博碩士論文 105329006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:18.207.126.53
姓名 曾兪銜(YU-HSIEN TSENG)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 鋅空氣電池之電解質開發
(Electrolyte development of zinc air battery)
相關論文
★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響★ 耐高壓離子液體電解質
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 石墨烯負極和離子液體電解液於鈉二次電池之應用★ 針對奈米多孔碳之表面及孔洞形貌進行優化 以打造具備高可靠度、低自放電的超級電容器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 研究從鋅空氣電池電解質的觀點切入,在水系電解質中,藉由使用複合添加劑以提高庫倫效率、降低鋅負極的腐蝕速率,並抑制充放電過程中鋅枝晶狀結構的生成,使電池充放電效率增加、循環使用壽命延長。發現四元添加劑為3000 ppm 1-Methylpiperazine、1500 ppm檸檬酸、6000 ppm酒石酸與50 ppm PEI能達到最高庫倫效率90.5%,降低腐蝕電流至196 μA/cm2,而從SEM形貌圖確定枝晶狀結構被抑制生成,呈現菱角狀的結構。
希望鋅空氣電池能輕薄短小,利用聚合物電解質設計有利於鋅空氣電池的物理靈活性,防止電解質洩漏的問題。本研究膠態電解質的製程,使其更容易吸附鹼性電解液,在一般環境下,將零件疊壓成全電池就能進行充放電,不需考慮密閉性問題,在50 mA/cm2電流密度下,放電電壓約為1.1 V。
尋求更高庫倫效率與抑制氫氣的產生,本研究利用高濃度雙三氟甲烷磺酰亞胺鋰(LiTFSI)有極大的幫助,能提高效率至96.3%,多次循環後庫倫效率幾乎不變,可以得知其穩定性很好,SEM形貌圖為蘚苔狀結構,不會形成枝晶狀結構。
摘要(英) This study cuts into the idea of zinc-air battery electrolyte. In the water-based electrolyte, the battery is charged by using a composite additive to improve the coulombic efficiency, reduce the corrosion rate of the zinc negative electrode, and inhibit the formation of zinc dendritic structure during charge and discharge. The discharge efficiency is increased and the cycle life is prolonged. It was found that the quaternary additive was 3000 ppm 1-Methylpiperazine, 1500 ppm citric acid, 6000 ppm tartaric acid and 50 ppm PEI to achieve a maximum coulombic efficiency of 90.5%, reducing the corrosion current to 196 μA/cm2, It was confirmed from the SEM topography that the dendritic structure was hindered from being generated, and a rhombohedral structure was exhibited.
It is hoped that the zinc-air battery can be light and thin, and the polymer electrolyte design is beneficial to the physical flexibility of the zinc-air battery and the problem of electrolyte leakage. In this study, the process of colloidal electrolyte makes it easier to adsorb alkaline electrolyte. In the general environment, Charge and discharge the parts by stacking them into a full battery, regardless of the tightness problem.At a current density of 50 mA/cm2, the discharge voltage is approximately 1.1 V.
Seeking higher coulombic efficiency and suppressing the generation of hydrogen, this study used the high concentration of lithium hexafluoromethane sulfonate (LiTFSI) to greatly improve the efficiency to 96.3%, and the coulombic efficiency was almost unchanged after repeated cycles. It can be known that its stability is very good, and the SEM topography is a moss-like structure, which does not form a dendritic structure.
關鍵字(中) ★ 枝晶狀結構
★ 庫倫效率
★ 鋅腐蝕
★ 添加劑
★ 膠態電解液
★ 高濃度
關鍵字(英) ★ dendritic structure
★ coulombic efficiency
★ zinc corrosion
★ additives
★ flexible electrolyte
★ high concentration
論文目次 摘要 i
Abstract ii
誌謝 iii
總目錄 iv
圖目錄 vi
表目錄 xii
一、 前言 1
二、 研究背景與文獻回顧 4
2-1 金屬空氣電池 4
2-2 鋅空氣電池 6
2-3 二次鋅空氣電池電解質 10
2-4 有機酸添加劑 14
2-5 不同胺鹽類及其衍生物 16
2-6 複合添加劑效應之相關文獻 19
2-7 膠態電解液之相關文獻 19
2-8 高濃度LiTFSI之相關文獻 23
三、 實驗方法與步驟 28
3-1 不同電解質添加劑對於陽極鋅金屬之庫倫效率行為 31
3-2 不同電解質添加劑對於陽極鋅金屬之枝晶狀結構影響 32
3-3 不同電解質添加劑對於陽極鋅金屬之腐蝕行為 34
3-4 膠態電解液之製作過程 34
四、 結果與討論 37
4-1 電解質添加劑對陽極鋅之電化學行為之引響 37
4-1-1 無添加劑時陽極鋅之循環伏安法 37
4-1-2 有機酸類電解質添加劑對鋅陽極綜合比較 44
4-1-3 胺鹽類及其衍生物添加劑對鋅陽極綜合比較 46
4-1-4 複合電解質添加劑對鋅陽極電化學行為之綜合影響 49
4-2 膠態電解液與空氣極進行放電測試 88
4-2-1 不同製作過程之成果 88
4-2-2 進行充放電測試 93
4-3 高濃度電解液對陽極鋅之電化學表現 96
4-3-1 負電位極限對庫倫效率之影響 96
4-3-2 循環伏安法 98
4-3-3 鋅金屬在高濃度LiTFSI之腐蝕行為 102
4-3-4 高濃度LiTFSI電解液在不同基材下測試循環伏安法與庫倫效率 103
4-3-5 高濃度LiTFSI電解液對陽極表面型態之SEM圖 106
五、 結論 108
六、 參考文獻 110
參考文獻 [1] B. Dunn, H. Kamath, J. M. Tarascon, Electrical Energy Storage for the Grid: A Battery of Choices. Science, (2011) 334: 928-935.
[2] J. Cho, J. Sookyung, Commercial and research battery technologies for electrical energy storage applications. Progress in Energy and Combustion Science, (2015) 48:10
[3] Y. G. Li, H. J. Dai, Recent advances in zinc-air batteries. Chem Soc Rev., (2014) 43: 5257-5275.
[4] C. Chakkaravarthy, A. K. A. Waheed, H. V. K. Udupa, Zinc-air alkaline batteries -A review. Journal of Power Sources, (1981) 6: 203-228.
[5] J. Fu, Z. P. Cano, M. G. Park, A. Yu, M. Fowler, Electrically Rechargeable Zinc–Air Batteries: Progress, Challenges, and Perspectives. Adv. Mater., (2017) 29: 1604685.
[6] M. A. Rahman, X. J. Wang, High Energy Density Metal-Air Batteries: A Review. Electrochem. Soc., (2013) 160: A1759-A1771.
[7] C. Daniel, J. O. Besenhard, Handbook of Battery Materials John Wiley & Sons, 2012.
[8] M. D. Radin, D. J. Siegel, Non-aqueous Metal – Oxygen Batteries : Past , Present , and Future. Rechargeable Batteries. (2015) 25:511-539.
[9] Q. Sun, Y. Yang, Electrochemical properties of room temperature sodium–air batteries with non-aqueous electrolyte. Electrochem Commun. (2012) 16: 22-25.
[10] E. Peled, D. Golodnitsky, Challenges and obstacles in the development of sodium–air batteries. Journal of Power Sources, (2013) 244: 771-776.
[11] X. Ren, Y. Wu, A Low-Overpotential Potassium–Oxygen Battery Based on Potassium Superoxide. J. Am. Chem. Soc., (2013) 135: 2923–2926.
[12] S. R. Narayanan, G. K. S. Prakash, Materials challenges and technical approaches for realizing inexpensive and robust iron–air batteries for large-scale energy storage. Solid State Ionics, (2012) 216: 105-109.
[13] D. R. Egan, C. P. de Leon, R. J. K. Wood, Developments in electrode materials and electrolytes for aluminium–air batteries. Journal of Power Sources, (2013) 236: 293-310.
[14] T. Zhang, Z. Tao, Magnesium–air batteries: from principle to application. Mater. Horiz, (2014) 1: 196-206.
[15] S. H. Yang, H. Knickle, Design and analysis of aluminum/air battery system for electric vehicles. Journal of Power Sources, (2002) 112 : 162-173.
[16] P. Hartmann, C. L. Bender, A rechargeable room-temperature sodium superoxide (NaO2) battery., Nat. Mater, (2013) 12: 228-232.
[17] X. D. Ren, Y. Y. Wu, A Low-Overpotential Potassium–Oxygen Battery Based on Potassium Superoxide. J. Am. Chem. Soc., (2013) 135: 2923-2926.
[18] F. Y Cheng, J. Chen, Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev., (2012) 41: 2172-2192.
[19] J. Christensen, Paul Albertus, A Critical Review of Li/Air Batteries. J. Electrochem. Soc., (2012) 159: R1-R30.
[20] A Kraytsberg, Y Ein-Eli, Review on Li–air batteries—Opportunities, limitations and perspective. Journal of Power Sources, (2011) 196: 886 .
[21] J. S. Lee, S. Tai Kim, R. Cao, Metal-Air Batteries with High Energy Density: Li-Air versus Zn-Air. Advanced Energy Materials, (2011) 1: 34-50.
[22] G. Toussaint, P. Stevens, L. Akrour, R. Rouget, F. Fourgeot, Development of a rechargeable zinc-air battery. ECS Trans., (2010) 28: 25-34.
[23] D. Linden, Thomas B. Reddy, Handbook of Batteries 3rd Edition. McGraw-Hill (2008).
[24] P. Tan, B. Chen, H. Xu, H. Zhang, Flexible Zn– and Li–air batteries: recent advances,challenges,and future perspectives, Energy Environ. Sci., (2017) 10: 2056-2080.
[25] A. A. Gewirth, M. S. Thorum, Electroreduction of Dioxygen for Fuel-Cell Applications: Materials and Challenges, Inorg. Chem., (2010) 49: 3557-3566.
[26] J. S. Spendelow, A. Wieckowski, Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media, Physical Chemistry Chemical Physics (2007) 9: 2654-2675.
[27] http://hear-better.com/blog/?p=54
[28] T. Reddy, Linden’s Handbook of Batteries, 4th Ed., McGraw-Hill Education, New York, USA 2010.
[29] J. Goldstein, I. Brown, B. Koretz, New developments in the Electric Fuel Ltd. zinc/air system, Journal of Power Sources. (1999) 80: 171-179.
[30] P. Sapkota, H. Kim, Zinc–air fuel cell, a potential candidate for alternative energy, Journal of Industrial and Engineering Chemistry. (2009) 15: 445-450.
[31] F. Cheng, J. Chen , Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chemical Society Reviews. (2012) 41: 2172-2192.
[32] R. Cao, J. S. Lee, Recent Progress in Non-Precious Catalysts for Metal-Air Batteries. Advanced Energy Materials, (2012) 2: 816-829.
[33] H. Kim, G. Jeong, Y. U. Kim, Metallic anodes for next generation secondary batteries. Chemical Society Reviews, (2013) 42: 9011-9034.
[34] Shanmugasigamani, M. Pushpavanam, Role of additives in bright zinc deposition from cyanide free alkaline baths. Journal of Applied Electrochemistry, (2005) 36: 315-322.
[35] R.J.Gilliam, J.W.Graydon, A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures. International Journal of Hydrogen Energy. (2007) 32: 359-364.
[36] Paul Delahay, M. Pourbaix, P. V. Rysselberghe, Potential-pH Diagram of Zinc and Its Applications to the Study of Zinc Corrosion. J. Electrochem. Soc. (1951) 98: 101-105.
[37] M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions. Water & Waste Water (1974).
[38] M. K. Punith Kumar, C. Srivastava, Enhancement of Corrosion Resistance of Zinc Coatings Using Green Additives. Journal of Materials Engineering and Performance, (2014) 23: 3418-3424.
[39] K. Kim, Y. H. Cho, Anions of organic acids as gas suppressants in zinc-air batteries. Materials Research Bulletin. (2010) 45: 262-264.
[40] C. C. Yang, S. J. Lin, Improvement of high-rate capability of alkaline Zn-MnO2 battery. Journal of Power Sources. (2002) 112: 174-183.
[41] A. R. Mainar, O. Leonet, Alkaline aqueous electrolytes for secondary zinc–air batteries: an overview. Energy Research. (2016) 40: 1032-1049.
[42] F. R. McLarnon, E. J. Cairns, The Secondary Alkaline Zinc Electrode. J. Electrochem. Soc., (1991) 138: 645–656.
[43] H. H. Cheng, C. S. Tan, Reduction of CO2 concentration in a zinc/air battery by absorption in a rotating packed bed. Journal of Power Sources. (2006) 162: 1431-1436.
[44] J. Y. Huot, The effects of silicate ion on the corrosion of zinc powder in alkaline solutions. Journal of Applied Electrochemistry. (1992) 22: 443-447.
[45] N. Shaigan, W. Qu, Morphology Control of Electrodeposited Zinc from Alkaline Zincate Solutions for Rechargeable Zinc Air Batteries. ECS Transactions. (2010) 28: 35-44.
[46] Q. H. Tian, L. Z. Cheng, J. X. Liu, Manufacturing of Zinc Powder with Dendritic Microstructure for Zinc-Air Battery by Electrodeposition. Advanced Materials Research, (2012) 460: 300-303.
[47] M. Xu, D. G. Ivey, Zn/Zn(II) Redox Kinetics and Zn Deposit Morphology in Water Added Ionic Liquids with Bis(trifluoromethanesulfonyl)imide Anions. Journal of the Electrochemical Society. (2013) 161: A128-A136.
[48] C. W. Lee, K.Sathiyanarayanan, Novel electrochemical behavior of zinc anodes in zinc/air batteries in the presence of additives. Journal of Power Sources, (2006) 159: 1474-1477.
[49] M. S. Pereira, L. L. Barbosa, C. A. C. Souza, The influence of sorbitol on zinc film deposition, zinc dissolution process and morphology of deposits obtained from alkaline bath. Journal of Applied Electrochemistry. (2006) 36: 727-732.
[50] R. K. Ghavami, Z. Rafiei, S. M. Tabatabaei, Effects of cationic CTAB and anionic SDBS surfactants on the performance of Zn–MnO2 alkaline batteries. Journal of Power Sources. (2007) 164: 934-946.
[51] L. E. Morón, A. Méndez, Zn Electrodeposition from an Acidic Chloride Bath Containing Polyethyleneglycol (Mw 200) and Benzylideneacetone as Additives. Journal of The Electrochemical Society. (2011) 158: D435-D444.
[52] M. A. Deyab, Hydroxyethyl cellulose as efficient organic inhibitor of zinc–carbon battery corrosion in ammonium chloride solution: Electrochemical and surface morphology studies. Journal of Power Sources. (2015) 280: 190-194.
[53] M. A. Deyab, Application of nonionic surfactant as a corrosion inhibitor for zinc in alkaline battery solution. Journal of Power Sources, (2015) 292: 66-71.
[54] H. I. Kim, H. CheolShin, SnO additive for dendritic growth suppression of electrolytic zinc. Journal of Alloys and Compounds. (2015) 645: 7-10.
[55] Q. Li, Insight into the Role and Its Mechanism of Polyacrylamide as an Additive in Sulfate Electrolytes for Nanocrystalline Zinc Electrodeposition. Journal of The Electrochemical Society, (2016) 163: D127-D132.
[56] C.J. Lan, C. Y. Lee, T. S. Chin, Tetra-alkyl ammonium hydroxides as inhibitors of Zn dendrite in Zn-based secondary batteries. Electrochimica Acta, (2007) 52: 5407–5416.
[57] Y. Meas, G. Trejo, Eric Chainet, Effects of organic additives on zinc electrodeposition from alkaline electrolytes. J Appl Electrochem, (2013) 43: 289-300.
[58] S. J. Banik, R. Akolkar, Suppressing Dendritic Growth during Alkaline Zinc Electrodeposition using Polyethylenimine Additive. Electrochimica Acta, (2014) 179: 475-481.
[59] S. J. Banik, K. K. Rao, Determination of the Diffusion-Adsorption Properties of Polymeric Electrolyte Additives Using an Additive Injection Method Implemented on a Rotating Disc Electrode. J. Electrochem. Soc., (2016) 163: E241-E247.
[60] J. Fu, D. U. Lee, Dong Un Lee, Flexible High-Energy Polymer-Electrolyte-Based Rechargeable Zinc-Air Batteries, Adv. Mater., (2015) 27: 5617–5622.
[61] J. Park , M. J. Park , G. Nam , All-Solid-State Cable-Type Flexible Zinc–Air Battery. Adv. Mater, (2015) 27: 1396–1401.
[62] C. C. Yang, G. M. Wu ,Study of microporous PVA/PVC composite polymer membrane and it application to MnO2 capacitors. Mater Chem Phys. , (2009) 114: 948–955.
[63] C. C. Yang,Chemical composition and XRD analyses for alkaline composite PVA polymer electrolyte. Mater Lett., (2004) 58: 33–38.
[64] C. C. Yang, S. J. Lin, Alkaline composite PEO–PVA–glassfibre-mat polymer electrolyte for Zn–air battery.J Power Sources, (2002) 112: 497–503.
[65] C. C. Tambelli, A. C. Bloise,Characterisation of PEO–Al2O3 composite polymer electrolytes. Electrochim Acta (2002) 47: 1677–1682.
[66] D. Fauteux, A. Massucco, Lithium polymer electrolyte rechargeable battery. Electrochim Acta, (1995) 40: 2185–2190.
[67] Y. F. Xu,Y. Zhang, Flexible, Stretchable, and Rechargeable Fiber-Shaped Zinc–Air Battery Based on Cross-Stacked Carbon Nanotube Sheets, Angew. Chemie, (2015) 54: 15390 –15394.
[68] J. W. Zhao, Y. Q. Li, High-voltage Zn/LiMn0.8Fe0.2PO4 aqueous rechargeable battery by virtue of “water-in-salt” electrolyte. Electrochemistry Communications , (2016) 69: 6–10.
[69] F. Wang, O. Borodin, T. Gao, Highly reversible zinc metal anode for aqueous batteries. Nature Materials, (2018) 17: 543-549.
指導教授 張仍奎 李勝偉(JENG-KUEI CHANG SHENG-WEI LI) 審核日期 2018-10-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明