博碩士論文 104382601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:18.117.72.146
姓名 林光耀(Hendra Halim)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 具變形放大消能器之斜撐構架耐震行為研究
(Seismic Performance of A-Braced Frames with Amplified Deformation Steel Curved Dampers)
相關論文
★ 隅撐鋼結構耐震性能研究★ 含斜拉鋼筋之中空複合構件於三維載重下之耐震行為
★ 應用不同尺度隅撐之鋼結構耐震性能研究★ 雙孔中空複合構件耐震性能研究
★ 具挫屈控制機制之隅撐構架耐震行為研究★ 圓形中空複合構材耐震性能研究
★ 多層多跨隅撐鋼結構之耐震性能研究★ 隅撐抗彎構架之性能設計研究與分析
★ 配置開槽消能鋼板之預力式橋柱耐震性能研究★ 具鋼板消能裝置之隅撐結構耐震行為研究
★ 中空鋼骨鋼筋混凝土耐震補強有效性研究★ 具自復位隅撐鋼結構耐震性能研究
★ 具自復位梁柱接頭隅撐鋼結構耐震性能研究★ 具消能隅撐內框架之構架耐震性能研究
★ 具摩擦消能機制之Y型隅撐鋼結構耐震性能研究★ 全鋼線網圍束中空複合構材之扭轉撓曲行為研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究針對配置變形放大曲線消能器之鋼結構耐震性能進行評估,研究中使用不同尺度之曲線阻尼器製作斜撐(A-Brace),並將之應用於結構設計。此設計中,藉由變形放大機制,在結構承受較小樓層位移比時,即可在阻尼器上造成倍數之變形,藉以在結構早期變形時有效消能。為驗證此設計之有效性,研究中首先針對配置不同尺度A-Brace之鋼構架進行一系列週期載重試驗,實驗結果顯示,此設計在位移放大機制作用下,結構在早期變形階段有效消散能量,結構之強度及勁度亦可因此設計而獲有效提升。另為進一步確認此新型設計在結構耐震設計之應用性,研究中亦選擇12個地震紀錄,進行結構動力分析,研究結果顯示,配置此變形放大曲線消能器之鋼構架在不同地震作用下之破壞,均可獲有效減低。上述研究結果顯示,變形放大曲線消能器可有效提升結構之強度、變形能力及能量消散能力,因此應為一有效之結構耐震效能提升設計。
摘要(英) This study focused on the performance evaluation of new A-Brace designs that adopted steel curved dampers (SCD) with amplified deformation mechanisms. The A-Brace was implemented in the strengthening scheme. The purpose of adopting A-Brace to the existing structure is to possess an allowable story drift and reduce the number of formation plastic hinges which might be occurred during major earthquake. The brace enhanced the lateral force resisting capacity and frame stiffness. The application was verified through experimental and numerical studies of the test frames. A series of cyclic load tests with various damper dimensions, subjected to cyclic increasing displacement histories, were conducted. It was confirmed experimentally that A-Brace started to dissipate energy in early deformation stage by amplifier mechanism and have large energy dissipation capacity. In the seismic evaluation, twelve earthquake ground motions were selected for time history analyses. A-Brace was modeled as kinematic link element based on multilinear force-displacement relationship obtained from finite element analysis. The results showed that significant improvement could be achieved by adding A-Brace to the existing steel moment frame. Therefore, the structural damages can be minimized. Simultaneous accomplishments in high strength, large deformation capability, and significant energy dissipation validated the applicability of the proposed A-Brace design to earthquake-resistant structural designs.
關鍵字(中) ★ 曲線消能器
★ 變形放大
★ 耐震性能
★ 能量消散
★ 斜撐設計
關鍵字(英) ★ Steel Curved Damper
★ A-Brace
★ Amplified Deformation
★ Seismic Performance
★ Energy Dissipation
★ Brace Design
論文目次 TABLE OF CONTENTS
摘要 i
ABSTRACT ii
TABLE OF CONTENTS iii
LIST OF TABLES vi
LIST OF FIGURES vii
NOMENCLATURE xii
CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.2 Motivations 4
1.3 Objectives 5
1.4 Outlines 5
CHAPTER 2 LITERATURE REVIEW 6
2.1 Special Moment Resisting Frame Response 6
2.2 Braced Frame Response 8
2.3 Passive energy dissipation 9
2.4 Seismic Improvement Remedy 12
2.5 Steel Curved Damper 14
CHAPTER 3 INVESTIGATION ON PERFORMANCE OF STEEL CURVED DAMPERS AND A-BRACES 17
3.1 Introduction 17
3.2 Methodology 18
3.2.1 Deformation Amplification 18
3.2.2 A-Brace Strength 20
3.3 Testing Procedure 21
3.3.1 Experimental Description 21
3.3.2 Material Properties 22
3.3.3 Specimen Label 24
3.3.4 Instrumentations 25
3.3.5 Experimental Set-up 27
3.3.6 Loading Protocol 28
3.4 The response of Test Specimens 29
3.4.1 Inter-related Deformation Ratio 29
3.4.2 Steel Curved Damper Component Test 30
3.4.3 A-Brace Component Test 31
3.5 Finite Element Analysis and Verification 31
CHAPTER 4 INVESTIGATION ON PERFORMANCE OF A-BRACED FRAMES 34
4.1 Introduction 34
4.2 Methodology 36
4.2.1 Strong Column Weak Beam Principles 36
4.2.2 Frame Strength 37
4.3 Testing Procedure 39
4.3.1 Experimental Description 39
4.3.2 Material Properties 39
4.3.3 Specimen Label 40
4.3.4 Instrumentations 40
4.3.5 Experimental Set-up 42
4.3.6 Loading Protocol 43
4.4 The response of Test Specimens 43
4.4.1 Inter-related Deformation Ratio 43
4.4.2 Frame response 44
4.5 Finite Element Analysis and Verification 45
CHAPTER 5 COMPARISONS AND DISCUSSIONS 47
5.1 Steel Curved Damper and A-Brace Component Tests 47
5.1.1 Strength 47
5.1.2 Stiffness 48
5.1.3 Energy Dissipation 48
5.1.4 Equivalent Viscous Damping 49
5.1.5 Performance Evaluation 50
5.2 Frame Tests 50
5.2.1 Strength 50
5.2.2 Stiffness 51
5.2.3 Energy Dissipation 51
5.2.4 Equivalent Viscous Damping 52
5.2.5 Performance Evaluation 52
5.3 Design Recommendations 53
CHAPTER 6 SEISMIC ANALYSES OF A-BRACED FRAMES 54
6.1 Structural Model 54
6.2 Ground Motions 56
6.3 Numerical Results and Discussions 57
6.4 Conclusions 58
CHAPTER 7 CONCLUSIONS 60
7.1 Conclusions 60
7.2 Suggestions 61
REFERENCES 62
TABLES 69
FIGURES 83
參考文獻 Aghlara R, Tahir MM, Adnan A. Comparative study of eight metallic yielding dampers. J Teknologi 2015;119-125.
AISC. Seismic provisions for structural steel buildings, American Institute of Steel Construction, Chicago, IL:2010.
Almeida A, Ferreira R, Proenca JM, Gago AS. Seismic retrofit of RC building structures with buckling restrained braces. Eng Struct 2017;130:14-22.
ANSYS. Workbench user’s guide. ANSYS Inc.; 2016.
Asgarian B, Sadrinezhad A, Alanjari P. Seismic performance evaluation of steel moment resisting frames through incremental dynamics analysis. J Constr Steel Res 2010;66:178-190.
Bagheri S, Barghian M, Saieri F, Farzinfar A. U-shaped metallic-yielding damper in building structures: Seismic behavior and comparison with a friction damper. Struct 2015;3:163-171.
Barati F, Esfandiari A. Exploring the efficiency of dampers for repair and strengthening of existing buildings. J Struct Eng Geo 2012;2:67-73.
Basu D, Reddy PRM. A new metallic damper for seismic resilience: analytical feasibility study. Struct 2016;7:165-183.
Basu D, Reddy PRM. A new metallic damper for seismic resilience: Analytical feasibility study. Struct 2016;7:165-183.
Brandonisio G, Toreno M, Grande E, Mele E, Luca AD. Seismic design of concentric braced frames. J Constr Steel Res 2012;78:22-37.
California Strong Motion Instrumentation Program (CSMIP), Center for engineering strong motion data.
Cassiano D, D’Aniello M, Rebelo C, Landolfo R, Silva LS. Influence of seismic design rules on the robustness of steel moment resisting frames. Steel Comp Struct 2016;21(3):479-500.
Chen CH, Hu HK. Evaluation of loading sequences on testing capacity of concentrically braced frame structures. J Constr Steel Res 2017;130:1-11.
Choi KS, Park JY, Kim HJ. Numerical investigation on design requirements for steel ordinary braced frames. Eng Struct 2017;137:296-309.
Chopra AK. Dynamics of structures: theory and applications to earthquake engineering, 2nd ed. Englewood Cliffs: Prentice Hall; 2001.
Chou CC, Chen YC, Pham DH, Truong VM. Steel braced frames with dual-core SCBs and sandwiched BRBs: Mechanics, modeling and seismic demands. Eng Struct 2014;72:26-40.
Climent AB, Paez SM. Earthquake retrofitting of R/C frames with soft first story using hysteretic dampers: Energy-based design method and evaluation. Eng Struct 2017;137:19-32.
Deng K, Pan P, Wang C. Development of crawler steel damper for bridges. J Constr Steel Res 2013;85:140-150.
Federal Emergency Management Agency (FEMA). Interim protocols for determining seismic performance characteristics of structural and nonstructural components. Report No. FEMA 461, Washington, DC, USA; 2007.
FEMA-354, A Policy Guide to Steel Moment-Frame Construction, Federal Emergency Management Agency, 2000.
FEMA-356, Prestandard And Commentary for The Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, 2000.
Gray MG, Christopoulos C, Packer JA. Cast steel yielding brace system for concentrically braced frames: concept development and experimental validations. J Struct Eng 2014;140(4):04013095.
Hamburger RO, Krawinkler H, Malley JO and Adan SM. (2009). “Seismic design of steel moment frames: A guide for practicing engineers,” NEHRP Seismic Design Technical Brief No.2, produced by the NEHRP Consultants Joint Venture, a partnership of the Applied Technology Council and the Consortium of Universities for Research in Earthquake Engineering, for the National Institute of Standards and Technology, Gaithersburg, MD, NIST GCR 09-917-3.
Hou X, Tagawa H. Displacement-restraint bracing for seismic retrofit of steel moment frames. J Constr Steel Res 2009;65:1096-1104.
Hsu HL, Halim H. Brace performance with steel curved dampers and amplified deformation mechanisms. Eng Struct 2018;175:628-644.
Hsu HL, Halim H. Improving seismic performance of framed structures with steel curved dampers. Eng Struct 2017;130:99-111.
Hsu HL, Li ZC. Seismic performance of steel frames with controlled buckling mechanisms in knee braces. J Constr Steel Res 2015;107:50-60.
Hutt CM, Almufti I, Willford M, Deierlein G. Seismic loss and downtime assessment of existing tall steel-framed buildings and strategies for increased resilience. J Struct Eng 2016;142(8):C4015005.
Jia LJ, Ge H, Maruyama R, Shinohara K. Development of a novel high-performance all-steel fish-bone shaped buckling-restrained brace. Eng Struct 2017;138:105-119.
Kammouh O, Silvestri S, Palermo M, Cimellaro GP. Performance-based seismic design of multistory frame structures equipped with crescent-shaped brace. Struct Control Health Monit. 2017:e2079.
Khandelwal K, El-Tawil S. Collapse behavior of steel special moment resisting frame connections. J Struct Eng 2007;133:646-655.
Kim J, Choi H, Min KW. Use of rotational friction dampers to enhance seismic and progressive collapse resisting capacity of structures. Struct Design Tall Spec Build 2011;20:515-537.
Kim J, Kim M, Eldin MN. Optimal distribution of steel plate slit dampers for seismic retrofit of structures. Steel Comp Struct 2017;25(4):473-484.
Kim J, Kim T. Assessment of progressive collapse-resisting capacity of steel moment frames. J Constr Steel Res 2009;65:169-179.
Lee CH, Ju YK, Min JK, Lho SH, Kim SD. Non-uniform steel strip dampers subjected to cyclic loadings. Eng Struct 2015;99:192-204.
Lee CH, Lho SH, Kim DH, Oh J, Ju YK. Hourglass-shaped strip damper subjected to monotonic and cyclic loadings. Eng Struct 2016;119:122-134.
Lee J, Kim J. Development of box-shaped steel slit dampers for seismic retrofit of building structures. Eng Struct 2017;150:934-946.
Li HN, Li G. Experimental study of structure with “dual function” metallic dampers. Eng Struct 2007;29:1917-1928.
Mahin SA. Lessons from damage to steel buildings during the Northridge earthquake 1998;20:261-270.
Mahjoubi S, Maleki S. Seismic performance evaluation and design of steel structures equipped with dual-pipe dampers. J Constr Steel Res 2016;122:25-39.
Mahmoudi M, Zaree M. Evaluating response modification factors of concentrically braced steel frames. J Constr Steel Res 2010;66:1196-1204.
Maleki S, Mahjoubi S. Infilled-pipe damper. J Constr Steel Res 2014;98:45-58.
Mazzolani FM, Herrera R. Behaviour of steel structures in seismic areas. Taylor and Francis Group: Stessa; 2012.
Mirtaheri SM, Nazeryan M, Bahrani MK, Nooralizadeh A, Montazerian L, Naserifard M. Local and global buckling condition of all-steel buckling restrained braces. Steel Comp Struct 2017;23(2):217-228.
Moon KH, Han SW, Lee CS. Seismic retrofit design method using friction damping systems for old low- and mid-rise regular reinforced concrete buildings. Eng Struct 2017;146:105-117.
Naeem A, Lee M, Kim J. Steel honeycomb dampers for seismic retrofit of structures. International Conference on Environment and Civil Engineering 2015; April 24-25;Pattaya(Thailand).
Ozhendekci D, Ozhendekci N. Seismic performance of steel special moment resisting frames with different span arrangements. J Constr Steel Res 2012,72:51-60.
Pacific Earthquake Engineering Research Center (PEER), Center for engineering strong motion data.
Pajand MR, Sinaie S. On the calibration of the chaboche hardening model and a modified hardening rule for uniaxial ratcheting prediction. Int J Solids Struct 2009;46:3009-3017.
Palermo M, Pieraccini, Dib A, Silvestri S, Trombetti T. Experimental tests on crescent shaped braces hysteretic devices. Eng Struct 2017;144:185-200.
Palermo M, Silvestri S, Gasparini G, Trombetti T. Crescent shaped braces for the seismic design of building structures. Mater Struct 2015;48:1485-1502.
Qu Z, Xie J, Wang T, Kishiki S. Cyclic loading test of double K-braced reinforced concrete frame subassemblies with buckling restrained braces. Eng Struct 2017;139:1-14.
Rahnavard R, Hassanipour A, Suleiman M, Mokhtari A. Evaluation on eccentrically braced frame with single and double shear panels. J Build Eng 2017;10:13-25.
Rezayibana B, Yahyai M. New expression to estimate out-of-plane displacement of special concentrically-braced frames. Eng Struct 2017;135:236-245.
Rooudsari MT, Entezari A, Hadidi MH, Gandomian O. Experimental assessment of retrofitted RC Frames with different steel braces. Struct 2017;06.003.
Sabelli, Rafael, Roeder, Charles W., and Hajjar, Jerome F. (2013). “Seismic design of steel special concentrically braced frame systems: A guide for practicing engineers,” NEHRP Seismic Design Technical Brief No.8, produced by the NEHRP Consultants Joint Venture, a partnership of the Applied Technology Council and the Consortium of Universities for Research in Earthquake Engineering, for the National Institute of Standards and Technology, Gaithersburg, MD, NIST GCR 13-917-24.
Sahoo DR, Singhal T, Taraithia SS, Saini A. Cyclic behavior of shear-and-flexural yielding metallic dampers. J Constr Steel Res 2015;114:247-257.
Salawdeh S, Goggins J. Performance based design approach for multi-storey concentrically braced steel frames. Steel Comp Struct 2016;20(4):749-776.
SAP2000. Integrated structural analysis and design software. Berkeley, CA: Computers and Structures Inc.; 2008.
Sarno JD, Elnashai AS. Bracing systems for seismic retrofitting of steel frames. J Constr Steel Res 2007;65:452-465.
Seker O, Shen J. Developing an all-steel buckling controlled brace. J Constr Steel Res 2017;131:94-109.
Shen J, Seker O, Akbas B, Seker P, Momenzadeh S, Faytarouni M. Seismic performance of concentrically braced frames with and without brace buckling. Eng Struct 2017;141:461-481.
Shen J, Seker O, Sutchiewcharn N, Akbas B. Cyclic behavior of buckling-controlled braces. J Constr Steel Res 2016;121:110-125.
Shen X, Wang X, Ye Q, Ye A. Seismic performance of transverse steel damper seismic system for long span bridges. Eng Struct 2017;141:14-28.
Shen Y, Christopoulus C, Mansour N, Tremblay R. Seismic design and performance of steel moment-resisting frames with nonlinear replaceable links. J Struct Eng 2011;137(10):1107-1117.
Silwal B, Michael RJ, Ozbulut OE. A superelastic viscous damper for enhanced seismic performance of steel moment frames. Eng Struct 2015;105:152-164.
Southern California Edison (SCE), Center for engineering strong motion data.
United States Geological Survey (USGS), Center for engineering strong motion data.
Wang CL, Chen Q, Zeng B, Meng S. A novel brace with partial buckling restraint: An experimental and numerical investigation. Eng Struct 2017;150:190-202.
Xu LH, Fan XW, Lu DC, Li ZX. Hysteretic behavior studies of self-centering energy dissipation bracing system. Steel Comp Struct 2016;22(6):1205-1219.
Xue JY and Qi LJ. Experimental studies on steel frame structures of traditional-style buildings. Steel Comp Struct 2016;22(2):235-255.
Yoo JH, Roeder CW, Lehman DE. Analytical performance simulation of special concentrically braced frames. J Struct Eng 2008;134(6):881-889.
Zareian F, Lignos DG, Krawinkler H. Evaluation of seismic collapse performance of steel special moment resisting frames using FEMA P695 (ATC-63) methodology. ASCE Struct Congress 2010;1275.
Zhang R, He H, Weng D, Zhou H, Ding S. Theoretical analysis and experimental research on toggle-brace-damper system considering different installation modes. Scientia Iranica 2012;19:1379-1390.
指導教授 許協隆(Hsieh-Lung Hsu) 審核日期 2019-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明