博碩士論文 102283601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:18.118.140.108
姓名 阮帝暉(Nguyen The Duy)  查詢紙本館藏   畢業系所 化學學系
論文名稱 Thiocyanate-Free Cycloruthenated Sensitizers for Dye-Sensitized Solar Cells
(Thiocyanate-Free Cycloruthenated Sensitizers for Dye-Sensitized Solar Cells)
相關論文
★ 導電高分子應用於鋁質電解電容器之研究★ 異参茚并苯衍生物合成與性質之研究
★ 含雙吡啶或二氮雜啡衍生物配位 基之釕金屬錯合物的合成與其在 染料敏化太陽能電池之應用★ 新型噻吩環戊烷有機染料於染料敏化太陽能電池之應用
★ 應用於染料敏化太陽能電池之新型釕金屬錯合物的合成與性質探討★ 釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用
★ 染敏電池用之非對稱釕錯合物之輔助配位基的設計與合成★ 含雙噻吩環戊烷之電變色高分子的研究
★ 含噻吩衍生物非對稱方酸染料應用於染料敏化 太陽能電池★ 高品質導電聚苯胺薄膜的合成及應用
★ 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討★ 具多功能性之非對稱型釕錯合物的設計與合成並應用於染料敏化太陽能電池
★ 含乙烯噻吩固著配位基之非對稱型釕金屬錯合物應用於染料敏化太陽能電池★ 染料敏化太陽能電池用二茂鐵系統電解質的探討
★ 合成含喹啉衍生物非對稱方酸染料應用於染料敏化太陽能電池★ 合成新穎輔助配位基於無硫氰酸釕金屬光敏劑在染料敏化太陽能電池上的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇DUY1 ~ DUY6 敏化劑的CF3 基團在間位較鄰位有更有利的beta-LUSO 分布,讓電解質中的碘離子可以更有效將染料還原再生;DUY24-O, DUY24 和DUY24-Se 染料分子具有軟硫性,因此元件的光伏表現具有高的開路電壓;DUY24 ~ DUY29 與含有2-噻吩基吡啶環釕化配位基的NC103 做比較,元件的光電轉換效率最大可以提高達65%.
摘要(英) This work described the synthesis and dye-sensitized solar cell (DSC) applications of fourteen thiocyanate-free complexes (DUY1 ~ DUY6, DUY24-O, DUY24-Se, DUY24 ~ DUY29) containing six- or five-membered rings as cyclometalated segments. The study of DUY1 ~ DUY6 showed that the sensitizers containing meta-CF3 group reveal a more favorable distribution of beta-lowest unoccupied spin orbital (beta-LUSO) for the stronger interaction with the reductant (iodide ion) in the electrolyte which promotes the dye regeneration compared to ortho-CF3. The
photovoltaic performances of DUY24-O, DUY24, and DUY24-Se sensitized cells showed that a higher VOC was obtained when a softer chalcogen is present in the dye molecule. DUY24 ~ DUY29-based cells showed up-to-65% higher efficiencies than the cell based on reported sensitizers containing 2-thienylpyridine cycloruthenated ligands (NC103 dye).
關鍵字(中) ★ beta-LUSO 關鍵字(英) ★ beta-LUSO
論文目次 Abstract .......................................................................................................................i
Acknowledgements ...................................................................................................iii
Dedication ..................................................................................................................v
Table of Contents ......................................................................................................vi
List of Tables.............................................................................................................ix
List of Figures ...........................................................................................................xi
List of Schemes .......................................................................................................xvi
List of Symbols and Abbreviations........................................................................xvii
List of Ligands and Target Complexes ...................................................................xxi
Chapter One: Introduction..........................................................................................1
1.1. Background ..................................................................................................1
1.2. Construction of dye-sensitized solar cells....................................................2
1.2.1. TCO substrate.....................................................................................2
1.2.2. TiO2 nanoparticle................................................................................3
1.2.3. Sensitizer ............................................................................................3
1.2.4. Electrolyte...........................................................................................5
1.2.5. Counter electrode................................................................................5
1.2.6. Sealing materials ................................................................................6
1.3. Operation principle of dye-sensitized solar cells .........................................6
1.4. Photovoltaic parameters ...............................................................................8
1.5. Main electron-transfer processes................................................................10
1.5.1. Electron-injection from the sensitizer to the TiO2 conduction band 10
1.5.2. Electron-transport in the TiO2 electrode ..........................................11
1.5.3. Dye-regeneration ..............................................................................12
1.5.4. Charge-recombinations ....................................................................13
1.6. Thiocyanate ruthenium sensitizers.............................................................14
1.7. Cyclometalation and thiocyanate-free cycloruthenated sensitizers ...........15
1.8. Dissertation objectives ...............................................................................21
Chapter Two: Results and Discussion .....................................................................23
2.1. Syntheses and characterizations of the cycloruthenated sensitizers ..........23
2.2. Optical properties .......................................................................................37
2.3. Electrochemical properties.........................................................................44
2.4. Density functional theory (DFT) calculations............................................48
2.4.1. The first ten DFT-calculated frontier orbitals distribution of
DUY-sensitizers .........................................................................................48
2.4.2. Time dependent density functional theory calculations...................57
2.4.3. Calculated -LUSO distribution on the oxidized forms of
DUY-sensitizers .........................................................................................70
2.5. Photovoltaic performance ..........................................................................74
2.5.1. Photovoltaic performance of DUY1−DUY6 sensitizers..................74
2.5.2. Photovoltaic performance of DUY24-O, DUY24, DUY24-Se
sensitizers....................................................................................................80
2.5.3. Photovoltaic performance of DUY24−DUY27 sensitizers..............84
2.5.4. Photovoltaic performance of DUY28 and DUY29 sensitizers ........88
Chapter Three: Conclusion ......................................................................................92
Chapter Four: Experimental Section........................................................................95
4.1. Preparation of sensitizers ...........................................................................95
4.1.1. Preparation of cycloruthenated six-membered-ring-based sensitizers
(DUY1−DUY6)..........................................................................................95
4.1.2. Preparation of cycloruthenated five-membered-ring-based sensitizers
(DUY24-O, DUY24-Se, and DUY24−DUY29)......................................110
4.2. Physicochemical studies...........................................................................134
4.3. DFT calculations ......................................................................................135
4.4. Device fabrication and characterization...................................................136
References ..............................................................................................................138
參考文獻 (1) Gong, J.; Liang, J.; Sumathy, K. Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials. Renew. Sust. Energ. Rev. 2012, 16, 5848−5860.
(2) Hasan, M. A.; Sumathy, K. Photovoltaic thermal module concepts and their performance analysis: A review. Renew. Sust. Energ. Rev. 2010, 7, 1845−1859.
(3) Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 2010, 110, 6595−6663.
(4) O′Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737−740.
(5) Thomas, S.; Deepak, T. G.; Anjusree, G. S.; Arun, T. A.; Nair, S. V.; Nair, A. S. A review on counter electrode materials in dye-sensitized solar cells. J. Mater. Chem. A 2014, 2, 4474−4490.
(6) Deepak, T. G.; Anjusree, G. S.; Thomas, S.; Arun, T. A.; Nair, S. V.; Nair, A. S. A review on materials for light scattering in dye-sensitized solar cells. RSC Adv. 2014, 4, 17615−17638.
(7) Zhang, L.; Cole, J. M. Anchoring groups for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2015, 7, 3427−3455.
(8) Ye, M.; Wen, X.; Wang, M.; Iocozzia, J.; Zhang, N.; Lin, C.; Lin, Z. Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Mater. Today 2015, 18, 155−162.
(9) Green, M. A.; Hishikawa, Y.; Dunlop, E. D.; Levi, D. H.; Hohl-Ebinger, J.; Ho-Baillie, A. W. Y. Solar cell efficiency tables (version 51). Prog. Photovoltaics 2018, 26, 3−12.
(10) Yum, J. H.; Baranoff, E.; Wenger, S.; Nazeeruddin, M. K.; Grätzel, M. Panchromatic engineering for dye-sensitized solar cells. Energy Environ. Sci. 2011, 4, 842−857.
(11) Song, J.; Yang, H. B.; Wang, X.; Khoo, S. Y.; Wong, C. C.; Liu, X. W.; Li, C. M. Improved utilization of photogenerated charge using fluorine-doped TiO2 hollow spheres scattering layer in dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2012, 4, 3712−3717.
(12) Chen, C. Y.; Wu, S. J.; Wu, C. G.; Chen, J. G.; Ho, K. C. A ruthenium complex with superhigh light-harvesting capacity for dye-sensitized solar cells. Int. Ed. Angew. Chem. 2006, 45, 5822−5825.
(13) Sauvage, F.; Chen, D.; Comte, P.; Huang, F.; Heiniger, L. P.; Cheng, Y. B.; Caruso, R. A.; Grätzel, M. Dye-sensitized solar cells employing a single film of mesoporous TiO2 beads achieve power conversion efficiencies over 10%. ACS Nano 2010, 4, 4420−4425.
(14) Park, N. G.; Van de Lagemaat, J.; Frank, A. J. Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells. J. Phys. Chem. B 2000, 104, 8989−8994.
(15) Chi, Y.; Tong, B.; Chou, P. T. Metal complexes with pyridyl azolates: Design, preparation and applications. Coord. Chem. Rev. 2014, 281, 1−25.
(16) Ren, Y.; Sun, D.; Cao, Y.; Tsao, H. N.; Yuan, Y.; Zakeeruddin, S. M.; Wang, P.; Grätzel, M. A stable blue photosensitizer for color palette of dye-sensitized solar cells reaching 12.6% efficiency. J. Am. Chem. Soc. 2018, 140, 2405−2408.
(17) Brogdon, P.; Cheema, H.; Delcamp, J. H. Near-infrared-absorbing metal-free organic, porphyrin, and phthalocyanine sensitizers for panchromatic dye-sensitized solar cells. ChemSusChem 2018, 11, 86−103.
(18) Shockley, W.; Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 1961, 32, 510−519.
(19) Nakade, S.; Kanzaki, T.; Wada, Y.; Yanagida, S. Stepped light-induced transient measurements of photocurrent and voltage in dye-sensitized solar cells: application for highly viscous electrolyte systems. Langmuir 2005, 21, 10803−10807.
(20) Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338−344.
(21) Wang, H.; Peter, L. M. Influence of electrolyte cations on electron transport and electron transfer in dye-sensitized solar cells. J. Phys. Chem. C 2012, 116, 10468−10475.
(22) Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humpbry-Baker, R.; Miiller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. Conversion of light to electricity by cis-X2bis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = C1−, Br−, I−, CN−, and SCN−) on nanocrystalline TiO2 electrodes. J. Am. Chem. Soc. 1993, 115, 6382−6390.
(23) Papageorgiou, N. Counter-electrode function in nanocrystalline photoelectrochemical cell configurations. Coord. Chem. Rev. 2004, 248, 1421−1446.
(24) Murakami, T. N.; Ito, S.; Wang, Q.; Nazeeruddin, M. K.; Bessho, T.; Cesar, I.; Liska, P.; Humphry-Baker, R.; Comte, P.; Péchy, P.; Grätzel, M. Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. J. Electrochem. Soc. 2006, 153, A2255−A2261.
(25) Saito, Y.; Kitamura, T.; Wada, Y.; Yanagida, S. Application of poly(3,4-ethylenedioxythiophene) to counter electrode in dye-sensitized solar cells. Chem. Lett. 2002, 31, 1060−1061.
(26) Miettunen, K.; Vapaavuori, J.; Poskela, A.; Tiihonen, A.; Lund, P. D. Recent progress in flexible dye solar cells. Wires Energy Environ. 2018, DOI: 10.1002/wene.302.
(27) Ooyama, Y.; Harima, Y. Photophysical and electrochemical properties, and molecular structures of organic dyes for dye-sensitized solar cells. ChemPhysChem 2012, 13, 4032−4080.
(28) Kalyanasundaram, K.; Grätzel, M. Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coord. Chem. Rev. 1998, 177, 347−414.
(29) Merhi, A.; Zhang, X.; Yao, D.; Drouet, S.; Mongin, O.; Paul, F.; Williams, J. A. G.; Fox, M. A.; Paul-Roth, C. O. New donor-acceptor conjugates based on a trifluorenylporphyrin linked to a redox switchable ruthenium unit. Dalton Trans. 2015, 44, 9470−9485.
(30) Robson, K. C. D.; Hu, K.; Meyer, G. J.; Berlinguette, C. P. Atomic level resolution of dye regeneration in the dye-sensitized solar cell. J. Am. Chem. Soc. 2013, 135, 1961−1971.
(31) Kusama, H.; Funaki, T.; Sayama, K. Theoretical study of cyclometalated Ru(II) dyes: Implications on the open-circuit voltage of dye-sensitized solar cells. J. Photochem. Photobiol. A 2013, 272, 80−89.
(32) Liu, Y.; Hagfeldt, A.; Xiao, X. R.; Lindquist, S. E. Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell. Sol. Energy Mater. Sol. Cells 1998, 55, 267−281.
(33) Nakade, S.; Kanzaki, T.; Kubo, W.; Kitamura, T.; Wada, Y.; S. Yanagida. Role of electrolytes on charge recombination in dye-sensitized TiO2 solar cell (1): The case of solar cells using the I−/I3− redox couple. J. Phys. Chem. B 2005, 109, 3480−3487.
(34) Hana, L.; Koide, N.; Chiba, Y.; Islam, A.; Komiya, R.; Fuke, N.; Fukui, A.; Yamanaka. R. Improvement of efficiency of dye-sensitized solar cells by reduction of internal resistance. Appl. Phys. Lett. 2005, 86, 213501.
(35) Tachibana, Y.; Moser, J. E.; Grätzel, M.; Klug, D. R.; Durrant, J. R. Subpicosecond interfacial charge separation in dye-sensitized nanocrystalline titanium dioxide films. J. Phys. Chem. 1996, 100, 20056−20062.
(36) Haque, S. A.; Tachibana, Y.; Klug, D. R.; Durrant, J. R. Charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films under externally applied bias. J. Phys. Chem. B 1998, 102, 1745−1749.
(37) Benkö, G.; Kallioinen, J.; Korppi-Tommola, J. E. I.; Yartsev, A. P.; Sundström, V. Photoinduced ultrafast dye-to-semiconductor electron injection from nonthermalized and thermalized donor states. J. Am. Chem. Soc. 2002, 124, 489−493.
(38) Hara, K.; Sato, T.; Katoh, R.; Furube, A.; Ohga, Y.; Shinpo, A.; Suga, S.; Sayama, K.; Sugihara, H.; Arakawa, H. Molecular design of coumarin dyes for efficient dye-sensitized solar cells. J. Phys. Chem. B 2003, 107, 597−606.
(39) Asbury, J. B.; Hao, E.; Wang, Y.; Ghosh, H. N.; Lian, T. Ultrafast electron transfer dynamics from molecular adsorbates to semiconductor nanocrystalline thin films. J. Phys. Chem. B 2001, 105, 4545−4557.
(40) Hagfeldt, A.; Grätzel, M. Molecular photovoltaics. Acc. Chem. Res. 2000, 33, 269−277.
(41) He, J.; Benko, G.; Korodi, F.; Polivka, T.; Lomoth, R.; Akermark, B.; Sun, L.; Hagfeldt, A.; Sundstrom, V. Modified phthalocyanines for efficient near-IR sensitization of nanostructured TiO2 electrode. J. Am. Chem. Soc. 2002, 124, 4922−4932.
(42) Liu, D.; Fessenden, R. W.; Hug, G. L.; Kamat, P. V. Dye capped semiconductor nanoclusters. Role of back electron transfer in the photosensitization of SnO2 nanocrystallites with cresyl violet aggregates. J. Phys. Chem. B 1997, 101, 2583−2590.
(43) Tatay, S.; Haque, S. A.; O’Regan, B.; Durrant, J. R.; Verhees, W. J. H.; Kroon, J. M.; Vidal-Ferran, A.; Gaviña, P.; Palomares, E. Kinetic competition in liquid electrolyte and solid-state cyanine dye sensitized solar cells. J. Mater. Chem. 2007, 17, 3037−3044.
(44) Kay, A.; Grätzel, M. Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins. J. Phys. Chem. 1993, 97, 6272−6277.
(45) Hara, K.; Dan-oh, Y.; Kasada, C.; Ohga, Y.; Shinpo, A.; Suga, S.; Sayama, K.; Arakawa, H. Effect of additives on the photovoltaic performance of coumarin-dye-sensitized nanocrystalline TiO2 solar cells. Langmuir 2004, 20, 4205−4210.
(46) Cid, J. J.; García-Iglesias, M.; Yum, J.-H.; Forneli, A.; Albero, J.; Martínez-Ferrero, E.; Vázquez, P.; Grätzel, M.; Nazeeruddin, M. K.; Palomares, E.; Torres, T. Structure–function relationships in unsymmetrical zinc phthalocyanines for dye-sensitized solar cells. Chem. Eur. J. 2009, 15, 5130−5137.
(47) Soedergren, S.; Hagfeldt, A.; Olsson, J.; Lindquist, S. Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells. J. Phys. Chem. 1994, 98, 5552−5556.
(48) Nakade, S.; Saito, Y.; Kubo, W.; Kitamura, T.; Wada, Y.; Yanagida, S. Influence of TiO2 nanoparticle size on electron diffusion and recombination in dye-sensitized TiO2 solar cells. J. Phys. Chem. B 2003, 107, 8607−8611.
(49) Kopidakis, N.; Neale, N. R.; Zhu, K.; van de Lagemaat, J.; Frank, A. J. Spatial location of transport-limiting traps in TiO2 nanoparticle films in dye-sensitized solar cells. Appl. Phys. Lett. 2005, 87, 202106.
(50) Nakade, S.; Matsuda, M.; Kambe, S.; Saito, Y.; Kitamura, T.; Sakata, T.; Wada, Y.; Mori, H.; Yanagida, S. Dependence of TiO2 nanoparticle preparation methods and annealing temperature on the efficiency of dye-sensitized solar cells. J. Phys. Chem. B 2002, 106, 10004−10010.
(51) Kopidakis, N.; Schiff, E. A.; Park, N. G.; van de Lagemaat, J.; Frank, A. J. Ambipolar diffusion of photocarriers in electrolyte-filled, nonporous TiO2. J. Phys. Chem. B 2000, 104, 3930−3936.
(52) Nakade, S.; Kambe, S.; Kitamura, T.; Wada, Y.; Yanagida, S. Effects of lithium ion density on electron transport in nanoporous TiO2 electrodes. J. Phys. Chem. B 2001, 105, 9150−9152.
(53) Boschloo, G.; Hagfeldt, A. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Acc. Chem. Res. 2009, 42, 1819−1826.
(54) Boschloo, G.; Gibson, E. A.; Hagfeldt, A. Photomodulated voltammetry of iodide/triiodide redox electrolytes and its relevance to dye-sensitized solar cells. J. Phys. Chem. Lett. 2011, 2, 3016−3020.
(55) Jeon, J.; Park, Y. C.; Han, S. S.; Goddard, W. A.; Lee, Y. S.; Kim, H. Rapid dye regeneration mechanism of dye-sensitized solar cells. J. Phys. Chem. Lett. 2014, 5, 4285−4290.
(56) Wang, P.; Wenger, B.; Humphry-Baker, R.; Moser, J. E.; Teuscher, J.; Kantlehner, W.; Mezger, J.; Stoyanov, E. V.; Zakeeruddin, S. M.; Grätzel, M. Charge separation and efficient light energy conversion in sensitized mesoscopic solar cells based on binary ionic liquids. J. Am. Chem. Soc. 2005, 127, 6850−6856.
(57) Pelet, S.; Moser, J. E.; Grätzel, M. Cooperative effect of adsorbed cations and iodide on the interception of back electron transfer in the dye sensitization of nanocrystalline TiO2. J. Phys. Chem. B 2000, 104, 1791−1795.
(58) Cameron, P. J.; Peter, L. M. How does back-reaction at the conducting glass substrate influence the dynamic photovoltage response of nanocrystalline dyesensitized solar cells?. J. Phys. Chem. B 2005, 109, 7392−7398.
(59) Kopidakis N, Benkstein K D, van de Lagemaat J, Frank A J. Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B 2003, 107, 11307−11315.
(60) Schlichthörl, G.; Huang, S. Y.; Sprague, J.; Frank, A. J. Band Edge Movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells: a study by intensity modulated photovoltage spectroscopy. J. Phys. Chem. B 1997, 101, 8141−8155.
(61) Boschloo, G.; Häggman, L.; Hagfeldt, A. Quantification of the effect of 4-tert-butylpyridine addition to I−/I3− redox electrolytes in dye-sensitized nanostructured TiO2 solar cells. J. Phys. Chem. B 2006, 110, 13144−13150.
(62) Kopidakis, N.; Neale, N. R.; Frank, A. J. Effect of an adsorbent on recombination and band-edge movement in dye-sensitized TiO2 solar cells: evidence for surface passivation. J. Phys. Chem. B 2006, 110, 12485−12489.
(63) O’Regan, B. C.; Walley, K.; Juozapavicius, M.; Anderson, A.; Matar, F.; Ghaddar, T.; Zakeeruddin, S. M.; Klein, C.; Durrant, J. R. Structure/function relationships in dyes for solar energy conversion: a two-atom change in dye structure and the mechanism for its effect on cell voltage. J. Am. Chem. Soc. 2009, 131, 3541−3548.
(64) Mori, S. N.; Kubo, W.; Kanzaki, T.; Masaki, N.; Wada, Y.; Yanagida, S. Investigation of the effect of alkyl chain length on charge transfer at TiO2/dye/electrolyte interface. J. Phys. Chem. C 2007, 111, 3522−3527.
(65) Anderson, S.; Constable, E. C.; Dare-Edwards, M. P.; Goodenough, J. B.; Hamnett, A.; Seddon, K. R.; Wright, R. D. Chemical modification of a titanium (IV) oxide electrode to give stable dye sensitisation without a supersensitiser. Nature 1979, 280, 571−573.
(66) Desilvestro, J.; Grätzel, M.; Kavan, L.; Moser, J.; Augustynski, J. Highly efficient sensitization of titanium dioxide. J. Am. Chem. Soc. 1985, 107, 2988−2990.
(67) Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. Combined experimental and DFT-TD DFT computational study of photoelectrochemical cell ruthenium sensitizers. J. Am. Chem. Soc. 2005, 127, 16835−16847.
(68) Nazeeruddin, M. K.; Péchy, P.; Grätzel, M. Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex. Chem. Commun. 1997, 1, 1705−1706.
(69) Nazeeruddin, M.; Pechy, P.; Renouard, T.; Zakeeruddin, S.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J. Am. Chem. Soc. 2001, 123, 1613−1624.
(70) Chen, C.; Wang, M.; Li, J.; Pootrakulchote, N.; Alibabaei, L.; Ngoc-le, C. H.; Decoppet, J.; Tsai, J.; Grätzel, C.; Wu, C.; Zakeeruddin, S. M.; Grätzel, M. Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano 2009, 3, 3103−3109.
(71) Gao, F.; Wang, Y.; Shi, D.; Zhang, J.; Wang, M.; Jing, X.; Humphry-Baker, R.; Wang, P.; Zakeeruddin, S. M.; Grätzel, M. Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. J. Am. Chem. Soc. 2008, 130, 10720−10728.
(72) Ozawa, H.; Fukushima, K.; Urayama, A.; Arakawa, H. Efficient ruthenium sensitizer with an extended π-conjugated terpyridine ligand for dye-sensitized solar cells. Inorg. Chem. 2015, 54, 8887−8889.
(73) Privalov, T.; Boschloo, G.; Hagfeldt, A.; Svensson, P. H.; Kloo, L. A study of the interactions between I−/I3− redox mediators and organometallic sensitizing dyes in solar cells. J. Phys. Chem. C 2009, 113, 783−790.
(74) Hoggard, P. E.; Porter, G. B. Photoanation of the tris(2,2′-bipyridine)ruthenium(II) cation by thiocyanate. J. Am. Chem. Soc. 1978, 100, 1457−1463.
(75) Nguyen, H. T.; Ta, H. M.; Lund, T. Thermal thiocyanate ligand substitution kinetics of the solar cell dye N719 by acetonitrile, 3-methoxypropionitrile, and 4-tert-butylpyridine. Solar Energy Materials & Solar Cells 2007, 91, 1934−1942.
(76) Abbotto, A.; Coluccini, C.; Dell’Orto, E.; Manfredi, N.; Trifiletti, V.; Salamone, M. M.; Ruffo, R.; Acciarri, M.; Colombo, A.; Dragonetti, C.; Ordanini, S.; Roberto, D.; Valore, A. Thiocyanate-free cyclometalated ruthenium sensitizers for solar cells based on heteroaromatic-substituted 2-arylpyridines. Dalton Trans. 2012, 41, 11731−11738.
(77) Funaki, T.; Otsuka, H.; Onozawa-Komatsuzaki, N.; Kasuga, K.; Sayama, K.; Sugihara, H. New class of NCS-free cyclometalated ruthenium(II) complexes with 6-phenylpyridine-2-carboxylate for use as near-infrared sensitizers in dye-sensitized solar cells. Inorg. Chem. Commun. 2014, 46, 137−139.
(78) Wadman, S. H.; Kroon, J. M.; Bakker, K.; Lutz, M.; Spek, A. L.; van Klink, G. P. M.; van Koten, G. Cyclometalated ruthenium complexes for sensitizing nanocrystalline TiO2 solar cells. Chem. Commun. 2007, 1907−1909.
(79) Chen, B. S.; Chen, K.; Hong, Y. H.; Liu, W. H.; Li, T. H.; Lai, C. H.; Chou, P. T.; Chi, Y.; Lee, G. H. Neutral, panchromatic Ru(ii) terpyridine sensitizers bearing pyridine pyrazolate chelates with superior DSSC performance. Chem. Commun. 2009, 5844−5846.
(80) Holligan, B. M.; Jeffery, J. C.; Norgett, M. K.; Schatz, E.; Ward, M. D. The co-ordination chemistry of mixed pyridine–phenol ligands; spectroscopic and redox properties of mononuclear ruthenium complexes with (pyridine)6–x(phenolate)x donor sets (x = 1 or 2). J. Chem. Soc., Dalton Trans. 1992, 3345−3351.
(81) Bomben, P. G.; Robson, K. C. D.; Koivisto, B. D.; Berlinguette, C. P. Cyclometalated ruthenium chromophores for the dye-sensitized solar cell. Coord. Chem. Rev. 2012, 256, 1438−1450.
(82) Albrecht M. Cyclometalation using d-block transition metals: Fundamental aspects and recent trends. Chem. Rev. 2010, 110, 576−623.
(83) Constable, E. C.; Housecroft, C. E. The electronic structure of some ruthenium(II) complexes related to [Ru(bipy)3]2+: An investigation of the stepwise replacement of N,N-donors by C, N-donors. Polyhedron 1990, 9, 1939−1947.
(84) Robson, K. C. D.; Bomben, P. G.; Berlinguette, C. P. Cycloruthenated sensitizers: improving the dye-sensitized solar cell with classical inorganic chemistry principles. Dalton Trans. 2012, 41, 7814−7829.
(85) Kalyanasundaram, K.; Nazeeruddin, M. K. Tuning of the CT excited state and validity of the energy gap law in mixed ligand complexes of Ru(II) containing 4,4-dicarboxy-2,2-bipyridine. Chem. Phys. Lett. 1992, 193, 292−297.
(86) Bessho, T.; Yoneda, E.; Yum, J. H.; Guglielmi, M.; Tavernelli, I.; Imai, H.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M. New paradigm in molecular engineering of sensitizers for solar cell applications. J. Am. Chem. Soc. 2009, 131, 5930−5934.
(87) Baranoff, E.; Yum, J. H.; Grätzel M.; Nazeeruddin, M. K. Cyclometallated iridium complexes for conversion of light into electricity and electricity into light. J. Organomet. Chem. 2009, 694, 2661−2670.
(88) Bomben, P. G. ; Thériault, K. D. ; Berlinguette, C. P. Strategies for optimizing the performance of cyclometalated ruthenium sensitizers for dye-sensitized solar cells. Eur. J. Inorg. Chem. 2011, 1806−1814.
(89) Bomben, P. G.; Gordon, T. J.; Schott, E.; Berlinguette, C. P. A trisheteroleptic cyclometalated RuII sensitizer that enables high power output in a dye-sensitized solar cells. Angew. Chem. Int. Ed. 2011, 50, 10682−10685.
(90) Polander, L. E.; Yella, A.; Curchod, B. F. E.; Astani, N. A.; Teuscher, J.; Scopelliti, R.; Gao, P.; Mathew, S.; Moser, J. E.; Tavernelli, I.; Rothlisberger, U.; Grätzel, M.; Nazeeruddin, M. K.; Frey, J. Towards compatibility between ruthenium sensitizers and cobalt electrolytes in dye-sensitized solar cells. Angew. Chem. Int. Ed. 2013, 52, 8731−8735.
(91) Aghazada, S.; Ren, Y.; Wang, P.; Nazeeruddin, M. K. Effect of donor groups on the performance of cyclometalated ruthenium sensitizers in dye-sensitized solar cells. Inorg. Chem. 2017, 56, 13437−13445.
(92) Funaki, T.; Kusama, H.; Onozawa-Komatsuzaki, N.; Kasuga, K.; Sayama, K.; Sugihara, H. Near-IR sensitization of dye-sensitized solar cells using thiocyanate-free cyclometalated ruthenium(II) complexes having a pyridylquinoline ligand. Eur. J. Inorg. Chem. 2014, 1303−1311.
(93) Li, C. Y.; Su, C.; Wang, H. H.; Kumaresan, P.; Hsu, C. H.; Lee, I. T.; Chang, W. C.; Tingare, Y. S.; Li, T. Y.; Lin, C. F.; Li, W. R. Design and development of cyclometalated ruthenium complexes containing thiophenyl-pyridine ligand for dye-sensitized solar cells. Dyes and Pigments 2004, 100, 57−65.
(94) Medved′ko, A. V.; Ivanov, V. K.; Kiskin, M. A.; Sadovnikov, A. A.; Apostolova, E. S.; Grinberg, V. A.; Emets, V. V.; Chizov, A. O.; Nikitin, O. M.; Magdesieva, T. V.; Kozyukhin, S. A. The design and synthesis of thiophene-based ruthenium(II) complexes as promising sensitizers for dye-sensitized solar cells. Dyes and Pigments 2017, 140, 169−178.
(95) Bomben, P. G.; Koivisto, B. D.; Berlinguette, C. P. Cyclometalated Ru complexes of type [RuII(N^N)2(C^N)]z: Physicochemical response to substituents installed on the anionic ligand. Inorg. Chem. 2010, 49, 4960−4971.
(96) Allred, A. Electronegativity values from thermochemical data. J. Inorg. Nucl. Chem. 1961, 17, 215−221.
(97) Hartley, F. R. The cis- and trans-effects of ligands. Chem. Soc. Rev. 1973, 2, 163−179.
(98) Bomben, P. G.; Borau-Garcia, J.; Berlinguette, C. P. Three is not a crowd: efficient sensitization of TiO2 by a bulky trichromic trisheteroleptic cycloruthenated dye. Chem. Commun. 2012, 48, 5599−5601.
(99) Nguyen, T. D.; Lan, Y. P.; Wu, C. G. High-efficiency cycloruthenated sensitizers for dye-sensitized solar cells. Inorg. Chem. 2018, 57, 1527−1534.
(100) Gao, F.; Cheng, Y.; Yu, Q.; Liu, S.; Shi, D.; Li, Y.; Wang, P. Conjugation of selenophene with bipyridine for a high molar extinction coefficient sensitizer in dye-sensitized solar cells. Inorg. Chem. 2009, 48, 2664−2669.
(101) Nazeeruddin, M. K.; Humphry-Baker, R.; Liska, P.; Gratzel, M. Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. J. Phys. Chem. B 2003, 107, 8981−8987.
(102) Qu, S.; Wang, B.; Guo, F.; Li, J.; Wu, W.; Kong, C.; Long, Y.; Hua, J. New diketo-pyrrolo-pyrrole (DPP) sensitizer containing a furan moiety for efficient and stable dye-sensitized solar cells. Dyes Pigm. 2012, 92, 1384−1393.
(103) Nyhlen, J.; Boschloo, G.; Hagfeldt, A.; Kloo, L.; Privalov, T. Regeneration of oxidized organic photo-sensitizers in Grätzel solar cells: quantum-chemical portrait of a general mechanism. ChemPhysChem 2010, 11, 1858−1862.
(104) Hussain, M.; Islam, A.; Bedja, I.; Gupta, R. K.; Han, L.; El-Shafei, A. A comparative study of Ru(II) cyclometallated complexes versus thiocyanated heteroleptic complexes: thermodynamic force for efficient dye regeneration in dye-sensitized solar cells and how low could it be?. Phys. Chem. Chem. Phys. 2014, 16, 14874−14881.
(105) Pashaei, B.; Shahroosvand, H.; Grätzel, M.; Nazeeruddin, M. K. Efficient dye regeneration at low driving force achieved in triphenylamine dye LEG4 and TEMPO redox mediator based dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2015, 17, 15868−15875.
(106) Funaki, T.; Otsuka, H.; Komatsuzaki, N. O.; Kasuga, K.; Sayama, K.; Sugihara, H. Systematic evaluation of HOMO energy levels for efficient dye regeneration in dye-sensitized solar cells. J. Mater. Chem. A 2014, 2, 15945−15951.
(107) Teng, C.; Yang, X.; Li, S.; Cheng, M.; Hagfeldt, A.; Wu, L. Z.; Sun, L. Tuning the HOMO energy levels of organic dyes for dye-sensitized solar cells based on Br−/Br3− electrolytes. Chem. Eur. J. 2010, 16, 13127−13138.
(108) Xiang, W.; Gupta, A.; Kashif, M. K.; Duffy, N.; Bilic, A.; Evans, R. A.; Spiccia, L.; Bach, U. Cyanomethylbenzoic acid: an acceptor for donor–– acceptor chromophores used in dye-sensitized solar cells. ChemSusChem 2013, 6, 256−260.
(109) Clifford, J. N.; Palomares, E.; Nazeeruddin, M. K.; Grätzel, M.; Durrant, J. R. Dye dependent regeneration dynamics in dye sensitized nanocrystalline solar cells: evidence for the formation of a ruthenium bipyridyl cation/iodide intermediate. J. Phys. Chem. C 2007, 111, 6561−6567.
(110) Pearson, R. G. Hard and soft acids and bases, HSAB, part I: Fundamental principles. J. Chem. Educ. 1968, 45, 581−587.
(111) Wang, Q.; Moser, J. E.; Grätzel, M. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J. Phys. Chem. B 2005, 109, 14945−14953.
(112) Bisquert, J.; Fabregat-Santiago, F.; Mora-Seró, I.; GarciaBelmonte, G.; Giménez, S. Electron lifetime in dye-sensitized solar cells: Theory and interpretation of measurements. J. Phys. Chem. C 2009, 113, 17278−17290.
(113) Li, J. Y.; Lee, C.; Chen, C. Y.; Lee, W. L.; Ma, R.; Wu, C. G. Diastereoisomers of ruthenium dyes with unsymmetric ligands for DSC: Fundamental chemistry and photovoltaic performance. Inorg. Chem. 2015, 54, 10483−10489.
(114) Asaduzzaman, A. M.; Chappellaz, G. A. G.; Schreckenbach, G. Relationship between dye-iodine binding and cell voltage in dye-sensitized solar cells: A quantum-mechanical look. J. Comput. Chem. 2012, 33, 2492−2497.
(115) Hu, K.; Severin, H. A.; Koivisto, B. D.; Robson, K. C. D.; Schott, E.; Arratia-Perez, R.; Meyer, G. J.; Berlinguette, C. P. Direct spectroscopic evidence for constituent heteroatoms enhancing charge recombination at a TiO2-ruthenium dye interface. J. Phys. Chem. C 2014, 118, 17079−17089.
(116) Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098−3100.
(117) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648−5652.
(118) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785−789.
(119) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chem. Phys. Lett. 1989, 157, 200−206.
(120) Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 1985, 82, 270−283.
(121) McLean, A. D.; Chandler, G. S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. J. Chem. Phys. 1980, 72, 5639−5648.
(122) Cossi, M.; Rega, N.; Scalmani G.; Barone, V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem., 2003, 24, 669−681.
(123) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A.; Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2016.
指導教授 吳春桂(Chun-Guey Wu) 審核日期 2018-10-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明