參考文獻 |
[1] B. Dunn, H. Kamath, J. M. Tarascon, Electrical Energy Storage for the Grid: A Battery of Choices. Science, (2011) 334: 928-935.
[2] J. Cho, J. Sookyung, Commercial and research battery technologies for electrical energy storage applications. Progress in Energy and Combustion Science, (2015) 48:10
[3] Y. G. Li, H. J. Dai, Recent advances in zinc-air batteries. Chem Soc Rev., (2014) 43: 5257-5275.
[4] C. Chakkaravarthy, A. K. A. Waheed, H. V. K. Udupa, Zinc-air alkaline batteries -A review. Journal of Power Sources, (1981) 6: 203-228.
[5] J. Fu, Z. P. Cano, M. G. Park, A. Yu, M. Fowler, Electrically Rechargeable Zinc–Air Batteries: Progress, Challenges, and Perspectives. Adv. Mater., (2017) 29: 1604685.
[6] M. A. Rahman, X. J. Wang, High Energy Density Metal-Air Batteries: A Review. Electrochem. Soc., (2013) 160: A1759-A1771.
[7] C. Daniel, J. O. Besenhard, Handbook of Battery Materials John Wiley & Sons, 2012.
[8] M. D. Radin, D. J. Siegel, Non-aqueous Metal – Oxygen Batteries : Past , Present , and Future. Rechargeable Batteries. (2015) 25:511-539.
[9] Q. Sun, Y. Yang, Electrochemical properties of room temperature sodium–air batteries with non-aqueous electrolyte. Electrochem Commun. (2012) 16: 22-25.
[10] E. Peled, D. Golodnitsky, Challenges and obstacles in the development of sodium–air batteries. Journal of Power Sources, (2013) 244: 771-776.
[11] X. Ren, Y. Wu, A Low-Overpotential Potassium–Oxygen Battery Based on Potassium Superoxide. J. Am. Chem. Soc., (2013) 135: 2923–2926.
[12] S. R. Narayanan, G. K. S. Prakash, Materials challenges and technical approaches for realizing inexpensive and robust iron–air batteries for large-scale energy storage. Solid State Ionics, (2012) 216: 105-109.
[13] D. R. Egan, C. P. de Leon, R. J. K. Wood, Developments in electrode materials and electrolytes for aluminium–air batteries. Journal of Power Sources, (2013) 236: 293-310.
[14] T. Zhang, Z. Tao, Magnesium–air batteries: from principle to application. Mater. Horiz, (2014) 1: 196-206.
[15] S. H. Yang, H. Knickle, Design and analysis of aluminum/air battery system for electric vehicles. Journal of Power Sources, (2002) 112 : 162-173.
[16] P. Hartmann, C. L. Bender, A rechargeable room-temperature sodium superoxide (NaO2) battery., Nat. Mater, (2013) 12: 228-232.
[17] X. D. Ren, Y. Y. Wu, A Low-Overpotential Potassium–Oxygen Battery Based on Potassium Superoxide. J. Am. Chem. Soc., (2013) 135: 2923-2926.
[18] F. Y Cheng, J. Chen, Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev., (2012) 41: 2172-2192.
[19] J. Christensen, Paul Albertus, A Critical Review of Li/Air Batteries. J. Electrochem. Soc., (2012) 159: R1-R30.
[20] A Kraytsberg, Y Ein-Eli, Review on Li–air batteries—Opportunities, limitations and perspective. Journal of Power Sources, (2011) 196: 886 .
[21] J. S. Lee, S. Tai Kim, R. Cao, Metal-Air Batteries with High Energy Density: Li-Air versus Zn-Air. Advanced Energy Materials, (2011) 1: 34-50.
[22] G. Toussaint, P. Stevens, L. Akrour, R. Rouget, F. Fourgeot, Development of a rechargeable zinc-air battery. ECS Trans., (2010) 28: 25-34.
[23] D. Linden, Thomas B. Reddy, Handbook of Batteries 3rd Edition. McGraw-Hill (2008).
[24] P. Tan, B. Chen, H. Xu, H. Zhang, Flexible Zn– and Li–air batteries: recent advances,challenges,and future perspectives, Energy Environ. Sci., (2017) 10: 2056-2080.
[25] A. A. Gewirth, M. S. Thorum, Electroreduction of Dioxygen for Fuel-Cell Applications: Materials and Challenges, Inorg. Chem., (2010) 49: 3557-3566.
[26] J. S. Spendelow, A. Wieckowski, Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media, Physical Chemistry Chemical Physics (2007) 9: 2654-2675.
[27] http://hear-better.com/blog/?p=54
[28] T. Reddy, Linden’s Handbook of Batteries, 4th Ed., McGraw-Hill Education, New York, USA 2010.
[29] J. Goldstein, I. Brown, B. Koretz, New developments in the Electric Fuel Ltd. zinc/air system, Journal of Power Sources. (1999) 80: 171-179.
[30] P. Sapkota, H. Kim, Zinc–air fuel cell, a potential candidate for alternative energy, Journal of Industrial and Engineering Chemistry. (2009) 15: 445-450.
[31] F. Cheng, J. Chen , Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chemical Society Reviews. (2012) 41: 2172-2192.
[32] R. Cao, J. S. Lee, Recent Progress in Non-Precious Catalysts for Metal-Air Batteries. Advanced Energy Materials, (2012) 2: 816-829.
[33] H. Kim, G. Jeong, Y. U. Kim, Metallic anodes for next generation secondary batteries. Chemical Society Reviews, (2013) 42: 9011-9034.
[34] Shanmugasigamani, M. Pushpavanam, Role of additives in bright zinc deposition from cyanide free alkaline baths. Journal of Applied Electrochemistry, (2005) 36: 315-322.
[35] R.J.Gilliam, J.W.Graydon, A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures. International Journal of Hydrogen Energy. (2007) 32: 359-364.
[36] Paul Delahay, M. Pourbaix, P. V. Rysselberghe, Potential-pH Diagram of Zinc and Its Applications to the Study of Zinc Corrosion. J. Electrochem. Soc. (1951) 98: 101-105.
[37] M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions. Water & Waste Water (1974).
[38] M. K. Punith Kumar, C. Srivastava, Enhancement of Corrosion Resistance of Zinc Coatings Using Green Additives. Journal of Materials Engineering and Performance, (2014) 23: 3418-3424.
[39] K. Kim, Y. H. Cho, Anions of organic acids as gas suppressants in zinc-air batteries. Materials Research Bulletin. (2010) 45: 262-264.
[40] C. C. Yang, S. J. Lin, Improvement of high-rate capability of alkaline Zn-MnO2 battery. Journal of Power Sources. (2002) 112: 174-183.
[41] A. R. Mainar, O. Leonet, Alkaline aqueous electrolytes for secondary zinc–air batteries: an overview. Energy Research. (2016) 40: 1032-1049.
[42] F. R. McLarnon, E. J. Cairns, The Secondary Alkaline Zinc Electrode. J. Electrochem. Soc., (1991) 138: 645–656.
[43] H. H. Cheng, C. S. Tan, Reduction of CO2 concentration in a zinc/air battery by absorption in a rotating packed bed. Journal of Power Sources. (2006) 162: 1431-1436.
[44] J. Y. Huot, The effects of silicate ion on the corrosion of zinc powder in alkaline solutions. Journal of Applied Electrochemistry. (1992) 22: 443-447.
[45] N. Shaigan, W. Qu, Morphology Control of Electrodeposited Zinc from Alkaline Zincate Solutions for Rechargeable Zinc Air Batteries. ECS Transactions. (2010) 28: 35-44.
[46] Q. H. Tian, L. Z. Cheng, J. X. Liu, Manufacturing of Zinc Powder with Dendritic Microstructure for Zinc-Air Battery by Electrodeposition. Advanced Materials Research, (2012) 460: 300-303.
[47] M. Xu, D. G. Ivey, Zn/Zn(II) Redox Kinetics and Zn Deposit Morphology in Water Added Ionic Liquids with Bis(trifluoromethanesulfonyl)imide Anions. Journal of the Electrochemical Society. (2013) 161: A128-A136.
[48] C. W. Lee, K.Sathiyanarayanan, Novel electrochemical behavior of zinc anodes in zinc/air batteries in the presence of additives. Journal of Power Sources, (2006) 159: 1474-1477.
[49] M. S. Pereira, L. L. Barbosa, C. A. C. Souza, The influence of sorbitol on zinc film deposition, zinc dissolution process and morphology of deposits obtained from alkaline bath. Journal of Applied Electrochemistry. (2006) 36: 727-732.
[50] R. K. Ghavami, Z. Rafiei, S. M. Tabatabaei, Effects of cationic CTAB and anionic SDBS surfactants on the performance of Zn–MnO2 alkaline batteries. Journal of Power Sources. (2007) 164: 934-946.
[51] L. E. Morón, A. Méndez, Zn Electrodeposition from an Acidic Chloride Bath Containing Polyethyleneglycol (Mw 200) and Benzylideneacetone as Additives. Journal of The Electrochemical Society. (2011) 158: D435-D444.
[52] M. A. Deyab, Hydroxyethyl cellulose as efficient organic inhibitor of zinc–carbon battery corrosion in ammonium chloride solution: Electrochemical and surface morphology studies. Journal of Power Sources. (2015) 280: 190-194.
[53] M. A. Deyab, Application of nonionic surfactant as a corrosion inhibitor for zinc in alkaline battery solution. Journal of Power Sources, (2015) 292: 66-71.
[54] H. I. Kim, H. CheolShin, SnO additive for dendritic growth suppression of electrolytic zinc. Journal of Alloys and Compounds. (2015) 645: 7-10.
[55] Q. Li, Insight into the Role and Its Mechanism of Polyacrylamide as an Additive in Sulfate Electrolytes for Nanocrystalline Zinc Electrodeposition. Journal of The Electrochemical Society, (2016) 163: D127-D132.
[56] C.J. Lan, C. Y. Lee, T. S. Chin, Tetra-alkyl ammonium hydroxides as inhibitors of Zn dendrite in Zn-based secondary batteries. Electrochimica Acta, (2007) 52: 5407–5416.
[57] Y. Meas, G. Trejo, Eric Chainet, Effects of organic additives on zinc electrodeposition from alkaline electrolytes. J Appl Electrochem, (2013) 43: 289-300.
[58] S. J. Banik, R. Akolkar, Suppressing Dendritic Growth during Alkaline Zinc Electrodeposition using Polyethylenimine Additive. Electrochimica Acta, (2014) 179: 475-481.
[59] S. J. Banik, K. K. Rao, Determination of the Diffusion-Adsorption Properties of Polymeric Electrolyte Additives Using an Additive Injection Method Implemented on a Rotating Disc Electrode. J. Electrochem. Soc., (2016) 163: E241-E247.
[60] J. Fu, D. U. Lee, Dong Un Lee, Flexible High-Energy Polymer-Electrolyte-Based Rechargeable Zinc-Air Batteries, Adv. Mater., (2015) 27: 5617–5622.
[61] J. Park , M. J. Park , G. Nam , All-Solid-State Cable-Type Flexible Zinc–Air Battery. Adv. Mater, (2015) 27: 1396–1401.
[62] C. C. Yang, G. M. Wu ,Study of microporous PVA/PVC composite polymer membrane and it application to MnO2 capacitors. Mater Chem Phys. , (2009) 114: 948–955.
[63] C. C. Yang,Chemical composition and XRD analyses for alkaline composite PVA polymer electrolyte. Mater Lett., (2004) 58: 33–38.
[64] C. C. Yang, S. J. Lin, Alkaline composite PEO–PVA–glassfibre-mat polymer electrolyte for Zn–air battery.J Power Sources, (2002) 112: 497–503.
[65] C. C. Tambelli, A. C. Bloise,Characterisation of PEO–Al2O3 composite polymer electrolytes. Electrochim Acta (2002) 47: 1677–1682.
[66] D. Fauteux, A. Massucco, Lithium polymer electrolyte rechargeable battery. Electrochim Acta, (1995) 40: 2185–2190.
[67] Y. F. Xu,Y. Zhang, Flexible, Stretchable, and Rechargeable Fiber-Shaped Zinc–Air Battery Based on Cross-Stacked Carbon Nanotube Sheets, Angew. Chemie, (2015) 54: 15390 –15394.
[68] J. W. Zhao, Y. Q. Li, High-voltage Zn/LiMn0.8Fe0.2PO4 aqueous rechargeable battery by virtue of “water-in-salt” electrolyte. Electrochemistry Communications , (2016) 69: 6–10.
[69] F. Wang, O. Borodin, T. Gao, Highly reversible zinc metal anode for aqueous batteries. Nature Materials, (2018) 17: 543-549. |