博碩士論文 104821021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:3.143.23.176
姓名 黃翊筑(Yi-Chu Huang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 ASIC3基因的剔除調控M1/M2巨噬細胞比例以減緩坐骨神經慢性壓迫性損傷所誘發的熱痛覺過敏
(ASIC3 gene deletion modulates M1/M2 macrophage ratio to attenuate thermal hyperalgesia induced by chronic constriction injury of the sciatic nerve)
相關論文
★ 週邊發炎反應增加酸敏感受體- TDAG8基因在背根神經節之表現量★ 酸敏感G蛋白偶合受體,G2A,在ASIC3基因剔除小鼠中改變表現量
★ MrgB4受體專一表現於感覺神經元,且在ASIC3基因剔除小鼠中有不同的表現。★ 血清素受體2B對酸敏感離子通道3與辣椒素受體1的影響
★ 酸敏感G蛋白偶合受體在小鼠背根神經節神經元中的訊息傳導路徑★ 酸敏感G蛋白偶合受體功能上的拮抗機制
★ TDAG8活化後經由PKA與PKCε增強辣椒素受體的敏感度★ 台灣海岸植物之內生真菌多樣性研究
★ ASIC3、TRPV1或TDAG8基因缺失會減緩關節炎誘導的熱痛覺過敏並抑制衛星膠細胞表現★ 抑制OGR1表現可減緩慢性神經性疼痛藉由減少顆粒性白血球數及非IB4神經元之鈣訊號
★ 抑制OGR1及G2A表現可藉由調控非IB4神經元鈣訊號減緩酸所誘導長期疼痛★ TDAG8 participates in different phases of neuropathic pain by regulating distinct pathways of substance P
★ Peripheral ASIC3 activation involves in the late phase of CCI-induced mechanical allodynia by switching CGRP-positive population from small to large diameter neurons★ Innovative Mind-Body Intervention Day Easy Exercise Increases Peripheral Blood CD34+ Cells and Attenuates Back Pain in Adults
★ G-蛋白偶合接受體與G-蛋白訊號調控蛋白之整合型資料庫★ 血清素受體2B基因在酸敏感受體3基因剔除小鼠的背根神經節中表現量增加
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 神經病變性疼痛是由神經系統中的原發病變或功能障礙引發或引起的疼痛。症狀包括自發性疼痛,感覺異常,感覺異常,異常性疼痛和痛覺過敏。神經病變性疼痛通常伴隨神經炎症,免疫反應,衛星神經膠質細胞 (Satellite glial cells, SGCs) 激活和神經元損失。局部組織酸中毒是調節發炎反應和誘發疼痛的主要因素。酸敏感離子通道3 (Acid-sensing ion channel 3, ASIC3) 是質子傳感受體之一,直接或間接地介導疼痛和痛覺過敏反應。然而,ASIC3參與神經病變性疼痛的相關機制尚不清楚。我已經建立了坐骨神經慢性壓迫性損傷模型(Chronic constriction injury, CCI),以探討ASIC3在神經性疼痛中的作用。我發現CCI小鼠出現了長期的機械性和熱痛覺過敏反應。ASIC3-/-小鼠從第一周開始減緩由CCI誘導的長期熱痛覺過敏,並且抑制效果維持在14W。組織化學分析顯示在CCI小鼠的受損神經中顆粒性細胞和巨噬細胞引發長期神經發炎反應。在ASIC3-/-小鼠中,巨噬細胞的總數在術後第一周增加但在第4、8周時減少。我發現剔除ASIC3基因減少了促炎性巨噬細胞(M1)的數量,但增加了抗炎症巨噬細胞(M2)的數量。因此,從我的實驗結果可以推論ASIC3可能藉由調控M1/M2巨噬細胞的比例來參與在外週神經損傷誘導的熱痛覺過敏。
摘要(英) Neuropathic pain is a pain initiated or caused by a primary lesion or dysfunction in the nervous system. Symptoms include spontaneous pain, dysaesthesia, paraesthesia, allodynia and hyperalgesia. Neuropathic pain often accompanies with neuroinflammation, immune responses, satellite glial cells (SGCs) activation and neuron loss. Local tissue acidosis is a major factor to regulate inflammation and induce pain. Acid-sensing ion channel 3 (ASIC3), one of proton-sensing receptors, directly or indirectly mediates pain and hyperalgesia. However, it remains unclear whether is involved in neuropathic pain. I have established a model chronic constriction injury of sciatic nerves (CCI) to explore the role of ASIC3 in neuropathic pain. I have found that CCI mice developed long-term mechanical hyperalgesia and thermal hyperalgesia. In ASIC3-/- mice, the long-term thermal hyperalgesia induced by CCI was reduced from the first week and the inhibitory effect was maintained for 14W. Histochemistry analysis of injured nerve demonstrated that CCI mice developed long-term inflammation with granulocytes and macrophages. In ASIC3-/- mice, the number of macrophages were significantly increased compared to ASIC3+/+ at the first week but decreased at 4, 8W. I have found that ASIC3 deletion decreased the number of pro-inflamatory macrophage (M1), but increased the number of anti-inflamatory macrophage (M2) after CCI surgery. Accordingly, ASIC3 may involve in thermal hyperalgesia induced by peripheral nerve injury via modulates the proportion of M1 / M2 macrophages ratio.
關鍵字(中) ★ ASIC3
★ 神經病變性疼痛
★ 巨噬細胞
★ 熱痛覺過敏
★ CCI
關鍵字(英)
論文目次 第一章 緒論 1
1.1 神經病變性疼痛 (Neuropathic pain) 2
1.2 瓦勒式退化反應 (Wallerian degeneration) 3
1.3 神經發炎反應 (Neuroinflammatin) 4
1.3.2 衛星膠細胞 (Satellite glial cells, SGCs) 在神經損傷中的角色 6
1.3 酸敏感受體 (Proton-sensing receptors) 7
1.4 研究動機與目的 8
第二章 材料與方法 9
2.1 實驗材料 10
2.1.1 實驗動物 (Experimental animal) 10
2.1.2 實驗藥品 (Experimental drugs) 10
2.1.3 實驗器具 (Experimental tools) 11
2.2 實驗方法 (Experimental methods) 11
2.2.1 小鼠基因型判定 (Genotyping) 11
2.2.2 坐骨神經慢性壓迫性損傷引發神經病變性疼痛模式 (Chronic contraction injury of sciatic nerve model, CCI model) 12
2.2.3 痛覺行為測試 (pain behavioral tests) 13
2.2.4 蘇木素-伊紅染色 (Hematoxyline and Eosin stain, H&E stain) 14
2.2.5免疫組織化學染色法 (Immunohistochemistry-Paraffin stain, IHC-P stain) 14
2.2.6 免疫組織化學螢光染色法 (Immunohistochemistry stain, IHC stain) 15
2.3 統計分析 (Statistics) 15
第三章 結果 16
3.1 坐骨神經慢性壓迫性損傷引發機械性痛覺及熱痛覺過敏現象 17
3.2 TDAG8不參與在CCI所引發熱痛覺過敏感現象 18
3.3 TRPV1剔除的小鼠減緩第1週由CCI所造成的熱痛覺過敏感現象 18
3.4 ASIC3剔除的小鼠抑制由CCI所造成的熱痛覺過敏感現象 19
3.5坐骨神經慢性壓迫性損傷增加星膠細胞 (Satellite glial cells, SGCs) 表現 19
3.6 ASIC3基因剔除不會減少CCI 動物模型的衛星膠細胞 (SGCs) 表現 20
3.7 ASIC3基因剔除改變坐骨神經損傷部位免疫細胞的表現 20
3.8 ASIC3基因剔除降低M1巨噬細胞但增加M2巨噬細胞數量 22
3.9 腹腔注射Amiloride在WT 小鼠CCI 動物模型抑制機械性痛覺過敏感現象 23
第四章 討論 25
4.1 慢性壓迫損傷模型誘發機械性及熱痛覺過敏 26
4.2 ASIC3參與調控CCI動物模型所引起的熱痛覺過敏感現象 27
4.3 CCI 動物模型影響衛星膠細胞 (SGCs) 的活化 27
4.4 ASIC3參與調控坐骨神經損傷部位M1及M2巨噬細胞的數量 28
4.5 Amiloride 抑制由CCI引發的機械性痛覺過敏感現象並改變免疫細胞數量 29
4.6 總結 30
第五章 參考文獻 31
附錄I (引子序列) 59
附錄II (實驗藥品、溶劑及藥劑配方) 60
參考文獻 Finnerup Leigh S., Kunjan P. A., Kang J.W.M., Keay, K. A. (2015). Evidence for a distinct neuro-immune signature in rats that develop behavioural disability after nerve injury. Journal of Neuroinflammation, 12.
Baliki M., Calvo O., Chialvo D.R., Apkarian A.V. (2005) Spared nerve injury rats exhibit thermal hyperalgesia on an automated operant dynamic thermal escape task. Mol Pain, 1.
Beirowski B., Adalbert R., Wagner D., Grumme D.S., Addicks K., Ribchester R.R., Coleman M.P. (2005) The progressive nature of Wallerian degeneration in wild-type and slow Wallerian degeneration (WldS) nerves. BMC Neurosci. 6: 6-10.
Calvo M., Dawes J. M., Bennett D. L. (2012) The role of the immune system in the generation of neuropathic pain. The Lancet Neurology, 11:629–642.
Chen P., Piao X., Bonaldo P. (2015) Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury. Acta Neuropathologica 130: 605–618.
Cherkas P. S., Huang T.-Y., Pannicke T., Tal M., Reichenbach A., Hanani M. (2004). The effects of axotomy on neurons and satellite glial cells in mouse trigeminal ganglion. Pain, 110, 290–298.
Costa F. A. L. and Neto F. L. M. (2015). Satellite glial cells in sensory ganglia: its role in pain. Brazilian Journal of Anesthesiology. 65: 73–81.
Echeverry S., Wu Y., Zhang J. (2013) Selectively reducing cytokine/chemokine expressing macrophages in injured nerves impairs the development of neuropathic pain. Exp. Neurol. 240: 205–218.
Finnerup NB, Haroutounian S, Kamerman P, Baron R, Bennett DL,Bouhassira D,Cruccu G,Freeman R, Hansson P,Nurmikko T,Raja SN,Rice AS,Serra J,Smith BH,Treede RD,Jensen TS. (2016) Neuropathic pain: an updated grading system for research and clinical practice. Pain 157:1599-606.
Gaudet A. D., Popovich P. G., Ramer M. S. (2011) Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury.Journal of Neuroinflammation 8.
Ji R. R., Xu Z. Z., Gao Y.J. (2014) Emerging targets in neuroinflammation-driven chronic pain. Nat Rev Drug Discov. 13:533–548.
Ji R. R.,Chamessian A., Zhang Y. Q. (2016) Pain Regulation by Non-neuronal Cells and Inflammation. Science 354: 572–577.
Kiguchi N., Kobayashi D., Saika F., Matsuzaki S., Kishioka S. (2017) Pharmacological Regulation of Neuropathic Pain Driven by Inflammatory Macrophages. International Journal of Molecular Sciences, 18, 2296.
Kobayashi Y., Kiguchi N., Fukazawa Y., Saika F., Maeda T., Kishioka S. (2015) Macrophage-T cell interactions mediate neuropathic pain through the glucocorticoid-induced tumor necrosis factor ligand system. J. Biol. Chem. 290: 12603–12613.
Komori T., Morikawa Y., Inada T., Hisaoka T., Senba E. (2011). Site-specific subtypes of macrophages recruited after peripheral nerve injury. NeuroReport, 22: 911–917.
Liu C.C., Lu N., Cui Y., Yang T., Zhao Z.Q., Xin W.J., Liu X.G. (2010) Prevention of paclitaxel-induced allodynia by minocycline: Effect on loss of peripheral nerve fibers and infiltration of macrophages in rats. Mol. Pain 6, 76.
Liu F.Y., Sun Y.N., Wang F.T., Li Q., Su L., Zhao Z.F., Meng X.L., Zhao H., Wu X., Sun Q., Xing G.G., Wan Y. (2012). Activation of satellite glial cells in lumbar dorsal root ganglia contributes to neuropathic pain after spinal nerve ligation. Brain Research, 1427: 65–77.
Luttges M.W., Kelly P.T., Gerren R.A. (1976) Degenerative changes in mouse sciatic nerves: electrophoretic and electrophysiologic characterizations. Exp Neurol 50: 706-733.
Ohara P. T., Vit J.-P., Bhargava A., Romero M., Sundberg C., Charles A. C., Jasmin L. (2009). Gliopathic Pain: When Satellite Glial Cells Go Bad. The Neuroscientist. 15: 450–463.
Old E. A., Nadkarni S., Grist J., Gentry C., Bevan S., Kim K.W., Mogg A.J., Perretti M., Malcangio M. (2014) Monocytes expressing CX3CR1 orchestrate the development of vincristine-induced pain. J Clin Invest. 124:2023-36
Omori M., Yokoyama M., Matsuoka Y., Kobayashi H., Mizobuchi S., Itano, Y., Morita K., Ichikawa H. (2008). Effects of selective spinal nerve ligation on acetic acid-induced nociceptive responses and ASIC3 immunoreactivity in the rat dorsal root ganglion. Brain Research, 1219: 26–31.
Pannell M., Labuz D., Celik M. Ö., Keye J., Batra A., Siegmund B., Machelska H. (2016). Adoptive transfer of M2 macrophages reduces neuropathic pain via opioid peptides. Journal of Neuroinflammation, 13.
Shamash S., Reichert F., Rotshenker S. (2002) The cytokine network of Wallerian degeneration: tumor necrosis factor-alpha, interleukin-1alpha, and interleukin-1beta. J Neurosci. 22: 3052-3060.
Sluka K. A., Price M. P., Breese N. M., Stucky C. L., Wemmie J. A., Welsh M.J. (2003) Chronic hyperalgesia induced by repeated acid injections in muscle is abolished by the loss of ASIC3, but not ASIC1. Pain. 106:229–239.
Sluka K. A., Winter O. C., Wemmie J.A. (2009) Acid-sensing ion channels: A new target for pain and CNS diseases. Curr Opin Drug Discov Devel. 12: 693–704.
Sorge R. E., Mapplebeck J. C., Rosen S., Beggs S., Taves S., Alexander J. K., Martin L. J., Austin J. S., Sotocinal S. G., Chen D., Yang M., Shi X. Q., Huang H., Pillon N. J., Bilan P. J., Tu Y., Klip A., Ji R.R., Zhang J., Salter M. W., Mogil J. S. (2015) Different immune cells mediate mechanical pain hypersensitivity in male and female mice.Nat Neurosci. 18:1081-3.
Svíženská I. H., Brázda V., Klusáková I., Dubový P. (2013). Bilateral Changes of Cannabinoid Receptor Type 2 Protein and mRNA in the Dorsal Root Ganglia of a Rat Neuropathic Pain Model. Journal of Histochemistry & Cytochemistry, 61:529–547.
Treede R. D., Jensen T. S., Campbell J. N., Cruccu G., Dostrovsky J. O., Griffin J. W., Hansson P., Hughes R., Nurmikko T., Serra J. (2008) Neuropathic pain: Redefinition and a grading system for clinical and research purposes. Neurology 70: 1630-5.
Waller A.V. (1850) Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, and observations of the alterations produced thereby in the structure of their primitive fibres. Philosophical Transactions of the Royal Society of London. 140: 423-429.
Yu Y., Chen Z., Li W.-G., Cao H., Feng E.-G., Yu F., Liu H., Jiang H., Xu T.-L. (2010). A Nonproton Ligand Sensor in the Acid-Sensing Ion Channel. Neuron, 68: 61–72.
指導教授 孫維欣(Wei-Hsin Sun) 審核日期 2019-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明