博碩士論文 105324027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:77 、訪客IP:3.145.42.140
姓名 劉智育(Zhi-Yu Liu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 發展量測雙層脂質膜的排列密度之實驗技術
(Development of a Technique to Determine the Molecular Packing Density of a Lipid Bilayer)
相關論文
★ 雙連續相中孔二氧化鈦光催化以及電子結構之實驗與模擬研究★ 聚合物-奈米粒子複合材料在玻璃轉移溫度下的結構與動力學相關性之實驗與模擬研究
★ 新興糖基雙子型界面活性劑之結構以及其對基因轉染效率之影響★ 自發曲率、金屬離子吸附以及微脂體膜融合效率三者間之相關性探討
★ 脂質組成成分對細胞膜物理性質與生物功能的影響★ 添加具有抗菌潛力的胜肽對磷脂質自組裝結構與彈性性質的影響
★ 分子構型與表面電荷密度對雙子型陰陽離子界面活性劑系統之相行為影響★ 探討具有不同間隔長度的陰、陽離子雙子型界面活性劑對於DNA壓實與解壓實之影響
★ 具抗菌潛力之胜肽如何影響脂質膜的彈性性質與結構完整性★ CoCrFeMnNi 高熵合金 形變行為之探討
★ 透過改變磷脂質排列密度減少Amyloid β與膜之間交互作用★ 對生物膜具活性的胜肽誘導相分離脂質膜產生結構上擾動
★ 人類脂肪幹細胞於生醫材料塗佈細胞外間質之純化及分化★ 利用酸鹼度敏感型雙子型界面活性劑製作之基因載體對核內體脂質膜結構之影響
★ 開發預測雙子型界面活性劑之自組裝結構的方法★ 抗肌萎縮蛋白的膜結合錨如何影響其與脂質膜的相互作用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在生物細胞中有許多重要的生物功能,例如膜融合。生物功能與脂質分子的排列情形息息相關,脂質分子的排列是否正常會影響生物功能的正常運作,或是控制脂質分子的排列以調節生物功能。於是,發展量測脂質分子的排列密度之實驗方法有助於得知脂質分子的排列情形以及調節生物功能。
本研究利用X光散射技術獲得雙層脂質膜之電子密度分佈,電子密度分佈含有結構的資訊。然後,將電子密度分佈轉換成數量密度,從數量密度能夠知道分子的排列密度。為了獲得更準確的雙層脂質膜電子之結構,將寡層囊泡(oligolamellar vesicle)和支撐性脂雙層膜(supported lipid bilayer)之X光散射數據結合在一起。本研究著重在從X光散射數據獲得數量密度之數據處理過程。
生物的細胞膜中主要的磷脂質種類為磷脂醯膽鹼(PC)和磷脂醯乙醇胺(PE),而且貼近生物系統的脂質相態為流體相,因此常溫下為流體相的1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)、1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE)是貼近生物真實系統的磷脂質。DOPC和DOPE兩者的比例會影響生物功能,於是將量測雙層脂質膜的排列密度之實驗技術被使用在量測DOPC/DOPE(0 – 50 mol% DOPE)之排列密度,藉此了解脂質組成對脂質分子中各種分子團排列之影響。
摘要(英) There are many important biological functions in the living cells, such as membrane fusion. Biological functions are closely related to lipid packing. So, the development of a technique to determine the molecular packing density of a lipid bilayer is helpful in understanding lipid packing and modulating biological functions.
In the work, X-ray scattering technique is used to obtain the electron density profile of a lipid bilayer, which provides the information about the structure of a lipid bilayer. Then, the electron density profile is converted to the number density, which provides the information about the lipid packing density. In order to obtain more accurate structure of a lipid bilayer, the X-ray scattering data of oligolamellar vesicle and supported lipid bilayer are combined. In the work, we focus on how to obtain the number density of a lipid bilayer.
In the biological membrane, the most abundant lipids are phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Besides, the most biologically relevant state of lipid bilayers is fully hydrated, fluid phase. Based on the above, dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1, 2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) are lipids which close to the actual biological system. The variations in DOPC and DOPE lipid composition affect the biological functions. Therefore, technique to determine the molecular packing density of a lipid bilayer is used to study the packing of DOPC/DOPE (0 – 50 mol% DOPE), from which the effect of lipid composition on the packing of lipid components is understood.
關鍵字(中) ★ 排列密度
★ X光散射
★ 支撐性脂雙層膜
★ 寡層囊泡
關鍵字(英) ★ Packing density
★ X-ray scattering
★ Supported lipid bilayer
★ Oligolamellar vesicle
論文目次 目錄 III
圖目錄 V
表目錄 VIII
一. 緒論 1
1.1. 細胞膜(cell membrane)與磷脂質(phospholipid) 1
1.2. 脂質排列(lipid packing)與生物功能之關聯 8
1.3. 量測脂質膜(lipid film)排列密度(packing density)之方法 9
1.4. 細胞膜模型(model membrane) 11
1.5. 研究動機 13
二. 實驗材料與方法 14
2.1. 實驗材料 14
2.1.1. 生物材料 14
2.1.2. 非生物材料 16
2.2. 樣品製備 18
2.2.1. 多層囊泡(multilamellar vesicle) 18
2.2.2. 寡層囊泡(oligolamellar vesicle) 19
2.2.3. 支撐性脂雙層膜(supported lipid bilayer) 20
2.3. 實驗儀器 22
2.3.1. 動態光散射(dynamic light scattering, DLS) 22
2.3.2. 小角度X光散射(small angle X-ray scattering, SAXS) 23
2.3.3. 掠角小角度X光散射(grazing-incidence small-angle X-ray scattering, GISAXS) 27
2.3.4. 橢圓偏光儀(ellipsometer) 30
2.4. 數據處理 33
2.4.1. 多層囊泡(multilamellar vesicle) 33
2.4.1.1. 吸收修正(absorption correction) 33
2.4.1.2. 背景移除(background subtraction) 33
2.4.1.3. 層距(d-spacing) 34
2.4.2. 寡層囊泡(oligolamellar vesicle) 35
2.4.2.1. 吸收修正(absorption correction) 35
2.4.2.2. 背景移除(background subtraction) 35
2.4.2.3. 形狀因子(form factor) 35
2.4.3. 支撐性脂雙層膜(supported lipid bilayer) 36
2.4.3.1. 背景移除(background subtraction) 36
2.4.3.2. 吸收修正(absorption correction) 36
2.4.3.3. 結構因子(structure factor) 37
2.4.3.4. 形狀因子(form factor) 37
2.4.4. 雙層脂質膜(lipid bilayer)之電子密度分佈(electron density profile) 38
2.4.5. 脂質分子之數量密度分佈(number density profile) 39
三. 結果 40
3.1. 多層囊泡(multilamellar vesicle)之層距(d-spacing) 40
3.2. 寡層囊泡(oligolamellar vesicle) 43
3.2.1. 平均粒徑大小、粒徑分佈與單分散性(monodispersity) 43
3.2.2. 形狀因子(form factor) 46
3.3. 支撐性脂雙層膜(supported lipid bilayer) 50
3.3.1. 背景移除(background subtraction) 50
3.3.2. 吸收修正(absorption correction) 54
3.3.3. 薄膜厚度(film thickness) 67
3.3.4. 結構因子(structure factor) 70
3.3.5. 形狀因子(form factor) 83
3.4. 雙層脂質膜(lipid bilayer)之電子密度分佈(electron density profile) 87
3.5. 脂質分子之數量密度分佈(number density profile) 95
四. 討論 102
4.1 DOPC/DOPE組成對膜厚(membrane thickness)之影響 102
4.2 DOPC/DOPE組成對脂質分子碳氫鏈(hydrocarbon chain)排列之影響 105
4.3 DOPC/DOPE組成對脂質分子頭基(headgroup)排列的影響 107
4.4 脂質分子碳氫鏈(hydrocarbon chain)排列與頭基(headgroup)排列之間的關聯 111
4.5 量測雙層脂質膜(lipid bilayer)的排列密度之實驗方法 113
五. 結論 114
參考文獻 115
參考文獻 Aeffner, S. Stalk Structures in Lipid Bilayer Fusion Studied by X-ray Diffraction; Universitätsverlag Göttingen: Göttingen, 2012; Vol. 6, pp 1−182.
Anzellini, P.S. Phase diagram of iron under extreme conditions measured with time resolved methods. Ph.D. Thesis, University Pierre and Marie CURIE, Paris, 2014.
Barna, S. L.; Tate, M. W.; Gruner, S. M.; Eikenberry, E. F. Calibration procedures for charge-coupled device x-ray detectors. Rev. Sci. Instr. 1999, 70, 2927−2934.
Boldon, L.; Laliberte, F.; Liu, L. Review of the Fundamental Theories Behind Small Angle X-ray Scattering, Molecular Dynamics Simulations, and Relevant Integrated Application. Nano Rev. 2015, 6, No. 25661.
Brotons, G.; Belloni, L.; Zemb, T.; Salditt, T. Elasticity of fluctuating charged membranes probed by x-ray grazing-incidence diffuse scattering. Europhys. Lett. 2006, 75, 992−998.
Dennison, S. R.; Harris, F.; Phoenix, D. A. Langmuir–Blodgett Approach to Investigate Antimicrobial Peptide–Membrane Interactions. In Advances in Planar Lipid Bilayers and Liposomes; Iglic, A.; Kulkarni, C. V., Eds.; Elsevier: Amsterdam, 2014, Vol. 20, pp 83−110.
Ding, W.; Palaiokostas, M.; Wang, W.; Orsi, M. Effects of Lipid Composition on Bilayer Membranes Quantified by All-Atom Molecular Dynamics. J. Phys. Chem. B 2015, 119, 15263−15274.
Dorywalski, K.; Maciejewski, I.; Krzyz ̇yn ́ski, T. Spectroscopic ellipsometry technique as a materials characterization tool for mechatronic systems—The case of composition and doping concentration monitoring in SBN crystals. Mechatronics 2016, 37, 33−41.
Drazenovic, J.; Wang, H.; Roth, K.; Zhang, J.; Ahmed, S.; Chen, Y.; Bothun, G.; Wunder, S. L. Effect of lamellarity and size on calorimetric phase transitions in single component phosphatidylcholine vesicles. Biochim. Biophys. Acta 2015, 1848, 532−543.
Escriba, P. V.; Gonzalez-Ros, J. M.; Goni, F. M.; Kinnunen, P. K.; Vigh, L.; Sanchez-Magraner, L.; Fernandez, A. M.; Busquets, X.; Horvath, I.; Barcelo-Coblijn, G. Membranes: a meeting point for lipids, proteins and therapies. J. Cell. Mol. Med. 2008, 12, 829−875.
Fujiwara, H. Spectroscopic Ellipsometry: Principles and Applications; John Wiley & Sons Ltd.: New York, 2007.
Hahl, H.; Möller, I.; Kiesel, I.; Campioni, S.; Riek, R.; Verdes, D.; Seeger, S. α−Synuclein Insertion into Supported Lipid Bilayers As Seen by in Situ X−ray Reflectivity. ACS Chem. Neurosci. 2015, 6, 374−379.
Harroun, T. A.; Kučerka, N.; Nieh, M. P.; Katsaras, J. Neutron and X-Ray Scattering for Biophysics and Biotechnology: Examples of Self-Assembled Lipid Systems. Soft Matter 2009, 5, 2694−2703.
Heftberger, P.; Kollmitzer, B.; Heberle, F. A.; Pan, J.; Rappolt, M.; Amenitsch, H.; Kučerka, N.; Katsaras, J.; Pabst, G. Global small-angle X-ray scattering data analysis for multilamellar vesicles: the evolution of the scattering density profile model. J. Appl. Crystallogr. 2014, 47, 173−180.
Hexemer, A.; Muller-Buschbaum, P. Advanced Grazing-Incidence Techniques for Modern Soft-Matter Materials Analysis. IUCrJ 2015, 2, 106−125.
Kaasgaard, T.; Drummond, C. J. Ordered 2-D and 3-D nanostructured amphiphile self-assembly materials stable in excess solvent. Phys. Chem. Chem. Phys. 2006, 8, 4957−4975.
Katsaras, J. Adsorbed to a Rigid Substrate, Dimyristoylphosphatidylcholine Multibilayers Attain Full Hydration in All Mesophases. Biophys. J. 1998, 75, 2157−2162.
Karp, G. Cell and Molecular Biology: Concepts and Experiments, 6th ed.; John Wiley & Sons.: New York, 2009.
Khattari, Z.; Köhler, S.; Xu, Y.; Aeffner, S.; Salditt, T. Stalk formation as a function of lipid composition studied by X-ray reflectivity. Biochim. Biophys. Acta 2015, 1848, 41−50.
Kiessling, V.; Yang, S.-T.; Tamm, L. K. Supported Lipid Bilayers as Models for Studying Membrane Domains. Curr. Top. Membr. 2015, 75, 1−23.
Kulkarni, C. V. Lipid crystallization: from self-assembly to hierarchical and biological ordering. Nanoscale 2012, 4, 5779−5791.
Kučerka, N.; Liu, Y. F.; Chu, N. J.; Petrache, H. I.; Tristram-Nagle, S. T.; Nagle, J. F. Structure of Fully Hydrated Fluid Phase DMPC and DLPC Lipid Bilayers Using X-Ray Scattering from Oriented Multilamellar Arrays and from Unilamellar Vesicles. Biophys. J. 2005, 88, 2626−2637.
Kučerka, N.; Pencer, J.; Sachs, J. N.; Nagle, J. F.; Katsaras, J. Curvature Effect on the Structure of Phospholipid Bilayers. Langmuir 2007, 23, 1292−1299.
Kulkarni, C. V. Lipid Self-Assemblies and Nanostructured Emulsions for Cosmetic Formulations. Cosmetics 2016, 3, No. 37.
Kwiatek, J. M.; Hinde, E.; Gaus, K. Microscopy Approaches to Investigate Protein Dynamics and Lipid Organization. Mol. Membr. Biol. 2014, 31, 141−151.
Lapinski, M. M.; Castro-Forero, A.; Greiner, A. J.; Ofoli, R. Y.; Blanchard, G. J. Comparison of Liposomes Formed by Sonication and Extrusion: Rotational and Translational Diffusion of an Embedded Chromophore. Langmuir 2007, 23, 11677−11683.
Lee, M. T.; Hung, W. C.; Chen, F. Y.; Huang, H. W. Many-body effect of antimicrobial peptides: On the correlation between lipid’s spontaneous curvature and pore formation. Biophys. J. 2005, 89, 4006−4016.
Leekumjorn, S.; Sum, A. K. Molecular simulation study of structural and dynamic properties of mixed DPPC/DPPE bilayers. Biophys. J. 2006, 90, 3951−3965.
Li, J.; Jiao, A.; Chen, S.; Wu, Z.; Xu, E.; Jin, Z. Application of the small-angle X-ray scattering technique for structural analysis studies: A review. J. Mol. Struct. 2018, 1165, 391−400.
Liu, Y. New method to obtain structure of biomembranes using diffuse x-ray scattering: application to fluid phase DOPC lipid bilayers. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA., 2003.
Lohner, K.; Sevcsik, E.; Pabst, G. Liposome-based Biomembrane Mimetic Systems: Implications for Lipid-Peptide Interactions. In Advances in Planar Lipid Bilayers and Liposomes; Liu, A. L., Ed.; Elsevier: Amsterdam, 2008; Vol. 6, pp 103−137.
Lyatskaya, Y.; Liu, Y.; Tristram-Nagle, S.; Katsaras, J.; Nagle, J. Phys. Rev. E 2001, 63, No. 11907.
Marsden, H. R.; Tomatsu, I.; Kros, A. Model systems for membrane fusion. Chem. Soc. Rev. 2011, 40, 1572−1585.
Martensson, C. U.; Doan, K. N.; Becker, T. Effects of lipids on mitochondrial functions. Biochim. Biophys. Acta 2017, 1862, 102-113.
McCullough, E. C. Photon Attenuation in Computed Tomography. Med. Phys. 1975, 2, 307−320.
Mennicke, U.; Salditt, T. Preparation of Solid-Supported Lipid Bilayers by Spin-Coating. Langmuir 2002, 18, 8172−8177.
Müller-Buschbaum, P. A Basic Introduction to Grazing Incidence Small-Angle X-Ray Scattering. In Applications of Synchrotron Light to Scattering and Diffraction in Materials and Life Sciences; Gomez, M.; Nogales, A.; Garcia-Gutierrez, M. C.; Ezquerra, T. A., Eds.; Springer: Berlin, 2009; Vol. 776, pp 61−90.
Nagle, J. F.; Tristram-Nagle, S. Structure of lipid bilayers. Biochim. Biophys. Acta 2000, 1469, 159−195.
Neale, C.; Huang K.; Garcia A.E.; Tristram-Nagle S. Penetration of HIV-1 Tat47-57 into PC/PE bilayers assessed by MD simulation and X-ray scattering. Membranes 2015, 5, 473−494.
Als-Nielsen, J.; McMorrow, D. Elements of Modern X-ray Physics; Wiley:  New York, 2001.
Pabst, G.; Rappolt, M.; Amenitsch, H.; Laggner, P. Phys. Structural information from multilamellar liposomes at full hydration: Full q-range fitting with high quality x-ray data. Rev. E 2000, 62, 4000−4009.
Pabst, G.; Koschuch, R.; Pozo-Navas, B.; Rappolt, M.; Lohner, K.; Laggner, P. Structural analysis of weakly ordered membrane stacks. J. Appl. Crystallogr. 2003, 36, 1378−1388.
Rappolt, M. The Biologically Relevant Lipid Mesophases as “Seen” by X-Rays. In Advances in Planar Lipid Bilayers and Liposomes; Leitmannova, A., Ed.; Elsevier: Amsterdam, 2006; Vol. 5, pp 253−283.
Sanchez, S. A.; Tricerri, M. A.; Gunther, G.; Gratton, E. Laurdan Generalized Polarization: from cuvette to microscope. In Modern research and educational topics in microscopy; Méndez-Vilas, A.; Diaz, J., Eds.; Formatex: Spain, 2007; pp 1007−1014.
Schöne, A. C.; Roch, T.; Schulz, B.; Lendlein, A. Evaluating polymeric biomaterial–environment interfaces by Langmuir monolayer techniques. J. R. Soc. Interface 2017, 14, No. 20161028.
Tresset, G. The multiple faces of self-assembled lipidic systems. PMC Biophys. 2009, 2, No. 3.
Tsang, K.T.; Lai, Y.C.; Chiang, T.W.; Chen, T.F. Coupling of lipid membrane elasticity and in-plane dynamics. Phys. Rev. E 2017, 96, No. 012410.
van Meer, G.; Voelker, D. R.; Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 2008, 9, 112−124.
Wiener, M. C.; Suter, R. M.; Nagle, J. F. Structure of the fully hydrated gel phase of dipalmitoylphosphatidylcholine. Biophys. J. 1989, 55, 315−325.
Wilschut, J.; Scholma, J.; Stegmann, T. Molecular Mechanisms of Membrane Fusion and Applications of Membrane Fusion Techniques. In Biotechnological Applications of Lipid Microstructures; Gaber, B. P., Ed; Springer: Berlin, 2012, pp 105−126.
指導教授 陳儀帆(Yi-Fan Chen) 審核日期 2018-10-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明