博碩士論文 105322610 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:44.205.5.65
姓名 史雅敏(Hasnae Amal Smimine)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 Evaluation of Hybrid Electric Arc Furnace Steel Slag and Reclaimed Asphalt Pavement in Asphalt Concrete
(Evaluation of Hybrid Electric Arc Furnace Steel Slag and Reclaimed Asphalt Pavement in Asphalt Concrete)
相關論文
★ 以預防性養護導入市區道路巡查維護作業之初擬-以臺北市為例★ 交通事故於交通工程設施設置之影響因素探討
★ 冷拌再生乳化瀝青混凝土應用於鋪面底層之可行性評估★ 氧化碴應用於密級配瀝青混凝土實驗室成效分析
★ MCI應用於臺灣國道一號鋪面調查之可行性評估★ 含轉爐石刨除料應用於再生瀝青混凝土成效評估
★ 臺灣六都市區道路平坦度分析與 改善策略建議之研究★ 以支持向量回歸及生命週期成本分析探討臺灣於市區道路整體環境之管理
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著台灣廢棄物堆放量的增加, 再生材料導入土木工程中,尤其是鋪面領域以符合可持續發展的研究是必要的,電弧爐(Electric Arc Furnace, EAF)鋼渣是煉鋼工業生產的再生材料之一,再生瀝青鋪面(Reclaimed Asphalt Pavement, RAP)是常見的另一種再生材料,由道路維護和銑刨產生。本研究旨在評估含有細EAF和RAP粒料的熱拌瀝青混合料,第一種配比設計包含30%的EAF,第二種配比設計混合各20%的EAF和RAP,使用設計配比進行實驗室拌合和夯打馬歇爾試體以及一系列實驗測試,對照組的物理性能進行比較評估,和對照組相比,EAF和EAF + RAP配比的馬歇爾穩定值較低,但在抗車轍和抗水分侵害方面表現更好。本研究的第二階段,進行現地試鋪,將試驗道路分成三個不同的斷面,每個斷面皆為實驗室設計的配比之一,廠拌的瀝青混合料有質量控制的問題,含有EAF的瀝青混合料中的孔隙率極低,然而,在試鋪道路完成之後進行了三次成效追蹤,每次間隔一個月,EAF斷面,顯示出最佳的車轍抗性和防滑性,而所有三個斷面都表現出令人滿意的平整度,因此,使用一到二種再生材料的瀝青混合料呈現的結果是令人滿意的,符合可持續發展,建議未來應針對新的再生材料導入土木工程的研究。
摘要(英) With the increase of the piling of the waste materials in Taiwan, it is relevant to take actions following the sustainable development norms and find ways to introduce the recycling materials into the civil engineering work such as the pavements construction. The electric arc furnace (EAF) steel slag is one of the recycling materials piling in the nature produced from the steel refining industry. Reclaimed asphalt pavement (RAP) is another recycling material resulted from the roads milling for roads maintenance and rehabilitation. This study aimed at evaluating hot mix asphalt mixtures containing of both the EAF fine steel slag aggregate and RAP. The first mix design contains the EAF with 30% and the second mix design contains the hybrid EAF and RAP with 20% each. Laboratory mixed and compacted specimens are designed and carried for a chain of experimental tests to evaluate their physical properties performance as they are compared to a control mix design. The EAF and EAF+RAP exposed less Marshall stability compared to the control mix yet performed better in terms of rutting resistance and moisture susceptibility. For the second phase of the study, a road test was paved into three distinct sections each presenting one of the previously designed mixtures in the lab. The paving plant’s mixtures were investigated and showed critical quality control: the air voids within the mixtures containing EAF showed very critical air voids percentages. Nevertheless, after the road paving, in-site tests were carried out on three different dates with one-month interval between each date. The EAF section, next to the section with the hybrid EAF+RAP, showed the best rutting resistance and skid resistance while all of the three sections displayed a satisfying smoothness. Thus, the incorporation of one to two recycling materials yielded in satisfying results and the investigation to introducing new recycling materials to the civil engineering work should carry on for the sake of the sustainable development.
關鍵字(中) ★ 細氧化碴
★ 刨除料
★ 試驗道路
關鍵字(英) ★ EAF fine steel slag
★ RAP
★ road test
論文目次 Abstract III
List of Figures IV
List of Tables VI
1. Introduction 1
1.1. Research background 1
1.2. Research objectives 2
1.3. Research scope 2
1.4. Study flowchart 3
2. Literature review 4
2.1. Asphalt containing EAF steel slag 4
2.2. Asphalt containing Recycled Asphalt Pavement (RAP) 11
3. Methodology 17
3.1. Methodology scope 17
3.2. Material selection 17
3.2.1. Aggregates physical properties tests 17
3.2.2. Asphalt binder physical properties tests 19
3.3 The experimental designs 25
3.3.1. Experimental design 1 – Control mix with natural aggregates only 26
3.3.2. Experimental design 2 – EAF mix 26
3.3.3. Experimental design 3 – EAF and RAP mix 26
3.4. Laboratory performance 27
3.4.1. Optimum binder content 27
3.4.2. The plant’s pre-mix quality control 29
3.4.3. Hamburg wheel rutting test 30
3.4.4. Indirect tensile strength test (IDT) 31
3.4.5. Tensile strength ratio (TSR) 32
3.5. Road test 34
3.5.1. Toxicity characteristic leaching procedure (TCLP) 36
3.5.2. Skid resistance test 39
3.5.3. Straightedge rutting test 40
3.5.4. International Roughness Index (IRI) 40
Chapter 4. Results and discussion 43
4.1. Material selection 43
4.1.1. Aggregates physical properties 43
4.1.2. Asphalt binder properties 45
4.2. Experimental design 1 – Natural aggregate 47
4.2.1. Sieve analysis 47
4.2.2. Optimum binder content 48
4.3. Experimental design 2 - EAF 50
4.3.1. Sieve analysis 50
4.3.2. Optimum binder content 52
4.4. Experimental design 3 – EAF + RAP 54
4.4.1. Sieve analysis 54
4.4.2. Optimum binder content 56
4.5. Laboratory performance 58
4.5.1. Volumetric properties 58
4.5.2. Marshall stability and flow test 59
4.5.3. The plant’s pre-mix for quality control 61
4.5.4. Field’s cores Marshall Test 63
4.5.5. Hamburg wheel rutting test 66
4.5.6. Indirect Tensile strength test (IDT) 74
4.5.7. Tensile strength ratio (TSR) 76
4.6. Road performance 79
4.6.1. Toxicity characteristic leaching procedure 79
4.6.2. Skid resistance test 83
4.6.3. Straightedge rutting test 84
4.6.4. International Roughness Index (IRI) 85
Chapter 5: Conclusions and Recommendations 88
5.1. Conclusions 88
5.2. Recommendations 89
References 90
參考文獻 1. Abdo, A.M.A., 2016. Utilizing reclaimed asphalt Pavement (RAP) materials in new pavements-A Review. Int. J. of Thermal & Environmental Engineering, 12(1), pp.61-66.

2. Ameri, M., Hesami, S. and Goli, H., 2013. Laboratory evaluation of warm mix asphalt mixtures containing electric arc furnace (EAF) steel slag. Construction and Building materials, 49, pp.611-617.

3. Aravind, K. and Das, A., 2004. Industrial waste in highway construction. In Department of Civil Engineering, IIT Kanpur Workshop on cement materials, pp. 36-40.

4. Arshad, A.K., Awang, H., Shaffie, E., Hashim, W. and Rahman, Z.A., 2018. Performance Evaluation of Hot Mix Asphalt with Different Proportions of RAP Content. In E3S Web of Conferences (Vol. 34, p. 01026). EDP Sciences.

5. Asi, I.M., Qasrawi, H.Y. and Shalabi, F.I., 2007. Use of steel slag aggregate in asphalt concrete mixes. Canadian Journal of Civil Engineering, 34(8), pp.902-911.

6. Australasian (iron and steel) Slag Association Inc. Retrieved from http://www.asa-inc.org.au/.
7. Bowers, B.F., Huang, B., Shu, X. and Miller, B.C., 2014. Investigation of reclaimed asphalt pavement blending efficiency through GPC and FTIR. Construction and building materials, 50, pp.517-523.

8. Chen, Z., Wu, S., Wen, J., Zhao, M., Yi, M. and Wan, J., 2015. Utilization of gneiss coarse aggregate and steel slag fine aggregate in asphalt mixture. Construction and Building Materials, 93, pp.911-918.

9. Chiu, C.T., 2008. Current pavement technologies in Taiwan. In Fourth US-Taiwan Bridge Engineering Workshop.

10. Fakhri, M. and Ahmadi, A., 2017. Recycling of RAP and steel slag aggregates into the warm mix asphalt: A performance evaluation. Construction and Building Materials, 147, pp.630-638.

11. Hainin, M.R., Yusoff, N.I.M., Mohammad Sabri, M.F., Abdul Aziz, M.A., Sahul Hameed, M.A. and Farooq Reshi, W., 2012. Steel slag as an aggregate replacement in Malaysian hot mix asphalt. ISRN Civil Engineering, 2012.

12. Huang, B., Li, G., Vukosavljevic, D., Shu, X. and Egan, B.K., 2005. Laboratory investigation of mixing hot-mix asphalt with reclaimed asphalt pavement. Transportation Research Record, 1929(1), pp.37-45.

13. Huang, B., Shu, X. and Vukosavljevic, D., 2010. Laboratory investigation of cracking resistance of hot-mix asphalt field mixtures containing screened reclaimed asphalt pavement. Journal of Materials in Civil Engineering, 23(11), pp.1535-1543.

14. Kavussi, A. and Qazizadeh, M.J., 2014. Fatigue characterization of asphalt mixes containing electric arc furnace (EAF) steel slag subjected to long term aging. Construction and Building Materials, 72, pp.158-166.

15. Kim, K., Jo, S.H., Kim, N. and Kim, H., 2018. Characteristics of hot mix asphalt containing steel slag aggregate according to temperature and void percentage. Construction and Building Materials, 188, pp.1128-1136.

16. Masoudi, S., Abtahi, S.M. and Goli, A., 2017. Evaluation of electric arc furnace steel slag coarse aggregate in warm mix asphalt subjected to long-term aging. Construction and Building Materials, 135, pp.260-266.

17. Moghadas Nejad, F., Azarhoosh, A., Hamedi, G.H. and Roshani, H., 2014. Rutting performance prediction of warm mix asphalt containing reclaimed asphalt pavements. Road Materials and Pavement Design, 15(1), pp.207-219.

18. Mombelli, D., Mapelli, C., Barella, S., Di Cecca, C., Le Saout, G. and Garcia-Diaz, E., 2016. The effect of chemical composition on the leaching behaviour of electric arc furnace (EAF) carbon steel slag during a standard leaching test. Journal of environmental chemical engineering, 4(1), pp.1050-1060.

19. Peng, Y.C. and Hwang, C.L., 2010. Carbon steel slag as cementitious material for self-consolidating concrete. Journal of Zhejiang University-Science A, 11(7), pp.488-494.

20. Sheen, Y.N., Wang, H.Y. and Sun, T.H., 2014. Properties of green concrete containing stainless steel oxidizing slag resource materials. Construction and Building Materials, 50, pp.22-27.

21. Shih, P.H., Wu, Z.Z. and Chiang, H.L., 2004. Characteristics of bricks made from waste steel slag. Waste management, 24(10), pp.1043-1047.

22. Shu, X., Huang, B., Shrum, E.D. and Jia, X., 2012. Laboratory evaluation of moisture susceptibility of foamed warm mix asphalt containing high percentages of RAP. Construction and Building Materials, 35, pp.125-130.

23. Singh, J., Singh, J. and Duggal, A.K., 2015. A review paper on reclaimed asphalt pavement (RAP). International Journal of Modern Trends in Engineering and Research (IJMTER), 2(08).

24. Sofilić, T., Merle, V., Rastovćan-Mioč, A., Ćosić, M. and Sofilić, U., 2010. Steel slag instead natural aggregate in asphalt mixture. Archives of metallurgy and materials, 55(3), pp.657-668.

25. Stimilli, A., Virgili, A., Giuliani, F. and Canestrari, F., 2017. Mix design validation through performance-related analysis of in plant asphalt mixtures containing high RAP content. International Journal of Pavement Research and Technology, 10(1), pp.23-37.

26. Yildirim, I.Z. and Prezzi, M., 2011. Chemical, mineralogical, and morphological properties of steel slag. Advances in Civil Engineering, 2011.
指導教授 陳世晃 林志棟(Shih-Huang Chen Jyh-Dong Lin) 審核日期 2019-1-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明