博碩士論文 992403002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:112 、訪客IP:3.145.57.187
姓名 華希哲(HUA HSI CHE)  查詢紙本館藏   畢業系所 化學學系
論文名稱 全面二維氣相層析技術於環境週界大氣樣品之分析應用
(Applications of Comprehensive Two-Dimensional Gas Chromatography for the Analysis of Ambient Air Samples)
相關論文
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 以逆吹式氣相層析法分析氣體成份
★ 氣相層析法應用於工業排放連續監測★ 煙道氣揮發性有機化合物連續監測方法開發
★ 自製新型除水及熱脫附濃縮裝置用於GC/MS線上分析揮發性有機汙染物★ 觸媒式非甲烷總碳氫分析儀開發與驗證
★ 自製除水器及熱脫附儀用於線上GC/MS/FID揮發性有機污染物之分析★ 大氣及水樣中揮發性有機氣體自動化分析技術之建立及應用
★ VOC前濃縮與預警系統之建構★ 建立自動化甲烷連續量測系統與其在指示大氣輻射冷卻之應用
★ 臭氧前趨物連續監測與臭氧生成之光化學探討★ 以近連續方式量測空氣中甲烷與異戊二烯及其生成之季節性探討
★ 自行架設光化學測站與商業化儀器平行比對及所得資料初步分析★ 近地表臭氧前驅物分析之前濃縮技術改良
★ 自動化噴霧捕捉分析系統之建立與研究★ 大體積固相微萃取水中揮發性有機污染物
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 全面二維氣相層析技術(Comprehensive Two-Dimensional Gas Chromatography,GC×GC)相較於傳統一維層析技術(Conventional One-Dimensional GC)具備了無可比擬的分離效能,將樣品通過兩支作用力相異且長度/口徑不同的層析管柱,運用管柱所形成的正交性(Orthogonality),使得在一維層析圖譜中無法有效解析的共析物種得以分離開來,並可將其在二維平面上展開,得力於 GC×GC 絕佳的圖譜解析度與極高的波峰容量,可有助於大幅改善樣品的分析品質,當面對複雜樣品的檢測需求時 GC×GC 遂成為新一代層析技術之主流。
調制器(Modulator)為 GC×GC 系統中最核心的角色,現今市面上商業化的 GC×GC 系統多以冷凍型調制器為大宗,其設備造價高昂,操作運行成本與人員訓練花費亦皆所費不貲,並需克服冷劑補充等的後勤支援事宜,本研究室以丁式切換裝置(Deans Switch)成功開發出閥件型調制器(Valve - Based Modulator)模組,將常見的一般 GC改良組裝成 GC×GC 系統,其裝置簡易、操作方便且耐用性佳。此一分析系統大幅降低硬體單元之建置成本,操作過程當中無須顧及冷劑的消耗與補充,也不必依賴特定之商業軟體套件便可完成數據處理之需求。
本研究針對大氣中常見的高揮發性氣態有機物質為分析標的,因其濃度範圍多座落於 ppb 等級,故先以本實驗室所自主研製之氣體前濃縮熱脫附儀,將氣體樣品進行相關的捕捉與濃縮等之樣品前處理程序,之後再將樣品升溫脫附後推送至 GC×GC 系統中完成分析工作。另外亦針對以石英濾紙所捕集之 PM 2.5 樣品,以直接熱脫附方式進行 GC×GC 系統的分析工作暨物種探討,將其所得圖譜結果與 GCMS 及 GC×GC-ToF 進行電腦圖庫比對,成功分析於隧道樣品及氣膠樣品中的物種組分,發現到於隧道樣品中因缺乏光化學反應之條件,所見物種多為非極性之碳氫化合物,而 PM 2.5 樣品則因在大氣旅行過程中多已歷經氧化反應,測得物種多為含氧之 VOCs。
本實驗室再進一步運用新一代微通道載台(Microchannel Device,MCD)裝置,自行組裝改良並建構一氣流式調制器系統,經各項參數的優化後以標準氣體可驗證並確認本系統具有優異且穩定的分離能力,後續於真實之都市街道的空氣樣品分析工作上面,亦能成功表現出其良好的效能,將全二維氣相層析技術再成功的予以提升精進,以達到更理想的波峰對稱性與解析能力。
摘要(英) Compared to conventional one-dimensional gas chromatography, comprehensive two-dimensional chromatography (GCxGC) is inherited with high peak capacity that dramatically improves separation resolution and alleviates the co-elution problem for complicated samples. GCxGC uses two columns of different polarity to provide orthogonal separation on a 2-D surface, it becomes not only a powerful technique to analyze complex chemical compositions but also the mainstream of next-generation chromatography technology.
Modulation plays a central role in GCxGC performance. The high cost in ownership and operation of a commercial GCxGC system equipped with a cryogenic modulation which need of cryogen, such as liquid nitrogen or liquid carbon dioxide, hinders many users from possession due to high expense in purchase and maintenance. In this study, a valve-based modulator based on the Deans switch served as an alternative to the commercial counterpart without the use of cryogen. The novel features with this design is simple structure, ease of use, robust, flexibility and eliminate additional financial burden about cryogen.
Because of the low concentrations of VOCs in ambient air, usually at only sub-ppbv levels, an air sample would require substantial preconcentration before GC analysis. A self-constructed preconcentrator was connected to our GC×GC system. This system was able to analyze atmospheric sample at ambient level. Real ambient air samples collected in a long highway tunnel by canisters and sorption tubes were analyzed for system validation. Furthermore, as the trial studies, PM2.5 aerosol samples collected on filter papers were attempted by thermal desorption of the filter paper. Compound identification was made with GC-MS by analysing parallel samples to reveal the chemical identities of the major constituents of both the air and PM samples. While all the VOCs found in the canisters were non-polar hydrocarbons due to the lack of photochemistry in the tunnel, selected oxygenated VOCs (o-VOCs) were found in the aerosol sample owing to the extended oxidation process in the atmosphere.
Further, we used microchannel device (SilflowTM , provided by SGE) to configure a flow modulator to improve versatility in modulation, such as flow path, flow rate, and sample filling loop length to minimize dead volume. Utilizing standard mixture to verify the performance in gas-separation, and the suitability in ambient sample analysis.
關鍵字(中) ★ 二維氣相層析
★ 揮發性有機污染物
關鍵字(英) ★ GCxGC
★ VOCs
★ PM 10
★ PM 2.5
論文目次 中 文 摘 要........................................................I
英 文 摘 要......................................................III
目次........................................................V
表 目 錄.......................................................IX
圖 目 錄.......................................................XI

第 1 章 前言........................................................1
1.1 層析技術的發展與演進 1
1.2 進樣系統 21
1.3 管柱組合 23
1.4 調制器 29
1.4.1 熱脫附型調制器 32
1.4.2 旋轉加熱型調制器 34
1.4.3 冷凍型調制器 37
1.4.4 閥件型調制器 40
1.4.5 隔膜閥調制器 43
1.4.6 氣流差調制器 46
1.4.7 氣流切換調制器 50
1.5 偵測器 56
1.5.1 火焰離子偵測器 57
1.5.2 電子捕捉偵測器 58
1.5.3 火焰光度偵測器 59
1.5.4 原子放射偵測器 60
1.5.5 硫化學發光偵測器 61
1.5.6 氮化學發光偵測器 62
1.5.7 質譜偵測器 63
1.6 全二維氣相層析的應用 69
1.7 研究方法 79

第 2 章 儀器設備與系統架構..........................................103
2.1 前濃縮熱脫附儀(THERMAL DESORPTION SYSTEM,TD) 103
2.2 丁式切換調制器 113
2.3 資料處理 115
2.4 標準氣體樣品 121

第 3 章 結果與討論......................................................125
3.1 管柱組合 125
3.2 載流氣體 129
3.3 輔助氣體 134
3.4 調制器參數 135
3.4.1 調制週期 135
3.4.2 調制比例 139
3.4.3 調制脈衝 141
3.4.4 調制佔空比 143
3.5 系統穩定性測試 143
3.6 真實樣品分析 148

第 4 章 新一代調制器......................................................169
4.1 數據處理 176
4.2 標準氣體 177
4.3 管柱組合 179
4.4 輔助氣流 182
4.5 阻抗管長度 184
4.6 調制器參數 186
4.7 穩定性測試 190

第 5 章 結論......................................................193

參 考 文 獻......................................................195
參考文獻 [1] M. Tswett, Adsorptionsanalyse und chrematographische Methode. Anwendung auf die Chemie des Chlorophylls, Berichte der Deutschen Botanischen Gesellschaft, 24 (1906) 384-393.
[2] M. Tswett, Physikalisch-chemische Studien über das Chlorophyll. Die Adsorptionen, Berichte der Deutschen botanischen Gesellschaft, (1906).
[3] G.A. Eiceman, J. Herbert H. Hill, B. Davani, J.L. Gardea-Torresdey, Gas Chromatography, Anal. Chem, 68 (1996) 291-308.
[4] L. Mondello, A.C. Lewis, K.D. Bartle, Multidimensional Chromatography, (2002).
[5] L.S. Ettre, The Centenary of "Chromatography", LCGC North America, 24 (2006) 680-692.
[6] K.K. Unger, E. Machtejevas, More than just a column - The possibilities of multidimensional LC, Nachr. Chem., 55 (2007).
[7] W. Bertsch, Two‐Dimensional Gas Chromatography. Concepts, Instrumentation, and Applications–Part 1: Fundamentals, Conventional Two‐Dimensional Gas Chromatography, Selected Applications, Journal of High Resolution Chromatography, 22 (1999) 647-665.
[8] T.A. Berger, Separation of a gasoline on an open tubular column with 1.3 million effective plates, Chromatographia, 42 (1996) 63-71.
[9] G. Guiochon, M.F. Gonnord, M. Zakaria, L.A. Beaver, A.M. Siouffi, Chromatography with a two-dimensional column, Chromatographia, 17 (1983) 121-124.
[10] P.J. Marriott, S.-T. Chin, B. Maikhunthod, H.-G. Schmarr, S. Bieri, Multidimensional gas chromatography, TrAC Trends in Analytical Chemistry, 34 (2012) 1-21.
[11] M.C. Simmons, L.R. Snyder, Two-Stage Gas-Liquid Chromatography, Anal. Chem., 30 (1958) 32-35.
[12] J.C. Giddings, Two-Dimensional Seperations: Concept and Promise, Analytical Chemistry, 56 (1984) 1258A-1270A.
[13] J.C. Giddings, Concepts and comparisons in multidimensional separation, Journal of High Resolution Chromatography, 10 (1987) 319-323.
[14] L. Blumberg, M.S. Klee, A critical look at the definition of multidimensional separations Journal of Chromatography A, 1217 (2010) 99-103.
[15] M. Edwards, A. Mostafa, T. Gorecki, Modulation in comprehensive two-dimensional gas chromatography: 20 years of innovation, Anal Bioanal Chem, 401 (2011) 2335-2349.
[16] M. Edwards, H. Boswell, T. Górecki, Comprehensive Multidimensional Chromatography, Current Chromatography, 2 (2015) 80-109.
[17] M. Adahchour, J. Beens, R.J.J. Vreuls, U.A.T. Brinkman, Recent developments in comprehensive two-dimensional gas chromatography (GC × GC): I. Introduction and instrumental set-up, TrAC Trends in Analytical Chemistry, 25 (2006) 438-454.
[18] S.M. Noroska Gabriela, P.S. Prata, F. Augusto, Determination of Biomarkers in Petroleum by Multidimensional Gas Chromatography: Fundamentals, Applications, and Future Perspectives.pdf>, Chromatography Today, 7 (2014) 3-6.
[19] W.C. Liao, C.F. Ou-Yang, C.H. Wang, C.C. Chang, J.L. Wang, Two-dimensional gas chromatographic analysis of ambient light hydrocarbons, Journal of chromatography. A, 1294 (2013) 122-129.
[20] B.M. Gordon, M.S. Uhrig, M.F. Borgerding, H.L. Chung, W.M. Coleman, 3rd, J.F. Elder, Jr., J.A. Giles, D.S. Moore, C.E. Rix, E.L. White, Analysis of flue-cured tobacco essential oil by hyphenated analytical techniques, J Chromatogr Sci, 26 (1988) 174-180.
[21] P.Q. Tranchida, D. Sciarrone, P. Dugo, L. Mondello, Heart-cutting multidimensional gas chromatography: a review of recent evolution, applications, and future prospects, Anal Chim Acta, 716 (2012) 66-75.
[22] Z. Liu, J.B. Phillips, Comprehensive two-dimensional gas chromatography using an on-column thermal modulator interface, Journal of Chromatographic Science, 29 (1991) 227-231.
[23] J.B. Phillips, E.B. Ledford, Thermal modulation: A chemical instrumentation component of potential value in improving portability, Field Analytical Chemistry & Technology, 1 (1996) 23-29.
[24] J.B. Phillips, J. Beens, Comprehensive two-dimensional gas chromatography: a hyphenated method with strong coupling between the two dimensions, Journal of Chromatography A, 856 (1999) 331-347.
[25] W. Bertsch, Two-Dimensional Gas Chromatography. Concepts, Instrumentation, and Applications – Part 2: Comprehensive Two-Dimensional Gas Chromatography, Journal of High Resolution Chromatography, 23 (2000) 167-181.
[26] P. Marriott, R. Shellie, Principles and applications of comprehensive two-dimensional gas chromatography, TrAC Trends in Analytical Chemistry, 21 (2002) 573-583.
[27] M. Pursch, K. Sun, B. Winniford, H. Cortes, A. Weber, T. McCabe, J. Luong, Modulation techniques and applications in comprehensive two-dimensional gas chromatography (GC x GC), Anal Bioanal Chem, 373 (2002) 356-367.
[28] T. Gorecki, J. Harynuk, O. Panic, The evolution of comprehensive two-dimensional gas chromatography (GC x GC), J Sep Sci, 27 (2004) 359-379.
[29] J. Beens, U.A.T. Brinkman, Comprehensive two-dimensional gas chromatography-a powerful and versatile technique, Analyst, 130 (2005) 123-127.
[30] V.G. van Mispelaar, H.-G. Janssen, A.C. Tas, P.J. Schoenmakers, Novel system for classifying chromatographic applications, exemplified by comprehensive two-dimensional gas chromatography and multivariate analysis, Journal of Chromatography A, 1071 (2005) 229-237.
[31] M. Adahchour, J. Beens, R.J.J. Vreuls, U.A.T. Brinkman, Recent developments in comprehensive two-dimensional gas chromatography (GC × GC): IV. Further applications, conclusions and perspectives, TrAC Trends in Analytical Chemistry, 25 (2006) 821-840.
[32] M. Adahchour, J. Beens, R.J.J. Vreuls, U.A.T. Brinkman, Recent developments in comprehensive two-dimensional gas chromatography (GC × GC): III. Applications for petrochemicals and organohalogens, TrAC Trends in Analytical Chemistry, 25 (2006) 726-741.
[33] M. Adahchour, J. Beens, R.J.J. Vreuls, U.A.T. Brinkman, Recent developments in comprehensive two-dimensional gas chromatography (GC × GC): II. Modulation and detection, TrAC Trends in Analytical Chemistry, 25 (2006) 540-553.
[34] T. Górecki, O. Panić, N. Oldridge, Recent Advances in Comprehensive Two‐Dimensional Gas Chromatography (GC×GC), Journal of Liquid Chromatography & Related Technologies, 29 (2006) 1077-1104.
[35] M. Adahchour, J. Beens, U.A.T. Brinkman, Recent developments in the application of comprehensive two-dimensional gas chromatography, Journal of Chromatography A, 1186 (2008) 67-108.
[36] C. Cordero, C. Bicchi, M. Galli, S. Galli, P. Rubiolo, Evaluation of different internal-diameter column combinations in comprehensive two-dimensional gas chromatography in flavour and fragrance analysis, J Sep Sci, 31 (2008) 3437-3450.
[37] F.L. Dorman, J.J. Whiting, J.W. Cochran, J. Gardea-Torresdey, Gas Chromatography, Analytical Chemistry, 82 (2010) 4775-4785.
[38] P.W. Carr, J.M. Davis, S.C. Rutan, D.R. Stoll, Principles of online comprehensive multidimensional liquid chromatography, Advances in chromatography, 50 (2012) 139-235.
[39] A.P. de la Mata, J.J. Harynuk, Limits of Detection and Quantification in Comprehensive Multidimensional Separations. 1. A Theoretical Look, Analytical Chemistry, 84 (2012) 6646-6653.
[40] D.W. Armstrong, S.L. Massey Simonich, Multidimensional Separations, Analytical Chemistry, 86 (2014) 11473-11473.
[41] C. Cordero, E. Liberto, C. Bicchi, P. Rubiolo, S.E. Reichenbach, X. Tian, Q. Tao, Targeted and Non-Targeted Approaches for Complex Natural Sample Profiling by GC×GC–qMS, J. Chromatogr. Sci., 48 (2010) 251-261.
[42] J. Kiefl, C. Cordero, L. Nicolotti, P. Schieberle, S.E. Reichenbach, C. Bicchi, Performance evaluation of non-targeted peak-based cross-sample analysis for comprehensive two-dimensional gas chromatography–mass spectrometry data and application to processed hazelnut profiling, Journal of Chromatography A, 1243 (2012) 81-90.
[43] G. Purcaro, C. Cordero, E. Liberto, C. Bicchi, L.S. Conte, Toward a definition of blueprint of virgin olive oil by comprehensive two-dimensional gas chromatography, Journal of Chromatography A, 1334 (2014) 101-111.
[44] F. Magagna, L. Valverde-Som, C. Ruíz-Samblás, L. Cuadros-Rodríguez, S.E. Reichenbach, C. Bicchi, C. Cordero, Combined untargeted and targeted fingerprinting with comprehensive two-dimensional chromatography for volatiles and ripening indicators in olive oil, Analytica Chimica Acta, 936 (2016) 245-258.
[45] C. Cordero, P. Rubiolo, S.E. Reichenbach, A. Carretta, L. Cobelli, M. Giardina, C. Bicchi, Method translation and full metadata transfer from thermal to differential flow modulated comprehensive two dimensional gas chromatography: Profiling of suspected fragrance allergens, Journal of chromatography. A, 1480 (2017) 70-82.
[46] J.C. Giddings, Sample dimensionality: A predictor of order-disorder in component peak distribution in multidimensional separation, Journal of Chromatography A, 703 (1995) 3-15.
[47] P.Q. Tranchida, M. Maimone, G. Purcaro, P. Dugo, L. Mondello, The penetration of green sample-preparation techniques in comprehensive two-dimensional gas chromatography, TrAC Trends in Analytical Chemistry, 71 (2015) 74-84.
[48] P.S. Prata, G.L. Alexandrino, N.G. Mogollon, F. Augusto, Discriminating Brazilian crude oils using comprehensive two-dimensional gas chromatography-mass spectrometry and multiway principal component analysis, Journal of chromatography. A, 1472 (2016) 99-106.
[49] C. Zhang, R.A. Park, J.L. Anderson, Crosslinked structurally-tuned polymeric ionic liquids as stationary phases for the analysis of hydrocarbons in kerosene and diesel fuels by comprehensive two-dimensional gas chromatography, Journal of chromatography. A, 1440 (2016) 160-171.
[50] B. Shen, D. Semin, J. Fang, G. Guo, Analysis of 4-bromo-3-fluorobenzaldehyde and separation of its regioisomers by one-dimensional and two-dimensional gas chromatography, Journal of chromatography. A, 1462 (2016) 115-123.
[51] G. Cao, Q. Li, X. Wu, J. Zhang, H. Zhang, J. Jiang, Coupling needle-trap devices with comprehensive two-dimensional gas chromatography with high-resolution time-of-flight mass spectrometry to rapidly reveal the chemical transformation of volatile components from sulfur-fumigated ginseng, Journal of Separation Science, 38 (2015) 1248-1253.
[52] A. Agapiou, E. Zorba, K. Mikedi, L. McGregor, C. Spiliopoulou, M. Statheropoulos, Analysis of volatile organic compounds released from the decay of surrogate human models simulating victims of collapsed buildings by thermal desorption-comprehensive two-dimensional gas chromatography-time of flight mass spectrometry, Anal Chim Acta, 883 (2015) 99-108.
[53] R. Dunmore, J. Hopkins, R. Lidster, M. Mead, B. Bandy, G. Forster, D. Oram, W. Sturges, S.-M. Phang, A. Samah, J. Hamilton, Development of a Combined Heart-Cut and Comprehensive Two-Dimensional Gas Chromatography System to Extend the Carbon Range of Volatile Organic Compounds Analysis in a Single Instrument, Separations, 3 (2016) 21.
[54] M. Libardoni, P.T. Stevens, J.H. Waite, R. Sacks, Analysis of human breath samples with a multi-bed sorption trap and comprehensive two-dimensional gas chromatography (GCxGC), J Chromatogr B Analyt Technol Biomed Life Sci, 842 (2006) 13-21.
[55] C.H. Wang, S.W. Chiang, J.L. Wang, Simultaneous analysis of atmospheric halocarbons and non-methane hydrocarbons using two-dimensional gas chromatography, Journal of chromatography. A, 1217 (2010) 353-358.
[56] S.H. Lopez, M.J. Gomez, M.D. Hernando, A.R. Fernandez-Alba, Automated dynamic headspace followed by a comprehensive two-dimensional gas chromatography full scan time-of-flight mass spectrometry method for screening of volatile organic compounds (VOCs) in water, Analytical Methods, 5 (2013) 1165-1177.
[57] M. Windt, D. Meier, J.H. Marsman, H.J. Heeres, S. de Koning, Micro-pyrolysis of technical lignins in a new modular rig and product analysis by GC-MS/FID and GC x GC-TOFMS/FID, Journal of Analytical and Applied Pyrolysis, 85 (2009) 38-46.
[58] N.H. Snow, J. Sinex, M. Danser, Multiple Dimensions of Separations: SPME with GCxGC and GCxGC–TOFMS, LCGC Europe, 23 (2010) 260-267.
[59] C.A. Rees, A. Shen, J.E. Hill, Characterization of the Clostridium difficile volatile metabolome using comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry, Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1039 (2016) 8-16.
[60] S. Carlin, U. Vrhovsek, P. Franceschi, C. Lotti, L. Bontempo, F. Camin, D. Toubiana, F. Zottele, G. Toller, A. Fait, F. Mattivi, Regional features of northern Italian sparkling wines, identified using solid-phase micro extraction and comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry, Food Chem., 208 (2016) 68-80.
[61] E.A.S. Silva, S. Risticevic, J. Pawliszyn, Recent trends in SPME concerning sorbent materials, configurations and in vivo applications, TrAC Trends in Analytical Chemistry, 43 (2013) 24-36.
[62] N. Ochiai, J. Heim, M. Libardoni, K. Sasamoto, Trace-Level Organochlorine and Organophosphorus Pesticides Analysis by SBSE–GC–TOFMS and SBSE–GCxGC–TOFMS, Spectroscopy, (2008).
[63] C. Cordero, C. Cagliero, E. Liberto, L. Nicolotti, P. Rubiolo, B. Sgorbini, C. Bicchi, High concentration capacity sample preparation techniques to improve the informative potential of two-dimensional comprehensive gas chromatography-mass spectrometry: Application to sensomics, Journal of Chromatography A, 1318 (2013) 1-11.
[64] B.T. Weldegergis, A.M. Crouch, T. Gorecki, A. de Villiers, Solid phase extraction in combination with comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry for the detailed investigation of volatiles in South African red wines, Anal Chim Acta, 701 (2011) 98-111.
[65] V. Matamoros, E. Jover, J.M. Bayona, Part-per-trillion determination of pharmaceuticals, pesticides, and related organic contaminants in river water by solid-phase extraction followed by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry, Anal Chem, 82 (2010) 699-706.
[66] R. Ong, S. Lundstedt, P. Haglund, P. Marriott, Pressurised liquid extraction–comprehensive two-dimensional gas chromatography for fast-screening of polycyclic aromatic hydrocarbons in soil, Journal of Chromatography A, 1019 (2003) 221-232.
[67] S. Zhu, Effect of column combinations on two-dimensional separation in comprehensive two-dimensional gas chromatography: Estimation of orthogonality and exploring of mechanism, Journal of Chromatography A, 1216 (2009) 3312-3317.
[68] Z. Liu, D.G. Patterson Jr, M.L. Lee, Geometric approach to factor analysis for the estimation of orthogonality and practical peak capacity in comprehensive two-dimensional separations, Analytical Chemistry, 67 (1995) 3840-3845.
[69] C.J. Venkatramani, J. Xu, J.B. Phillips, Separation Orthogonality in Temperature-Programmed Comprehensive Two-Dimensional Gas Chromatography, Analytical Chemistry, 68 (1996) 1486-1492.
[70] D. Ryan, P. Morrison, P. Marriott, Orthogonality considerations in comprehensive two-dimensional gas chromatography, Journal of Chromatography A, 1071 (2005) 47-53.
[71] R.M. Kinghorn, P.J. Marriott, Comprehensive two‐dimensional gas chromatography using a Modulating Cryogenic Trap, Journal of High Resolution Chromatography, 21 (1998) 620-622.
[72] J. Wu, X. Lu, W. Tang, H. Kong, S. Zhou, G. Xu, Application of comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry in the analysis of volatile oil of traditional Chinese medicines, Journal of Chromatography A, 1034 (2004) 199-205.
[73] M. Adahchour, J. Beens, R.J. Vreuls, A.M. Batenburg, A.T. Udo, Comprehensive two-dimensional gas chromatography of complex samples by using a ‘reversed-type’column combination: application to food analysis, Journal of Chromatography A, 1054 (2004) 47-55.
[74] G. Schomburg, Two-dimensional gas chromatography: Principles, instrumentation, methods, Journal of Chromatography A, 703 (1995) 309-325.
[75] R. Gieleciak, D. Hager, N.E. Heshka, Application of a quantitative structure retention relationship approach for the prediction of the two-dimensional gas chromatography retention times of polycyclic aromatic sulfur heterocycle compounds, Journal of Chromatography A, 1437 (2016) 191-202.
[76] J. Beens, H. Boelens, R. Tijssen, J. Blomberg, Quantitative aspects of comprehensive two-dimensional gas chromatography (GC x GC), HRC Journal of High Resolution Chromatography, 21 (1998) 47-54.
[77] B.V. Burger, T. Snyman, W.J.G. Burger, W.F. van Rooyen, Thermal modulator array for analyte modulation and comprehensive two-dimensional gas chromatography, Journal of Separation Science, 26 (2003) 123-128.
[78] J.B. Phillips, R.B. Gaines, J. Blomberg, F.W. van der Wielen, J.M. Dimandja, V. Green, J. Granger, D. Patterson, L. Racovalis, H.J. de Geus, A Robust Thermal Modulator for Comprehensive Two‐Dimensional Gas Chromatography, Journal of High Resolution Chromatography, 22 (1999) 3-10.
[79] J. Dalluge, J. Beens, U.A. Brinkman, Comprehensive two-dimensional gas chromatography: a powerful and versatile analytical tool, Journal of chromatography. A, 1000 (2003) 69-108.
[80] P.J. Marriott, R.M. Kinghorn, Studies on cryogenic trapping of solutes during chromatographic elution in capillary gas chromatography, Journal of High Resolution Chromatography, 19 (1996) 403-408.
[81] E.B. Ledford Jr, C. Billesbach, Jet‐cooled thermal modulator for comprehensive multidimensional gas chromatography, Journal of High Resolution Chromatography, 23 (2000) 202-204.
[82] M. Adahchour, J. Beens, U.T. Brinkman, Single-jet, single-stage cryogenic modulator for comprehensive two-dimensional gas chromatography (GC× GC), Analyst, 128 (2003) 213-216.
[83] J. Beens, M. Adahchour, R.J.J. Vreuls, K. van Altena, U.A. Th. Brinkman, Simple, non-moving modulation interface for comprehensive two-dimensional gas chromatography, Journal of Chromatography A, 919 (2001) 127-132.
[84] J. Harynuk, T. Górecki, New liquid nitrogen cryogenic modulator for comprehensive two-dimensional gas chromatography, Journal of Chromatography A, 1019 (2003) 53-63.
[85] P.J. Marriott, R.M. Kinghorn, R. Ong, P. Morrison, P. Haglund, M. Harju, Comparison of thermal sweeper and cryogenic modulator technology for comprehensive gas chromatography, Journal of Separation Science, 23 (2000) 253-258.
[86] D.R. Deans, An improved technique for back-flushing gas chromatographic columns, Journal of Chromatography A, 18 (1965) 477-481.
[87] D.R. Deans, A new technique for heart cutting in gas chromatography [1], Chromatographia, 1 (1968) 18-22.
[88] C.A. Bruckner, B.J. Prazen, R.E. Synovec, Comprehensive Two-Dimensional High-Speed Gas Chromatography with Chemometric Analysis, Analytical Chemistry, 70 (1998) 2796-2804.
[89] C.G. Fraga, B.J. Prazen, R.E. Synovec, Comprehensive two-dimensional gas chromatography and chemometrics for the high-speed quantitative analysis of aromatic isomers in a jet fuel using the standard addition method and an objective retention time alignment algorithm, Anal Chem, 72 (2000) 4154-4162.
[90] B.J. Prazen, K.J. Johnson, A. Weber, R.E. Synovec, Two-dimensional gas chromatography and trilinear partial least squares for the quantitative analysis of aromatic and naphthene content in naphtha, Anal Chem, 73 (2001) 5677-5682.
[91] H. Cai, S.D. Stearns, A comprehensive two-dimensional gas chromatography valve modulation method using hold-release primary column flow for long secondary separation time with 100% transfer, Journal of chromatography. A, 1569 (2018) 200-211.
[92] J.V. Seeley, F. Kramp, C.J. Hicks, Comprehensive Two-Dimensional Gas Chromatography via Differential Flow Modulation, Analytical Chemistry, 72 (2000) 4346-4352.
[93] J.V. Seeley, N.J. Micyus, S.V. Bandurski, S.K. Seeley, J.D. McCurry, Microfluidic Deans switch for comprehensive two-dimensional gas chromatography, Analytical chemistry, 79 (2007) 1840-1847.
[94] F.C.-Y. Wang, New valve switching modulator for comprehensive two-dimensional gas chromatography, Journal of Chromatography A, 1188 (2008) 274-280.
[95] H.J. Cortes, B. Winniford, J. Luong, M. Pursch, Comprehensive two dimensional gas chromatography review, Journal of separation science, 32 (2009) 883-904.
[96] C.E. Freye, L. Mu, R.E. Synovec, High temperature diaphragm valve-based comprehensive two-dimensional gas chromatography, Journal of Chromatography A, 1424 (2015) 127-133.
[97] P.A. Bueno, J.V. Seeley, Flow-switching device for comprehensive two-dimensional gas chromatography, Journal of Chromatography A, 1027 (2004) 3-10.
[98] N.J. Micyus, J.D. McCurry, J.V. Seeley, Analysis of aromatic compounds in gasoline with flow-switching comprehensive two-dimensional gas chromatography, Journal of Chromatography A, 1086 (2005) 115-121.
[99] J.V. Seeley, N.J. Micyus, J.D. McCurry, S.K. Seeley, Comprehensive two-dimensional gas chromatography with a simple fluidic modulator, American laboratory, 38 (2006) 24-26.
[100] M. Poliak, A.B. Fialkov, A. Amirav, Pulsed flow modulation two-dimensional comprehensive gas chromatography–tandem mass spectrometry with supersonic molecular beams, Journal of Chromatography A, 1210 (2008) 108-114.
[101] M. Poliak, M. Kochman, A. Amirav, Pulsed flow modulation comprehensive two-dimensional gas chromatography, Journal of Chromatography A, 1186 (2008) 189-195.
[102] R.L. Firor, Comprehensive Flow-Modulated Two-Dimensional Gas Chromatography System, (2007).
[103] K.M. Sharif, S.-T. Chin, C. Kulsing, P.J. Marriott, The microfluidic Deans switch: 50 years of progress, innovation and application, TrAC Trends in Analytical Chemistry, 82 (2016) 35-54.
[104] J.F. Griffith, W.L. Winniford, K. Sun, R. Edam, J.C. Luong, A reversed-flow differential flow modulator for comprehensive two-dimensional gas chromatography, Journal of chromatography. A, 1226 (2012) 116-123.
[105] C. Duhamel, P. Cardinael, V. Peulon-Agasse, R. Firor, L. Pascaud, G. Semard-Jousset, P. Giusti, V. Livadaris, Comparison of cryogenic and differential flow (forward and reverse fill/flush) modulators and applications to the analysis of heavy petroleum cuts by high-temperature comprehensive gas chromatography, Journal of chromatography. A, 1387 (2015) 95-103.
[106] C. Cordero, P. Rubiolo, L. Cobelli, G. Stani, A. Miliazza, M. Giardina, R. Firor, C. Bicchi, Potential of the reversed-inject differential flow modulator for comprehensive two-dimensional gas chromatography in the quantitative profiling and fingerprinting of essential oils of different complexity, Journal of Chromatography A, 1417 (2015) 79-95.
[107] O. Pani, T. Górecki, Comprehensive two-dimensional gas chromatography (GC×GC) in environmental analysis and monitoring, Analytical and Bioanalytical Chemistry, 386 (2006) 1013-1023.
[108] C. von Mühlen, W. Khummueng, C. Alcaraz Zini, E. Bastos Caramão, P.J. Marriott, Detector technologies for comprehensive two‐dimensional gas chromatography, Journal of separation science, 29 (2006) 1909-1921.
[109] H.J. Cortes, B. Winniford, J. Luong, M. Pursch, Comprehensive two dimensional gas chromatography review, J Sep Sci, 32 (2009) 883-904.
[110] Y. Wang, Q. Chen, D.L. Norwood, J. McCaffrey, Recent development in the applications of comprehensive two-dimensional gas chromatograph, Journal of Liquid Chromatography & Related Technologies, 33 (2010) 1082-1115.
[111] T.C. Tran, P.J. Marriott, Comprehensive two-dimensional gas chromatography – time-of-flight mass spectrometry and simultaneous electron capture detection/nitrogen phosphorous detection for incense analysis, Atmospheric Environment, 42 (2008) 7360-7372.
[112] A.M. Muscalu, E.J. Reiner, S.N. Liss, T. Chen, G. Ladwig, D. Morse, A routine accredited method for the analysis of polychlorinated biphenyls, organochlorine pesticides, chlorobenzenes and screening of other halogenated organics in soil, sediment and sludge by GCxGC-μECD, Analytical and bioanalytical chemistry, 401 (2011) 2403-2413.
[113] A.M. Muscalu, M. Edwards, T. Górecki, E.J. Reiner, Evaluation of a single-stage consumable-free modulator for comprehensive two-dimensional gas chromatography: Analysis of polychlorinated biphenyls, organochlorine pesticides and chlorobenzenes, Journal of Chromatography A, 1391 (2015) 93-101.
[114] E.M. Kristenson, P. Korytár, C. Danielsson, M. Kallio, M. Brandt, J. Mäkelä, R.J. Vreuls, J. Beens, A. Udo, Evaluation of modulators and electron-capture detectors for comprehensive two-dimensional GC of halogenated organic compounds, Journal of Chromatography A, 1019 (2003) 65-77.
[115] E. Engel, J. Ratel, P. Blinet, S.T. Chin, G. Rose, P.J. Marriott, Benchmarking of candidate detectors for multiresidue analysis of pesticides by comprehensive two-dimensional gas chromatography, Journal of Chromatography A, 1311 (2013) 140-148.
[116] X. Liu, D. Li, J. Li, G. Rose, P.J. Marriott, Organophosphorus pesticide and ester analysis by using comprehensive two-dimensional gas chromatography with flame photometric detection, Journal of Hazardous Materials, 263 (2013) 761-767.
[117] X. Liu, B. Mitrevski, D. Li, J. Li, P.J. Marriott, Comprehensive two-dimensional gas chromatography with flame photometric detection applied to organophosphorus pesticides in food matrices, Microchemical Journal, 111 (2013) 25-31.
[118] B. Mitrevski, M.W. Amer, A.L. Chaffee, P.J. Marriott, Evaluation of comprehensive two-dimensional gas chromatography with flame photometric detection: Potential application for sulfur speciation in shale oil, Analytica Chimica Acta, 803 (2013) 174-180.
[119] S.-T. Chin, Z.-Y. Wu, P.D. Morrison, P.J. Marriott, Observations on comprehensive two dimensional gas chromatography coupled with flame photometric detection for sulfur- and phosphorus-containing compounds, Analytical Methods, 2 (2010) 243-253.
[120] L.L. van Stee, J. Beens, R.J. Vreuls, A. Udo, Comprehensive two-dimensional gas chromatography with atomic emission detection and correlation with mass spectrometric detection: principles and application in petrochemical analysis, Journal of Chromatography A, 1019 (2003) 89-99.
[121] F.P. Di Sanzo, J.W. Diehl, Recent advances in gas chromatographic/atomic emission hetero-atom selective detection for characterization of petroleum streams and products, Journal of ASTM International, 2 (2005) 201-211.
[122] R. Hua, J. Wang, H. Kong, J. Liu, X. Lu, G. Xu, Analysis of sulfur‐containing compounds in crude oils by comprehensive two‐dimensional gas chromatography with sulfur chemiluminescence detection, Journal of separation science, 27 (2004) 691-698.
[123] R. Hua, Y. Li, W. Liu, J. Zheng, H. Wei, J. Wang, X. Lu, H. Kong, G. Xu, Determination of sulfur-containing compounds in diesel oils by comprehensive two-dimensional gas chromatography with a sulfur chemiluminescence detector, Journal of Chromatography A, 1019 (2003) 101-109.
[124] J. Harynuk, T. Górecki, Comprehensive two-dimensional gas chromatography in stop-flow mode, Journal of Separation Science, 27 (2004) 431-441.
[125] R. Ruiz-Guerrero, C. Vendeuvre, D. Thiébaut, F. Bertoncini, D. Espinat, Comparison of comprehensive two-dimensional gas chromatography coupled with sulfur-chemiluminescence detector to standard methods for speciation of sulfur-containing compounds in middle distillates, Journal of Chromatographic Science, 44 (2006) 566-573.
[126] H. Lu, Q. Shi, J. Lu, G. Sheng, P. Peng, C.S. Hsu, Petroleum sulfur biomarkers analyzed by comprehensive two-dimensional gas chromatography sulfur-specific detection and mass spectrometry, Energy and Fuels, 27 (2013) 7245-7251.
[127] L. Mahé, T. Dutriez, M. Courtiade, D. Thiébaut, H. Dulot, F. Bertoncini, Global approach for the selection of high temperature comprehensive two-dimensional gas chromatography experimental conditions and quantitative analysis in regards to sulfur-containing compounds in heavy petroleum cuts, Journal of Chromatography A, 1218 (2011) 534-544.
[128] F.C.Y. Wang, C.C. Walters, Pyrolysis comprehensive two-dimensional gas chromatography study of petroleum source rock, Analytical Chemistry, 79 (2007) 5642-5650.
[129] K. Lissitsyna, S. Huertas, L.C. Quintero, L.M. Polo, Novel simple method for quantitation of nitrogen compounds in middle distillates using solid phase extraction and comprehensive two-dimensional gas chromatography, Fuel, 104 (2013) 752-757.
[130] N. Ramírez, L. Vallecillos, A.C. Lewis, F. Borrull, R.M. Marcé, J.F. Hamilton, Comparative study of comprehensive gas chromatography-nitrogen chemiluminescence detection and gas chromatography-ion trap-tandem mass spectrometry for determining nicotine and carcinogen organic nitrogen compounds in thirdhand tobacco smoke, Journal of Chromatography A, 1426 (2015) 191-200.
[131] N.D. Ristic, M.R. Djokic, K.M. Van Geem, G.B. Marin, On-line analysis of nitrogen containing compounds in complex hydrocarbon matrixes, Journal of Visualized Experiments, 2016 (2016).
[132] H.E. Toraman, K. Franz, F. Ronsse, K.M. Van Geem, G.B. Marin, Quantitative analysis of nitrogen containing compounds in microalgae based bio-oils using comprehensive two-dimensional gas-chromatography coupled to nitrogen chemiluminescence detector and time of flight mass spectrometer, Journal of Chromatography A, 1460 (2016) 135-146.
[133] W. Khummueng, C. Trenerry, G. Rose, P.J. Marriott, Application of comprehensive two-dimensional gas chromatography with nitrogen-selective detection for the analysis of fungicide residues in vegetable samples, Journal of Chromatography A, 1131 (2006) 203-214.
[134] D. Ryan, P. Marriott, Studies on thermionic ionisation detection in comprehensive two-dimensional gas chromatography, Journal of Separation Science, 29 (2006) 2375-2382.
[135] C. von Mühlen, E.C. de Oliveira, P.D. Morrison, C.A. Zini, E.B. Caramão, P.J. Marriott, Qualitative and quantitative study of nitrogen-containing compounds in heavy gas oil using comprehensive two-dimensional gas chromatography with nitrogen phosphorus detection, Journal of Separation Science, 30 (2007) 3223-3232.
[136] K.D. Nizio, J.J. Harynuk, Analysis of alkyl phosphates in petroleum samples by comprehensive two-dimensional gas chromatography with nitrogen phosphorus detection and post-column Deans switching, Journal of Chromatography A, 1252 (2012) 171-176.
[137] K.D. Nizio, J.J. Harynuk, Profiling alkyl phosphates in industrial petroleum samples by comprehensive two-dimensional gas chromatography with nitrogen phosphorus detection (GC × GC-NPD), post-column deans switching, and concurrent backflushing, Energy and Fuels, 28 (2014) 1709-1716.
[138] D.G. Patterson, Jr., S.M. Welch, W.E. Turner, A. Sjodin, J.F. Focant, Cryogenic zone compression for the measurement of dioxins in human serum by isotope dilution at the attogram level using modulated gas chromatography coupled to high resolution magnetic sector mass spectrometry, Journal of chromatography. A, 1218 (2011) 3274-3281.
[139] J.H. Wahl, D.M. Riechers, M.E. Vucelick, B.W. Wright, A portable multi-dimensional gas chromatographic system for field applications, Journal of Separation Science, 26 (2003) 1083-1090.
[140] G.S. Frysinger, R.B. Gaines, Comprehensive two-dimensional gas chromatography with mass spectrometric detection (GC x GC/MS) applied to the analysis of petroleum, HRC Journal of High Resolution Chromatography, 22 (1999) 251-255.
[141] R.A. Shellie, P.J. Marriott, C.W. Huie, Comprehensive two-dimensional gas chromatography (GC×GC) and GC×GC-quadrupole MS analysis of Asian and American ginseng, Journal of Separation Science, 26 (2003) 1185-1192.
[142] R.A. Shellie, P.J. Marriott, Comprehensive two-dimensional gas chromatography-mass spectrometry analysis of Pelargonium graveolens essential oil using rapid scanning quadrupole mass spectrometry, The Analyst, 128 (2003) 879.
[143] S.M. Song, P. Marriott, P. Wynne, Comprehensive two-dimensional gas chromatography—quadrupole mass spectrometric analysis of drugs, Journal of Chromatography A, 1058 (2004) 223-232.
[144] B. Mitrevski, P.J. Marriott, Evaluation of quadrupole-time-of-flight mass spectrometry in comprehensive two-dimensional gas chromatography, Journal of chromatography. A, 1362 (2014) 262-269.
[145] G. Purcaro, P.Q. Tranchida, C. Ragonese, L. Conte, P. Dugo, G. Dugo, L. Mondello, Evaluation of a Rapid-Scanning Quadrupole Mass Spectrometer in an Apolar × Ionic-Liquid Comprehensive Two-Dimensional Gas Chromatography System, Anal. Chem., 82 (2010) 8583-8590.
[146] P.Q. Tranchida, F.A. Franchina, P. Dugo, L. Mondello, A flow-modulated comprehensive gas chromatography-mass spectrometry method for the analysis of fatty acid profiles in marine and biological samples, Journal of chromatography. A, 1255 (2012) 171-176.
[147] P.Q. Tranchida, F.A. Franchina, P. Dugo, L. Mondello, Use of greatly-reduced gas flows in flow-modulated comprehensive two-dimensional gas chromatography-mass spectrometry, Journal of chromatography. A, 1359 (2014) 271-276.
[148] R. Costa, C. Fanali, G. Pennazza, L. Tedone, L. Dugo, M. Santonico, D. Sciarrone, F. Cacciola, L. Cucchiarini, M. Dachà, L. Mondello, Screening of volatile compounds composition of white truffle during storage by GCxGC-(FID/MS) and gas sensor array analyses, LWT - Food Science and Technology, 60 (2015) 905-913.
[149] P.Q. Tranchida, G. Purcaro, C. Fanali, P. Dugo, G. Dugo, L. Mondello, Optimized use of a 50 μm ID secondary column in comprehensive two-dimensional gas chromatography–mass spectrometry, Journal of Chromatography A, 1217 (2010) 4160-4166.
[150] P.Q. Tranchida, G. Purcaro, D. Sciarrone, P. Dugo, G. Dugo, L. Mondello, Accurate quadrupole MS peak reconstruction in optimized gas-flow comprehensive two-dimensional gas chromatography, J Sep Sci, 33 (2010) 2791-2795.
[151] F.A. Franchina, M.E. Machado, P.Q. Tranchida, C.A. Zini, E.B. Caramão, L. Mondello, Determination of aromatic sulphur compounds in heavy gas oil by using (low-)flow modulated comprehensive two-dimensional gas chromatography–triple quadrupole mass spectrometry, Journal of Chromatography A, 1387 (2015) 86-94.
[152] L. Sørensen, S. Meier, S.A. Mjøs, Application of gas chromatography/tandem mass spectrometry to determine a wide range of petrogenic alkylated polycyclic aromatic hydrocarbons in biotic samples, Rapid Communications in Mass Spectrometry, (2016) 2052-2058.
[153] B. Zhao, S. Zhang, Y. Zhou, D. He, Y. Li, M. Ren, Z. Xu, J. Fang, Characterization and quantification of PAH atmospheric pollution from a large petrochemical complex in Guangzhou: GC–MS/MS analysis, Microchemical Journal, 119 (2015) 140-144.
[154] P.Q. Tranchida, F.A. Franchina, M. Zoccali, S. Panto, D. Sciarrone, P. Dugo, L. Mondello, Untargeted and targeted comprehensive two-dimensional GC analysis using a novel unified high-speed triple quadrupole mass spectrometer, Journal of chromatography. A, 1278 (2013) 153-159.
[155] M.v. Deursen, J. Beens, J. Reijenga, P. Lipman, C. Cramers, Group-Type Identification of Oil Samples Using Comprehensive Two- Dimensional Gas Chromatography Coupled to a Time-of-Flight Mass Spectrometer (GC×GC-TOF), J. High Resol. Chromatogr., 23 (2000) 507-510.
[156] N. Ochiai, T. Ieda, K. Sasamoto, A. Fushimi, S. Hasegawa, K. Tanabe, S. Kobayashi, Comprehensive two-dimensional gas chromatography coupled to high-resolution time-of-flight mass spectrometry and simultaneous nitrogen phosphorous and mass spectrometric detection for characterization of nanoparticles in roadside atmosphere, Journal of Chromatography A, 1150 (2007) 13-20.
[157] A. Mostafa, M. Edwards, T. Gorecki, Optimization aspects of comprehensive two-dimensional gas chromatography, Journal of chromatography. A, 1255 (2012) 38-55.
[158] K.D. Nizio, T.M. McGinitie, J.J. Harynuk, Comprehensive multidimensional separations for the analysis of petroleum, Journal of Chromatography A, 1255 (2012) 12-23.
[159] K.D. Nizio, J.J. Harynuk, Profiling Alkyl Phosphates in Industrial Petroleum Samples by Comprehensive Two-Dimensional Gas Chromatography with Nitrogen Phosphorus Detection (GC× GC–NPD), Post-column Deans Switching, and Concurrent Backflushing, Energy & Fuels, 28 (2013) 1709-1716.
[160] W. Zhang, X. Shi, Y. Zhang, W. Gu, B. Li, Y. Xian, Synthesis of water-soluble magnetic graphene nanocomposites for recyclable removal of heavy metal ions, Journal of Materials Chemistry A, 1 (2013) 1745-1753.
[161] M.K. Jennerwein, M. Eschner, T. Gröger, T. Wilharm, R. Zimmermann, Complete group-type quantification of petroleum middle distillates based on comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC× GC-TOFMS) and visual basic scripting, Energy & Fuels, 28 (2014) 5670-5681.
[162] W. Zhang, S. Zhu, S. He, Y. Wang, Screening of oil sources by using comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry and multivariate statistical analysis, Journal of chromatography. A, 1380 (2015) 162-170.
[163] F.C. Wang, Comprehensive three-dimensional gas chromatography mass spectrometry separation of diesel, Journal of chromatography. A, 1489 (2017) 126-133.
[164] C. Cordero, J. Kiefl, P. Schieberle, S.E. Reichenbach, C. Bicchi, Comprehensive two-dimensional gas chromatography and food sensory properties: potential and challenges, Analytical and bioanalytical chemistry, 407 (2015) 169-191.
[165] G. Dugo, F.A. Franchina, M.R. Scandinaro, I. Bonaccorsi, N. Cicero, P.Q. Tranchida, L. Mondello, Elucidation of the volatile composition of Marsala wines by using comprehensive two-dimensional gas chromatography, Food Chem., 142 (2014) 262-268.
[166] R.D. Soares, J.E. Welke, K.P. Nicolli, M. Zanus, E.B. Caramão, V. Manfroi, C.A. Zini, Monitoring the evolution of volatile compounds using gas chromatography during the stages of production of Moscatel sparkling wine, Food Chem., 183 (2015) 291-304.
[167] D. Ryan, R. Shellie, P. Tranchida, A. Casilli, L. Mondello, P. Marriott, Analysis of roasted coffee bean volatiles by using comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry, Journal of Chromatography A, 1054 (2004) 57-65.
[168] L. Sghaier, C.B. Cordella, D.N. Rutledge, M. Watiez, S. Breton, A. Kopczuk, P. Sassiat, D. Thiebaut, J. Vial, Comprehensive two-dimensional gas chromatography for analysis of the volatile compounds and fishy odor off-flavors from heated rapeseed oil, Chromatographia, 78 (2015) 805-817.
[169] L.A.F. De Godoy, L.W. Hantao, M.P. Pedroso, R.J. Poppi, F. Augusto, Quantitative analysis of essential oils in perfume using multivariate curve resolution combined with comprehensive two-dimensional gas chromatography, Analytica chimica acta, 699 (2011) 120-125.
[170] K.M. Blum, P.L. Andersson, L. Ahrens, K. Wiberg, P. Haglund, Persistence, mobility and bioavailability of emerging organic contaminants discharged from sewage treatment plants, Science of The Total Environment, 612 (2018) 1532-1542.
[171] A. Buah-Kwofie, M.S. Humphries, L. Pillay, Bioaccumulation and risk assessment of organochlorine pesticides in fish from a global biodiversity hotspot: iSimangaliso Wetland Park, South Africa, Science of The Total Environment, 621 (2018) 273-281.
[172] C. Neira, M. Vales, G. Mendoza, E. Hoh, L.A. Levin, Polychlorinated biphenyls (PCBs) in recreational marina sediments of San Diego Bay, southern California, Marine Pollution Bulletin, 126 (2018) 204-214.
[173] H.J. Cortes, B. Winniford, J. Luong, M. Pursch, Comprehensive two dimensional gas chromatography review, Journal of Separation Science, 32 (2009) 883-904.
[174] A.C. Silva, H. Ebrahimi-Najafadabi, T.M. McGinitie, A. Casilli, H.M. Pereira, F.R.A. Neto, J.J. Harynuk, Thermodynamic-based retention time predictions of endogenous steroids in comprehensive two-dimensional gas chromatography, Analytical and bioanalytical chemistry, 407 (2015) 4091-4099.
[175] T.M. McGinitie, H. Ebrahimi-Najafabadi, J.J. Harynuk, A standardized method for the calibration of thermodynamic data for the prediction of gas chromatographic retention times, Journal of Chromatography A, 1330 (2014) 69-73.
[176] B.M. Weber, J.J. Harynuk, Application of thermodynamic‐based retention time prediction to ionic liquid stationary phases, Journal of separation science, 37 (2014) 1460-1466.
[177] T.M. McGinitie, H. Ebrahimi-Najafabadi, J.J. Harynuk, Rapid determination of thermodynamic parameters from one-dimensional programmed-temperature gas chromatography for use in retention time prediction in comprehensive multidimensional chromatography, Journal of Chromatography A, 1325 (2014) 204-212.
[178] W. Yang, S.T. Omaye, Air pollutants, oxidative stress and human health, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 674 (2009) 45-54.
[179] J. Fenger, Urban air quality, Atmospheric environment, 33 (1999) 4877-4900.
[180] M. Placet, R. Battye, Emissions involved in acidic deposition processes, National Acid Precipitation Assessment Program, Office of the Director, 1990.
[181] E. Directive, Directive 2004/42/CE of the European Parliament and of the Council of 21 April 2004 on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain paints and varnishes and vehicle refinishing products amending Directive 1999/13/EC, Official Journal of the European Union L, 143 (2004).
[182] A. Guenther, C.N. Hewitt, D. Erickson, R. Fall, C. Geron, T. Graedel, P. Harley, L. Klinger, M. Lerdau, W. McKay, A global model of natural volatile organic compound emissions, Journal of Geophysical Research: Atmospheres, 100 (1995) 8873-8892.
[183] F. Pacifico, S. Harrison, C. Jones, S. Sitch, Isoprene emissions and climate, Atmospheric Environment, 43 (2009) 6121-6135.
[184] K.-H. Chang, T.-F. Chen, H.-C. Huang, Estimation of biogenic volatile organic compounds emissions in subtropical island—Taiwan, Science of the total environment, 346 (2005) 184-199.
[185] L. Sahu, Volatile organic compounds and their measurements in the troposphere, Current Science, (2012) 1645-1649.
[186] R. Atkinson, Atmospheric chemistry of VOCs and NO x, Atmospheric environment, 34 (2000) 2063-2101.
[187] C. Baird, M. Cann, Environmental chemistry, Macmillan Higher Education, 2012.
[188] M. Cann, Environmental chemistry, Macmillan, 2005.
[189] W.P. Carter, Development of ozone reactivity scales for volatile organic compounds, Air & waste, 44 (1994) 881-899.
[190] B. Warren, R.L. Austin, D.R. Cocker, Temperature dependence of secondary organic aerosol, Atmospheric Environment, 43 (2009) 3548-3555.
[191] T. Maeda, S. Onodera, H. Ogino, On-site monitoring of volatile organic compounds as hazardous air pollutants by gas chromatography, Journal of Chromatography A, 710 (1995) 51-59.
[192] N.C. Alastair C. Lewis, Philip J. Marriott, Russel M. Kinghorn, Paul Morrison, Andrew L. Lee, Keith D. Bartle & Michael J. Pilling, A larger pool of ozone-forming carbon compounds in urban atmospheres, Nature, 405 (2000) 778-781.
[193] X. Xu, L. Stee, J. Williams, J. Beens, M. Adahchour, R. Vreuls, U. Brinkman, J. Lelieveld, Comprehensive two-dimensional gas chromatography (GC× GC) measurements of volatile organic compounds in the atmosphere, Atmospheric Chemistry and Physics, 3 (2003) 665-682.
[194] S. Bartenbach, J. Williams, C. Plass-Dülmer, H. Berresheim, J. Lelieveld, In-situ measurement of reactive hydrocarbons at Hohenpeissenberg with comprehensive two-dimensional gas chromatography (GC×GC-FID): use in estimating HO and NO3, Atmos. Chem. Phys., 7 (2007) 1-14.
[195] J. Saxton, A. Lewis, J. Kettlewell, M. Ozel, F. Gogus, Y. Boni, S. Korogone, D. Serça, Isoprene and monoterpene measurements in a secondary forest in northern Benin, Atmospheric Chemistry and Physics, 7 (2007) 4095-4106.
[196] G. Allen, G. Vaughan, K. Bower, P. Williams, J. Crosier, M. Flynn, P. Connolly, J. Hamilton, J. Lee, J. Saxton, Aerosol and trace‐gas measurements in the Darwin area during the wet season, Journal of Geophysical Research: Atmospheres, 113 (2008).
[197] M. Jacobson, H.C. Hansson, K. Noone, R. Charlson, Organic atmospheric aerosols: Review and state of the science, Reviews of Geophysics, 38 (2000) 267-294.
[198] I.P.O.C. Change, Climate change 2007: The physical science basis, Agenda, 6 (2007) 333.
[199] M. Hallquist, J. Wenger, U. Baltensperger, Y. Rudich, D. Simpson, M. Claeys, J. Dommen, N. Donahue, C. George, A. Goldstein, The formation, properties and impact of secondary organic aerosol: current and emerging issues, Atmospheric Chemistry and Physics, 9 (2009) 5155-5236.
[200] M. Kulmala, H. Vehkamäki, T. Petäjä, M. Dal Maso, A. Lauri, V.M. Kerminen, W. Birmili, P.H. McMurry, Formation and growth rates of ultrafine atmospheric particles: a review of observations, Journal of Aerosol Science, 35 (2004) 143-176.
[201] M. Kulmala, How particles nucleate and grow, Science, 302 (2003) 1000-1001.
[202] C.D. O′Dowd, P. Aalto, K. Hmeri, M. Kulmala, T. Hoffmann, Aerosol formation: Atmospheric particles from organic vapours, Nature, 416 (2002) 497-498.
[203] C.A. Pope III, D.W. Dockery, Health effects of fine particulate air pollution: lines that connect, Journal of the air & waste management association, 56 (2006) 709-742.
[204] J.D. Allan, M.R. Alfarra, K.N. Bower, H. Coe, J.T. Jayne, D.R. Worsnop, P.P. Aalto, M. Kulmala, T. Hyötyläinen, F. Cavalli, Size and composition measurements of background aerosol and new particle growth in a Finnish forest during QUEST 2 using an Aerodyne Aerosol Mass Spectrometer, Atmospheric Chemistry and Physics, 6 (2006) 315-327.
[205] J.F. Hamilton, P.J. Webb, A.C. Lewis, J.R. Hopkins, S. Smith, P. Davy, Partially oxidised organic components in urban aerosol using GCXGC-TOF/MS, Atmos. Chem. Phys., 4 (2004) 1279-1290.
[206] M. Kallio, M. Jussila, T. Rissanen, P. Anttila, K. Hartonen, A. Reissell, R. Vreuls, M. Adahchour, T. Hyötyläinen, Comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry in the identification of organic compounds in atmospheric aerosols from coniferous forest, Journal of Chromatography A, 1125 (2006) 234-243.
[207] B.J. Williams, A.H. Goldstein, N.M. Kreisberg, S.V. Hering, An In-Situ Instrument for Speciated Organic Composition of Atmospheric Aerosols:Thermal DesorptionAerosolGC/MS-FID (TAG), Aerosol Science and Technology, 40 (2006) 627-638.
[208] A.H. Goldstein, D.R. Worton, B.J. Williams, S.V. Hering, N.M. Kreisberg, O. Panic, T. Gorecki, Thermal desorption comprehensive two-dimensional gas chromatography for in-situ measurements of organic aerosols, Journal of chromatography. A, 1186 (2008) 340-347.
[209] D.R. Worton, N.M. Kreisberg, G. Isaacman, A.P. Teng, C. McNeish, T. Górecki, S.V. Hering, A.H. Goldstein, Thermal Desorption Comprehensive Two-Dimensional Gas Chromatography: An Improved Instrument for In-Situ Speciated Measurements of Organic Aerosols, Aerosol Science and Technology, 46 (2012) 380-393.
[210] G. Isaacman, D.R. Worton, N.M. Kreisberg, C.J. Hennigan, A.P. Teng, S.V. Hering, A.L. Robinson, N.M. Donahue, A.H. Goldstein, Understanding evolution of product composition and volatility distribution through in-situ GC × GC analysis: a case study of longifolene ozonolysis, Atmospheric Chemistry and Physics, 11 (2011) 5335-5346.
[211] W. Booyens, P.G. Van Zyl, J.P. Beukes, J. Ruiz-Jimenez, M. Kopperi, M.-L. Riekkola, M. Josipovic, A.D. Venter, K. Jaars, L. Laakso, V. Vakkari, M. Kulmala, J.J. Pienaar, Size-resolved characterisation of organic compounds in atmospheric aerosols collected at Welgegund, South Africa, Journal of Atmospheric Chemistry, 72 (2015) 43-64.
[212] M.S. Alam, S. Zeraati-Rezaei, C.P. Stark, Z. Liang, H. Xu, R.M. Harrison, The characterisation of diesel exhaust particles - composition, size distribution and partitioning, Faraday Discuss, 189 (2016) 69-84.
[213] S. Król, B. Zabiegała, J. Namieśnik, Monitoring VOCs in atmospheric air I. On-line gas analyzers, TrAC Trends in Analytical Chemistry, 29 (2010) 1092-1100.
[214] S. Król, B. Zabiegała, J. Namieśnik, Monitoring VOCs in atmospheric air II. Sample collection and preparation, TrAC Trends in Analytical Chemistry, 29 (2010) 1101-1112.
[215] J.-L. Wang, C.-J. Chang, W.-D. Chang, C. Chew, S.-W. Chen, Construction and evaluation of automated gas chromatography for the measurement of anthropogenic halocarbons in the atmosphere, Journal of Chromatography A, 844 (1999) 259-269.
[216] U.S.E.P. Agency, Compendium Method TO-14A:Determination Of Volatile Organic Compounds (VOCs) In Ambient Air Using Specially Prepared Canisters With Subsequent Analysis By Gas Chromatography Center, in, 1999.
[217] U.S.E.P. Agency, Compendium Method TO-15:Determination Of Volatile Organic Compounds (VOCs) In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/Mass Spectrometry (GC/MS), (1999).
[218] 行政院環境保護署環境檢驗所, 空氣中揮發性有機化合物檢測方法-不銹鋼採樣筒/氣相層析質譜儀法, 2014.
[219] R. Simo, J.O. Grimalt, J. Albaiges, Field sampling and analysis of volatile reduced sulphur compounds in air, water and wet sediments by cryogenic trapping and gas chromatography, Journal of Chromatography A, 655 (1993) 301-307.
[220] U.S.E.P. Agency, METHOD TO-1:METHOD FOR THE DETERMINATION OF VOLATILE ORGANIC COMPOUNDS IN AMBIENT AIR USING TENAX® ADSORPTION AND GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS), in, 1984.
[221] U.S.E.P. Agency, METHOD TO-2:METHOD FOR THE DETERMINATION OF VOLATILE ORGANIC COMPOUNDS IN AMBIENT AIR BY CARBON MOLECULAR SIEVE ADSORPTION AND GASC HROMATOGRAPHY/MASS SPECTROMETRY (GC/MS), in, 1984.
[222] U.S.E.P. Agency, Compendium Method TO-17:Determination of Volatile Organic Compounds in Ambient Air Using Active Sampling Onto Sorbent Tubes, (1999).
[223] 行政院環境保護署環境檢驗所, 排放管道中揮發性有機化合物檢測方法-揮發性有機化合物採樣組裝/氣相層析質譜儀法, 1997.
[224] 行政院環境保護署環境檢驗所, 空氣中揮發性含鹵素碳氫化合物檢驗方法-以Tenax-TA吸附劑採樣之氣相層析法, 2011.
[225] J.-L. Wang, W.-L. Chen, Y.-H. Lin, C.-H. Tsai, Cryogen free automated gas chromatography for the measurement of ambient volatile organic compounds, Journal of Chromatography A, 896 (2000) 31-39.
[226] J. Pollmann, D. Helmig, J. Hueber, D. Tanner, P.P. Tans, Evaluation of solid adsorbent materials for cryogen-free trapping—gas chromatographic analysis of atmospheric C2–C6 non-methane hydrocarbons, Journal of Chromatography A, 1134 (2006) 1-15.
[227] D. Tanner, D. Helmig, J. Hueber, P. Goldan, Gas chromatography system for the automated, unattended, and cryogen-free monitoring of C2 to C6 non-methane hydrocarbons in the remote troposphere, Journal of Chromatography A, 1111 (2006) 76-88.
[228] 蘇源昌, 自動氣相層析質譜儀於揮發性有機化合物之分析技術與應用, 化學研究所, 國立中央大學, 桃園市, 2011, pp. 237.
[229] 王介亨, 心切技術應用於二維氣相層析揮發性有機化合物分析-概念設計與應用, 化學研究所, 國立中央大學, 桃園市, 2008, pp. 329.
[230] 陳彥呈, 以NCLA9K4活性碳作為VOC濃縮介質與熱脫附方法之改良, 化學研究所, 國立中央大學, 桃園市, 2011, pp. 108.
[231] 陳韋立, 大氣及水樣中揮發性有機氣體自動化分析技術之建立及應用, 化學研究所, 國立中央大學, 桃園市, 2000, pp. 150.
[232] 王珮霞, 全面二維氣相層析技術分析汽車尾氣中揮發性有機化合物成分, 化學學系, 國立中央大學, 桃園市, 2016, pp. 138.
[233] 周裕傑, 全面二維氣相層析應用於空氣與生活複雜樣品之分析, 化學研究所, 國立中央大學, 桃園市, 2012, pp. 181.
[234] 廖偉呈, 全面二維層析技術分析揮發性有機化合物, 化學研究所, 國立中央大學, 桃園市, 2009, pp. 158.
[235] D.W. Grant, Capillary gas chromatography, John Wiley & Sons, 2009.
[236] M.J. Golay, D. Desty, Gas chromatography, DH Desty, ed, 2 (1958) 36.
[237] D. Desty, J. Haresnape, B. Whyman, Construction of long lengths of coiled glass capillary, Analytical Chemistry, 32 (1960) 302-304.
[238] R.D. Dandeneau, E. Zerenner, An investigation of glasses for capillary chromatography, Journal of Separation Science, 2 (1979) 351-356.
[239] D.C. Harris, Quantitative chemical analysis, Macmillan, 2010.
[240] W. Rödel, K. Grob: Making and Manipulating Capillary Columns for Gas Chromatography. 232 Seiten, zahlr. Abb. und Tab. Dr. Alfred Hüthig Verlag. Preis: 68,— DM, Food / Nahrung, 31 (1987) 927-927.
[241] P.J. Marriott, J. Harynuk, W. Khummueng, Modulation ratio in comprehensive two dimensional gas chromatography, Anal. Chem, 78 (2006) 4578-4587.
[242] W.-T. Liu, S.-P. Chen, C.-C. Chang, C.-F. Ou-Yang, W.-C. Liao, Y.-C. Su, Y.-C. Wu, C.-H. Wang, J.-L. Wang, Assessment of carbon monoxide (CO) adjusted non-methane hydrocarbon (NMHC) emissions of a motor fleet–A long tunnel study, Atmospheric Environment, 89 (2014) 403-414.
[243] D. Helmig, Air analysis by gas chromatography, Journal of chromatography A, 843 (1999) 129-146.
[244] 行政院環境保護署環境檢驗所, 排放管道中氣態有機化合物檢測方法-採樣袋採樣/氣相層析火焰離子化偵測法, (2013).
[245] 行政院環境保護署環境檢驗所, 排放管道中 C5-C10非極性氣態有機物檢測方法-採樣袋採樣/氣相層析質譜分析法, (2007).
[246] 康芳瑋, 開發新型氣流式二維氣相層析法分析空氣污染物, 化學學系, 國立中央大學, 桃園市, 2018.
指導教授 王家麟 審核日期 2019-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明