variables with a common distribution $R$. If for all positive integer $k$, $X$ and $frac{X_1+cdots+X_k}{k^alpha}$ have the same distribution for
some constant $alpha$, then $R$ is a stable distribution with exponent $frac{1}{alpha}$. It is difficult to estimate exponent $alpha$ since $alpha$ does not appear in probability density function. The purpose of this paper is to study some estimators of $alpha$ and their applications. We find that under unimodal assumption $alpha$ is a functional of probability density function
or distribution function. Consequently, $alpha$ can be estimated by kernel density estimators or empirical distributions.
關鍵字(中) ★ 經驗分布
★ 密度函數估計式
★ 冪數
★ 穩定型分布
關鍵字(英) ★ stable distributions
★ empirical distributions
★ kernel density estimators
★ exponent
論文目次 摘要 i
Abstract ii
l
參考文獻 [1] M. Alexandersson(2001). On the existence of the stable birth-type distribution in a general branching process cell cycle modal with unequal cell division, Journal of Applied Probability. Volume 38, Number 3, 685-695.
[2] T. W. Anderson(1984). An Introduction to Multivariate Statistical Analysis, 2nded., Wiley.
[3] M. Csorgo, S. Csorgo, L. Horvath and D. M.Mason(1986). Normal and Stable Convergence of Integral Functions of the Empirical Distribution Function, The Annals of Probability. Volume 14, Number 1, 86-118.
[4] R. A. Doney(1987). On Wiener-Hopf Factorisation and the Distribution of Extrema for Certain Stable Processes, The Annals of Probability. Volume 15, Number 4, 1352-1362.
[5] A. Dudin and O. Semenova(2004). A stable algorithm for stationary distribution calculation for a BMAP/SM/1 queueing system with Markovian arrival input of disasters, Journal of Applied Probability. Volume 41, Number 2, 547-556.
[6] W. H. DuMouchel(1973). On the Asymptotic Normality of the Maximum-Likelihood Estimate when Sampling from a Stable Distribution, The Annals of Statistics. Volume 1, Number 5, 948-957.
[7] W. Feller(1971). An Introduction to Probability Theory and Its Applications. Vol2, 2nded., Wiley.
[8] W. N. Hudson and J. D. Mason(1981). Operator-Stable Distribution on R2 with Multiple Exponents, The Annals of Probability. Volume 9, Number 3, 482-489.
[9] R. LePage, M. Woodroofe and J. Zinn(1981). Convergence to a Stable Distribution Via Order Statistics, The Annals of Probability. Volume 9, Number 4, 624-632.
[10] Y. X. Liao(2002). Kernel density estimations of stable distribution. Master thesis, Department of Mathematics, National Center University.
[11] S. S. Mitra(1981). Distribution of Symmetric Stable Laws of Index 2¡n, The Annals of Probability. Volume 9, Number 4, 710-711.
[12] A. Nagaev and A. Zaigraev(2005). New large-deviation local theorems for sums of independent and identically distributed random vectors when the limit distribution is astable, Bernoulli. Volume 11, Number 4, 665-687.
[13] A. Pagan and A. Ullah(1999). Nonparametric Economatrics, Cambridge University Press.
[14] J. Pitman and M. Yor(1997). The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator, The Annals of Probability. Volume 25, Number 2, 855-900.
[15] S. C. Port(1970). The Exit Distribution of an Interval for Completely Asymmetric Stable Processes, The Annals of Mathematical Statistics. Volume 41, Number 1, 39-43.
[16] B. L. S. Prakasa Rao(1983). Nonparametric Functional Estimation.
[17] B. W. Silverman(1986). Density Estimation for Statistics and Data Analysis, Chapman and Hall.
[18] R. A. Tapia and J. R. Thompson(1977). Nonparametric Probability Density Estimation, Johns Hopkins University Press.
[19] S. J. Wolfe(1972). A Note on the Complete Convergence of Stable Distribution Functions, The Annals of Mathematical Statistics. Volume 43, Number 1, 363-364.
指導教授 許玉生(Yu-sheng Hsu) 審核日期 2007-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明