參考文獻 |
1. M. J. Earle, et al., The distillation and volatility of ionic liquids. Nature, 2006. 439: p. 831-834.
2. M. Armand, et al., Ionic-liquid materials for the electrochemical challenges of the future. Nature materials, 2009. 8: p. 621-629.
3. M. S. Whittingham, Lithium Batteries and Cathode Materials. Chem. Rev., 2004. 104(10): p. 4271-4302.
4. Y. Li, et al., A review on structure model and energy system design of lithium-ion battery in renewable energy vehicle. Renewable and Sustainable Energy Reviews, 2014. 37: p. 627-633.
5. Z. D. Li, et al., Trimethyl phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode. Journal of Power Sources, 2013. 240: p. 471-475.
6. A. Kraytsberg and Y. E. Eli, Higher, Stronger, Better … A Review of 5 Volt Cathode Materials for Advanced Lithium-Ion Batteries. Adv. Energy Mater,2012. 2: p. 922-939.
7. W. F. Howard and R. M. Spotnitz, Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries. Journal of Power Sources,2007. 165(2): p. 887-891.
8. R. Santhanam and B. Rambabu, Research progress in high voltage spinel LiNi0.5Mn1.5O4 material. Journal of Power Sources,2010. 195(17): p. 5442-5451.
9. X. L. Xu, et al., Research Progress in Improving the Cycling Stability of HighVoltage LiNi0.5Mn1.5O4 Cathode in Lithium-Ion Battery. Nano-Micro Lett, 2017. 9:22.
10. J. Song, et al., Role of oxygen vacancies on the performance of Li[Ni0.5-xMn1.5?x]O4 (x = 0, 0.05, and 0.08) spinel cathodes for lithium-ion batteries. Chem. Mater.,2012. 24(15): p. 3102-3109.
11. T. Ohzuku, et al., Synthesis and characterization of Li[Ni1/2Mn3/2]O4 by two-step solid state reaction. Ceram. Soc. Jpn.,2002. 110(1281): p. 501-505.
12. Y. Idemoto, et al., Crystal structure and cathode performance dependence on oxygen content of LiMn1.5Ni0.5O4 as a cathode material for secondary lithium batteries. Journal of Power Sources,2003. 119-121: p. 125-129.
13. L. Wang, et al., A comparative study of Fd3m and P4332 ‘‘LiNi0.5Mn1.5O4’’. Solid State Ionics,2011. 193(1): p. 32-38.
14. M. Kunduraci and G. G. Amatucci, The effect of particle size and morphology on the rate capability of 4.7V LiMn1.5+δNi0.5-δO4 spinel lithium-ion battery cathodes. Electrochimica Acta, 2008. 53(12): p. 4193-4199.
15. J. Ma, et al., Surface and Interface Issues in Spinel LiNi0.5Mn1.5O4: Insights into a Potential Cathode Material for High Energy Density Lithium Ion Batteries. Chem. Mater,2016. 28(11): p. 3578-3606.
16. Y. Li, et al., Electrolyte Reactions with the Surface of High Voltage LiNi0.5Mn1.5O4 Cathodes for Lithium-Ion Batteries. Electrochemical and Solid-State Letters,2010. 13(8): p. A95-A97.
17. D. Aurbach, et al., Studies of cycling behavior, ageing, and interfacial reactions of LiNi0.5Mn1.5O4 and carbon electrodes for lithium-ion 5-V cells. Journal of Power Sources,2006. 162(2): p. 780-789.
18. N. P. W. Pieczonka, et al., Understanding Transition-Metal Dissolution Behavior in LiNi0.5Mn1.5O4 High-Voltage Spinel for Lithium Ion Batteries. J. Phys. Chem. C, 2013. 117(31): p. 15947-15957.
19. S. E. Sloop, et al., The role of Li-ion battery electrolyte reactivity in performance decline and self-discharge. Journal of Power Sources,2003. 119-121: p. 330-337.
20. A. M. Andersson and K. Edstrom, Chemical Composition and Morphology of the Elevated Temperature SEI on Graphite. Journal of The Electrochemical Society,2001. 148(10): p. A1100-A1109.
21. J. H. Kim, et al., Challenges and Approaches for High-Voltage Spinel Lithium-Ion Batteries. ChemPhysChem, 2014. 15(10): p. 1940-1954.
22. M. Moshkovich, et al., The study of the anodic stability of alkyl carbonate solutions by in situ FTIR spectroscopy, EQCM, NMR and MS. Journal of Electroanalytical Chemistry,2001. 497(1-2): p.84-96.
23. J. Ufheil, et al., Acetone as oxidative decomposition product in propylene carbonate containing battery electrolyte. Electrochemistry Communications, 2005. 7(12): p. 1380-1384.
24. M. Arakawa and J. Yamaki, Anodic oxidation of propylene carbonate and ethylene carbonate on graphite electrodes. Journal of Power Sources,1995. 54(2): p. 250-254.
25. T. Aoshima, et al., Mechanisms of manganese spinels dissolution and capacity fade at high temperature. Journal of Power Sources, 2001. 97-98: p. 377-380.
26. H. E. Morris, REACTIONS OF ETHYL ALCOHOL. Chemical Reviews, 1932. 10: p.465-506.
27. B. Ravdel, et al., Thermal stability of lithium-ion battery electrolytes. Journal of Power Sources, 2003. 119-121: p. 805-810.
28. T. Kawamura, et al., Thermal Stability of Alkyl Carbonate Mixed-Solvent Electrolytes for Lithium Ion Cells. J. Power Sources 2002. 104(2): p. 260-264.
29. D. Aurbach, et al., A Comparative Study of Synthetic Graphite and Li Electrodes in Electrolyte Solutions Based on Ethylene Carbonate-Dimethyl Carbonate Mixtures. J. Electrochem. Soc, 1996. 143(12): p. 3809-3820.
30. P. B. Balbuena and Y. Wang, Lithium-Ion Batteries: Solid-Electrolyte Interphase. Imperial College Press: London, 2004; Chapt. 2, p. 113.
31. O. K. Park, et al., Who will drive electric vehicles, olivine or spinel? Energy Environ. Sci., 2011. 4: p. 1621-1633.
32. D. H. Jang and S. M. Oh, Electrolyte Effects on Spinel Dissolution and Cathodic Capacity Losses in 4 V Li/LixMn2O4 Rechargeable Cells. J. Electrochem. Soc., 1997. 144(10): p. 3342-3348.
33. J. C. Hunter, Preparation of a New Crystal Form of Manganese Dioxide: λ-MnO2. Journal of Solid State Chemistry, 1981. 39(2): p. 142-147.
34. J. H. Kim, et al., Understanding the capacity fading mechanism in LiNi0.5Mn1.5O4/graphite Li-ion batteries. Electrochimica Acta, 2013. 90: p. 556-562.
35. S. Komaba, et al., Influence of manganese(II), cobalt(II), and nickel(II) additives in electrolyte on performance of graphite anode for lithium-ion batteries. Electrochimica Acta, 2002. 47(8): p. 1229-1239.
36. S. Komaba, et al., Inorganic electrolyte additives to suppress the degradation of graphite anodes by dissolved Mn(II) for lithium-ion batteries. Journal of Power Sources, 2003. 119-121: p. 378-382.
37. A. Wuersig, et al., CO2 Gas Evolution on Cathode Materials for Lithium-Ion Batteries. Journal of The Electrochemical Society, 2007. 154(5): p. A449-A454.
38. M. Holzapfel, et al., Oxygen, hydrogen, ethylene and CO2 development in lithium-ion batteries. Journal of Power Sources, 2007. 174(2): p.1156-1160.
39. K. W. Leitner, et al., Electroactive separator for high voltage graphite/LiNi0.5Mn1.5O4 lithium ion batteries. Journal of Power Sources, 2013. 244: p.548-551.
40. O. Y. Chusid, et al., Electrochemical and spectroscopic studies of carbon electrodes in lithium battery electrolyte systems. Journal of Power Sources, 1993. 43(1-3): p. 47-64.
41. J. M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries. Materials for Sustainable Energy, 2010. p.171-179.
42. R. Imhof and P. Novak, Oxidative Electrolyte Solvent Degradation in Lithium‐Ion Batteries: An In Situ Differential Electrochemical Mass Spectrometry Investigation. Journal of The Electrochemical Society,1999. 146(5): p.1702-1706.
43. X. Zhang, et al., Electrochemical and Infrared Studies of the Reduction of Organic Carbonates. Journal of The Electrochemical Society, 2001. 148(12): p.A1341-A1345.
44. P. G. Balakrishnan, et al., Safety mechanisms in lithium-ion batteries. Journal of Power Sources, 2006. 155(2): p. 401-414.
45. S. Tobishima and J. I. Yamaki, A consideration of lithium cell safety. Journal of Power Sources, 1999. 81-82: p.882-886.
46. T. M. Bandhauer, et al., A Critical Review of Thermal Issues in Lithium-Ion Batteries. Journal of The Electrochemical Society, 2011. 158(3): p. R1-R25.
47. J. B. Goodenough and Y. Kim, Challenges for Rechargeable Li Batteries. Chem. Mater.2010. 22(3): p. 587–603.
48. K. E. Johnson, What’s an ionic liquid? The Electrochemical Society Interface • Spring, 2007. p. 38-41.
49. P. Wasserscheid and T. Welton, Ionic liquids in synthesis. vol 1. Wiley, New Jersey, 2008.
50. B. Kirchner, et al., Real-world predictions from ab initio molecular dynamics simulations. Multiscale molecular methods in applied chemistry, 2011. New York, p. 109-153.
51. C. A. Angell, et al., Parallel developments in aprotic and protic ionic liquids: Physical chemistry and applications. Acc. Chem. Res., 2007. 40(11): p. 1228-1236.
52. G. G. Eshetu, et al., In-depth safety-focused analysis of solvents used in electrolytes for large scale lithium ion batteries. Phys Chem Chem Phys, 2013. 15(23): p. 9145-9155.
53. A. Balducci, et al., Development of safe, green and high performance ionic liquids-based batteries (ILLIBATT project). Journal of Power Sources, 2011. 196(22): p. 9719-9730.
54. M. Ishikawa, et al., Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries. J. Power Sources, 2006. 162(1): p. 658-662.
55. S. F. Lux, et al., Li-ion anodes in airstable and hydrophobic ionic liquid-based electrolyte for safer and greener batteries. Int. J. Energy Res., 2010. 34(2): p. 97-106.
56. G. B. Appetecchi, et al., Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes: I. Electrochemical characterization of the electrolytes. J. Power Sources,2009. 192(2): p. 599-605.
57. S. F. Lux, et al., Lithium insertion in graphite from ternary ionic liquid–lithium salt electrolytes: II. Evaluation of specific capacity and cycling efficiency and stability at room temperature. J. Power Sources,2009. 192(2): p. 606-611.
58. C. Liu, et al., Ionic liquid electrolyte of lithium bis(fluorosulfonyl)imide / N-methyl-N-propylpiperidinium bis(fluorosulfonyl)imide for Li/natural graphite cells: Effect of concentration of lithium salt on the physicochemical and electrochemical properties. Electrochimica Acta, 2014. 149: p. 370-385.
59. K. Yamaguchi, et al., Influence of the structure of the anion in an ionic liquid electrolyte on the electrochemical performance of a silicon negative electrode for a lithium-ion battery. Journal of Power Sources, 2017. 338: p. 103-107.
60. H. Matsumoto, et al., Fast cycling of Li/LiCoO2 cell with low-viscosity ionic liquids based on bis(fluorosulfonyl)imide [FSI]−. Journal of Power Sources, 2006. 160 (2): p. 1308-1313.
61. M. A. Navarra, Ionic liquids as safe electrolyte components for Li-metal and Li-ion batteries. MRS Bull, 2013. 38(7): p. 548-553.
62. G. T. Kim, et al., Development of ionic liquid-based lithium battery prototypes. J. Power Sources, 2012. 199: p. 239-246.
63. J. Kalhoff, et al., Safer electrolytes for lithium-ion batteries: State of the art and perspectives. ChemSusChem,2015. 8(13): p. 2154-2175.
64. G. Wang, et al., Functionalized 1,3-dialkylimidazolium bis(fluorosulfonyl)imide as neat ionic liquid electrolytes for lithium-ion batteries. Electrochemistry Communications, 2016. 72: p. 148-152.
65. E. Markevich, et al., On the possibility of using ionic liquids as electrolyte solutions for rechargeable 5V Li ion batteries. Electrochemistry Communications, 2006. 8(8): p. 1331-1334.
66. V. Borgel, et al., On the application of ionic liquids for rechargeable Li batteries: High voltage systems. Journal of Power Sources, 2009. 189(1): p. 331-336.
67. J. Mun, et al., Linear-sweep thermammetry study on corrosion behavior of Al current collector in ionic liquid solvent. Electrochemical and Solid-State Letters, 2010. 13(8): p. A109-A111.
68. X. Cao, et al., High voltage LiNi0.5Mn1.5O4/Li4Ti5O12 lithium ion cells at elevated temperatures: Carbonate-versus ionic liquid-based electrolytes. ACS Appl. Mater. Interfaces, 2016. 8(39): p. 25971-25978 .
69. N. Salem, et al., Physical and Electrochemical Properties of Some Phosphonium-Based Ionic Liquids and the Performance of Their Electrolytes in Lithium-Ion Batteries. Journal of The Electrochemical Society, 2017. 164(8): p. H5202-H5209.
70. L. Otaegui, et al., Effect of the electrolytic solvent and temperature on aluminium current collector stability: A case of sodium-ion battery cathode. Journal of Power Sources, 2015. 297: p. 168-173.
71. C. Forestier, et al., Graphite electrode thermal behavior and solid electrolyte interphase investigations: Role of state-of-the-art binders, carbonate additives and lithium bis(fluorosulfonyl)imide salt. Journal of Power Sources, 2016. 330: p. 186-194.
72. J. Braithwaite, et al., Corrosion of Current-collector Materials in Li-ion Cells. Sandia National Labs, Albuquerque, NM (United States), 1996.
73. H. Yang, et al., Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6. Journal of Power Sources, 2006. 161(1): p. 573-579.
74. H. B. Han, et al., Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties. Journal of Power Sources, 2011. 196(7): p. 3623-3632.
75. H. Louis, et al., Suppression of aluminum corrosion in lithium bis(trifluoromethansulfonyl)imide-based electrolytes by the addition of fumed silica. Bull. Korean Chem. Soc., 2013. 34(6): p. 1795-1799.
76. C. Peng, et al., Investigation of the anodic behavior of Al current collector in room temperature ionic liquid electrolytes. Electrochimica Acta, 2008. 53(14): p. 4764-4772.
77. J. L. Allen, et al., N-Alkyl-N-methylpyrrolidinium difluoro(oxalato)borate ionic liquids: Physical/electrochemical properties and Al corrosion. Journal of Power Sources, 2013. 237: p. 104-111.
78. T. Vogl, et al., Mixtures of protic ionic liquids and propylene carbonate as advanced electrolytes for lithium-ion batteries. Phys. Chem. Chem. Phys., 2014. 16: p. 25014-25023.
79. E. Krämer, et al., Dependency of Aluminum Collector Corrosion in Lithium Ion Batteries on the Electrolyte Solvent. ECS Electrochem. Lett, 2012. 1(5): p. C9-C11.
80. R. S. Kühnel and A. Balducci, Comparison of the anodic behavior of aluminum current collectors in imide-based ionic liquids and consequences on the stability of high voltage supercapacitors. Journal of Power Sources, 2014. 249: p. 163-171.
81. K. Park, et al., Comparative study on lithium borates as corrosion inhibitors of aluminum current collector in lithium bis(fluorosulfonyl)imide electrolytes. Journal of Power Sources, 2015. 296: p. 197-203.
82. K. Matsumoto, et al., Thermal, Physical, and Electrochemical Properties of Li[N(SO2F)2]-[1-Ethyl-3-methylimidazolium][N(SO2F)2] Ionic Liquid Electrolytes for Li Secondary Batteries Operated at Room and Intermediate Temperatures. J. Phys. Chem. C, 2017. 121(12): p. 9209-9219.
83. J. Wang, et al., Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nature communications, 2016. 7: p. 1-9.
84. E. Cho, et al., Corrosion/passivation of aluminum current collector in bis(fluorosulfonyl) imide-based ionic liquid for lithium-ion batteries. Electrochemistry Communications, 2012. 22:p. 1-3.
85. H. Yoon, et al., Physical properties of high Li-ion content N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide based ionic liquid electrolytes. Phys. Chem. Chem. Phys., 2015. 17: p. 4656-4663.
86. H. Sano, et al., Effect of Charge Transfer Resistance on Morphology of Lithium Electrodeposited in Ionic Liquid. J. Electrochem. Soc., 2016. 163(12): p. D3076-D3079.
87. H. Yoon, et al., Fast Charge/Discharge of Li Metal Batteries Using an Ionic Liquid Electrolyte. Journal of The Electrochemical Society, 2013. 160(10): p. A1629-A1637. |