博碩士論文 103389002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:13.59.69.109
姓名 李宗雄(Tsung-Hsiung Li)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 生物相容性鈦基金屬玻璃合金粉末用於積層製造之研製
(Development and fabrication of the bio-compatible Ti-based metallic glass powders for additive manufacturing)
相關論文
★ (Zr48Cu36Al8Ag8)99.25Si0.75複材高溫塑性行為之研究★ 具鉭顆粒散布強化之鐵基金屬玻璃複材的合成及其性質之研究
★ 鋯摻雜對SrCe1-xZrxO3-δ (0.0≦x≦0.5) 氫傳輸透膜微結構與性質影響之研究★ 適用於生物駐植物之無毒鈦基金屬玻璃之合金設計
★ 利用急冷旋鑄及真空熱壓製備Zn4Sb3奈米/微米晶塊材之熱電性質與機械性質研究★ 鐵顆粒添加對鎂鋅鈣非晶質合金熱性質及機械性質影響之研究
★ Ba0.8Sr0.2Ce0.8-x-yZryInxY0.2O3-δ(x=0.05,0.1 y=0,0.1)固態氧化物燃料電池電解質材料燒 結能力、微結構與其導電性質之研究★ 鋯基與鈦基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質改善之研究
★ 添加鉭對鋯鋁鈷塊狀非晶質合金機械性質影響之研究★ 鐵基塊狀金屬玻璃熱塑成形性之研究
★ 鋯基金屬玻璃薄膜對鎂基塊狀金屬玻璃複材之機械性質與抗腐蝕性提升之研究★ 微量鉭顆粒添加對鋯-銅-鋁-鈷塊狀非晶質合金鋯銅析出相的演變及機械性質之影響
★ 雷射積層製造用鐵基金屬玻璃粉末與其工件性質之研究★ 鐵基金屬玻璃破裂韌性提升 及其積層製造用粉體製作之研究
★ 質子傳輸型固態氧化物燃料電池之陽極支撐電解質材料製作及其性能之研究★ 低密度雙相富鋁高熵合金之微結構觀察與其機械性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 為了達到利用氣體霧化方式來製作出具高真圓度的球形粉體,降低具生物相容性Ti42Zr40Ta3Si15的液相溫度是必須的,所以鈦合金低液相溫度的設計理念是傾向該合金成份是接近於共晶點。一系列的Ti-Zr-Ta-Si-Sn-Co合金系統,將利用熔體紡絲技術來製作出薄帶,並以差示掃描量熱來探究熱性質和X光繞射儀來鑑定非晶質狀態,而由差示掃描量熱的結果顯示,將以適當的Co和Sn元素含量來取代該合金組成中的Zr和Si,可大幅降低從1728 K的Ti42Zr40Ta3Si15液相溫度轉變成1200 K,同時該合金成份的玻璃形成能力也向上提升。依據四種不同液相溫度的合金成份,利用氣體霧化技術來製作出具金屬玻璃結構的粉體,其結果顯示,較低液相溫度的合金成份,容易經氣體霧化技術後,得到球形的金屬玻璃粉體。同樣的在雷射再燒熔測試,在適當燒熔參數下,使用部分結晶的Ti42Zr35Ta3Si5Sn2.5Co12.5進行SLM,可得到連續全非晶的平面顯微結構,這表示該合金成份與雷射參數可進一步進行得到層與層堆疊的非晶構造。因此Ti42Zr35Ta3Si5Sn2.5Co12.5相信這有潛力的合金系統,可以製作出具高真圓度的粉體來運用於SLM
摘要(英) In order to reduce the liquidus temperature of the bio-compatible Ti42Zr40Ta3Si15 alloy for fabrication the spherical powder by gas-atomization process, the concept of lower liquidus temperature tendency near eutectic alloy composition was applied to design the Ti-based alloy with lower liquidus temperature. A series of Ti-Zr-Ta-Si-Sn-Co alloy ribbons were prepared by melt-spinning for evaluating their thermal properties and amorphous state by using differential scanning calorimeter (DSC) and X-ray diffraction analysis (XRD), respectively. The DSC results show that the liquidus temperature of Ti42Zr40Ta3Si15 alloy can be dramatically decreased by adding suitable amount of Co and Sn to substitute Zr and Si contents, liquidus temperature decreases from 1728 K to 1200 K. Meanwhile, the glass forming ability is also significantly improved. Accordingly, three alloy compositions with different liquidus temperatures were selected for fabricating the metallic glass powders by gas- atomization. The results reveal that the lower liquidus temperature of the alloy has, the more tendency to form the spherical metallic glass powder by gas-atomization process. In parallel, the results of pulse laser re-melting test on the partially crystallized Ti42Zr35Ta3Si5Sn2.5Co12.5 alloy powder shows that a continuous fully amorphous alloy layer can be formed under proper laser re-melting condition. This implies that the Ti42Zr35Ta3Si5Sn2.5Co12.5 alloys which contain major microstructure of amorphous phase also can be formed a continuous fully amorphous alloy layer by laser re-melting. Therefore, Ti42Zr35Ta3Si5Sn2.5Co12.5 alloys are believed to be the promising alloy system and can be fabricated into spherical metallic glass powders for the application of additive manufacturing by selective laser melting method.
關鍵字(中) ★ 金屬玻璃
★ 生物相容性
★ 積層製造
★ 鈦合金
關鍵字(英) ★ metallic glass
★ bio-compatible
★ additive manufacturing
★ Ti alloy
論文目次 Table of Contents
摘要 I
Abstract II
Acknowledgments III
Table of Contents IV
List of figures VI
List of tables IX
Explanation of Symbols X
Chapter 1 Introduction 1
Chapter 2 Literature review 6
2.1 The characteristics of metallic glasses 6
2.2 Discovery of metallic glass 6
2.3 Glass-forming ability (GFA) 7
2.3.1 Component rule 8
2.3.2 Cluster unit 9
2.3.3 Deep eutectic point 10
2.3.4 Instability crystalline structure 11
2.4 Glass-forming ability index 13
2.4.1 Characteristic temperatures 13
2.4.2 Supercooled liquid region, ∆Tx=Tx -Tg 14
2.4.3 γ parameter 14
2.4.4 γm parameter 15
2.4.5 Reduce glass transformation temperature 15
2.5 Designing biocompatible for implant applications 15
2.5.1 Ti-based BMG for physical and chemical properties 16
2.5.2 Ti-based BMG for biological safety 18
2.5.3 Toxic element 18
2.5.4 The biological safety and GFA of alloying additions in Ti-based BMG 20
2.6 Open-cell bulk metallic glass foams (BMGFs) 22
2.7 Processing biomedical implant by additive manufacturing (AM) 22
2.7.1 Additive manufacturing (AM) 23
2.7.2 SLM of high cooling rate 24
2.7.3 SLM of hot tearing cracks 25
2.7.4 SLM of heat affect zone (HAZ) 26
2.7.5 Interaction between laser and metal powder beds 27
2.8 Processing metallic glasses by SLM 28
Chapter 3 Experimental procedures 29
3.1 Biocompatible Ti-based metallic glass with high GFA 29
3.2 Powder materials 30
3.3 SLM 30
Chapter 4 Results and discussion 31
4.1 Optimization of Ti-(Zr, Co, Sn)-Ta-(Si, P, B) amorphous alloy 31
4.1.1 Ti-Ta-(Zr, Si, Co) systems 31
4.1.2 Ti-Zr-Ta-(Si, Sn) systems 32
4.1.3 Ti-Zr-Ta-Co-(Si, B, P) and Ti-Zr-Ta-Sn-(Si, B, P) systems 32
4.1.4 Ti-Zr-Ta-(Co, Sn)-Si systems 33
4.2 real Tg 33
4.2.1 DSC curve of TiZr-based MG 34
4.2.2 Microstructure of Tg point 35
4.2.3 Reduce free volume 36
4.2.4 Kohlraush-Williams-Watts (KWW) relaxation function 36
4.2.5 Activation energy for structural relaxation 37
4.2.6 Incubation time 38
4.2.7 Other TiZr-based MG systems 39
4.3 Gas atomization process 39
4.4 Laser remelting-Line 41
Chapter 5 Conclusions 42
5.1 Biocompatible Ti-Zr-Ta-Si-Sn-Co with high GFA 42
5.2 Identify real Tg 42
References 43

List of figures
Figure 1. Illustration of biomedical implants and devices made out of BMGs. (a) commercial martensitic steel surgical blade coated with Zr53Cu30Ni9Al8 BMG film (top) and Zr53Cu30Ni9Al8 BMG surgical lade (down), (b) BMG medical stapling anvils, (c) open-cell BMG foams implant. [Maker: NCU HPAL Lab.] 53
Figure 2. Mechanisms for the multicomponent alloys which satisfy the three empirical rules. 53
Figure 3. Schematic illustrations of the structural features of cluster unit of glassy alloys. 53
Figure 4. DSC curves of of the Cu41.5Zr42Al8Ag8Si0.5 BMG with a diameter of 4 mm. 54
Figure 5. Schematic T-T-T curves for two different alloys. Cooling rate: Rc2 > Rc1 54
Figure 6. The atomic arrangements of (a) crystal of long-range order and (b) amorphous of short-range order. 54
Figure 7. Human bone structure. 55
Figure 8. Illustration of an AM (a) powder bed system, (b) wire feed system, and (c) powder feed system. 55
Figure 9. Tensile engineering stress-strain curves, two different types of SLM machines were used and named as ‘Concept’ and ‘Fraunhofer’, respectively. 55
Figure 10. AM of metal alloys via selective laser melting. (a, c) Many alloys including Al7075 tend to solidify by columnar growth of dendrites in the strong temperature gradient process, resulting in cracks due to solidification shrinkage. (b, d) Suitable nanoparticles can induce heterogeneous nucleation and facilitate equiaxed grain growth, thereby reducing the effect of solidification strain. 56
Figure 11. Thermal profile of a single layer of Ti-6Al-4V during AM. 56
Figure 12. (a) Optical micrographs of the solidified melt track within a powder layer, (b) Schematic depicting the action of evaporated metal flux on the flow pattern of the surrounding Ar gas and displacement of particles in the powder bed. 56
Figure 13. The formation mechanism of denudation zone. 57
Figure 14. A time series of track cross sections for a fixed position with the laser moving out of the plane. It can divide into the indentation formation, the indentation collapse, formation of a pore, and the cooling as the melt solidifies. 57
Figure 15. High-speed images of spattering with schematic illustration of spatter formation [120]. 58
Figure 16. Composition dependence of (a-1) liquidus temperature, Tl and (a-2) supercooled liquid region, ∆Tx for Ti42ZrwTa3SixCoz quinary alloys, (b-1) Tl and (b-2) ∆Tx for Ti42ZrwTa3SixSny quinary alloys. C and N marker in the circle index the crystal and nanocrystal for microstructure ribbon at the same experiment parameter, respectively. 58
Figure 17. HT-DSC (a) and DSC (b) curves for Ti42Zr35Ta3Si5SnyCoz. (y+z=15 in at %) glassy alloy ribbons, respectively. 59
Figure 18. DSC trace scanned at 0.67 K/s of (A) the Ti42Zr35Ta3Si5Sn2.5Co12.5 as-quench alloy ribbon with a thickness of 25 μm, (B) the sample is reheated again, (C) is difference in heat flow signals between the (A) and (B). 59
Figure 19. (a) XRD of the isothermal annealed Ti42Zr35Ta3Si5Sn2.5Co12.5 alloy ribbons (Holding time = 3 min), (b) bright field TEM image and selected area diffraction pattern of the sample annealed at 761 K (top of first peak) for 3 min. 59
Figure 20. DSC plots of the Ti42Zr35Ta3Si5Sn2.5Co12.5 alloy ribbons annealed at different annealing conditions; DSC heating rate is 0.67 K/s. 60
Figure 21. (a) Variation of the enthalpy difference with the annealing time in isothermal annealing (713 K) and (b) KWW-exponent β in the vicinity of first peak for the Ti42Zr35Ta3Si5Sn2.5Co12.5 alloy ribbon. 60
Figure 22. The activation energy of cooperative motion of cluster estimated by Arrhenius plots as a function of temperature for the Ti42Zr35Ta3Si5Sn2.5Co12.5 alloy ribbon. 60
Figure 23. (a) Incubation time as a function of isothermal annealing temperature and (b) real Tg at heating rate of 0 K/min for the Ti42Zr35Ta3Si5Sn2.5Co12.5 alloy ribbon. 61
Figure 24. DSC plots of as-quench TiZr-based metallic glass ribbon with a thickness of 25 μm. 61
Figure 25. The morphologies of atomized alloy powder observed by SEM; (a) Ti42Zr40Ta3Si7.5Sn7.5, (b) Ti42Zr32.5Ta3Si7.5Co15, (c) Ti42Zr35Ta3Si5Sn7.5Co7.5 and (d) Ti42Zr35Ta3Si5Sn2.5Co12.5. 62
Figure 26. Cross-sectional metallographs of the atomized Ti42Zr35Ta3Si5Sn2.5Co12.5 alloy powder. 62
Figure 27. Plots of particle size distribution of as-atomized Ti-based alloy powders; (a) Ti42Zr40Ta3Si7.5Sn7.5, (b) Ti42Zr32.5Ta3Si7.5Co15, (c) Ti42Zr35Ta3Si5Sn7.5Co7.5 and (d) Ti42Zr35Ta3Si5Sn2.5Co12.5. 63
Figure 28. XRD patterns of atomized alloy powders for different particle size range; (a) Ti42Zr40Ta3Si7.5Sn7.5, (b) Ti42Zr32.5Ta3Si7.5Co15, (c) Ti42Zr35Ta3Si5Sn7.5Co7.5 and (d) Ti42Zr35Ta3Si5Sn2.5Co12.5, (e) four kind of alloy ribbons with thickness 50 um 64
Figure 29. DSC curves of gas-atomized powders with different size and ribbon (Ti42Zr35Ta3Si5Sn2.5Co12.5). 64
Figure 30. SEM images of the alloy lines formed after laser re-melting at different beam size (a) 100 um, (b) 200 um for Ti42Zr35Ta3Si5Sn2.5Co12.5. 65

List of tables
Table I. Summary of biomedical Ti-based BMG systems and their mechanical properties. 66
Table II. Summary of metal-based BMG systems. 66
Table III. Selected alloys commercially used in AM processing. 66
Table IV. Thermal parameters of the Ti-Zr-Ta-Si-Co metallic glasses. 67
Table V. Thermal parameters of the Ti-Zr-Ta-Si-Sn metallic glasses. 68
Table VI. Thermal parameters of the Ti-Zr-Ta-(Co, Sn)-(Si, B, P) metallic glasses. 69
Table VII. Thermal parameters of the Ti-Zr-Ta-Co-Sn-Si metallic glasses. 70
Table VIII. Parameters according to the KWW relaxation function fitted to data with τ and β. 72
Table IX. Thermal properties of TiZr-based metallic glass alloy ribbon. 72
Table X. Alloy line formation and line width by a function of power and scanning speed for beam size 200μm. 73
Table XI. Alloy line formation and line width by a function of power and scanning speed for beam size 100μm. 74
參考文獻 [1]. H.F. Li, Y.F. Zheng, L. Qin, “Progress of biodegradable metals”, Progress in Materials Science, 24 (2014), 414.
[2]. Y.F. Zheng, X.N. Gu, F. Witte, “Biodegradable metals”, Materials Science and Engineering: R: Reports, 77 (2014), 1.
[3]. M. Niinomi, “Metals for biomedical devices”, CRC Press, (2010).
[4]. M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, “Ti based biomaterials, the ultimate choice for orthopaedic implants- A review”, Progress in Materials Science, 54 (2009), 397.
[5]. W. Klement, R. Willens, P. Duwez, “Non-crystalline structure in solidified gold–silicon alloys”, Nature, 187 (1960), 869.
[6]. C. Suryanarayana, A. Inoue, “Bulk metallic glasses”, 2011, CRC Press (Taylor & Francis Group).
[7]. A. Inoue, A. Takeuchi, “Recent development and application products of bulk glassy alloys”, Acta Materialia, 59 (2011), 2243.
[8]. A. Inoue, T. Zhang, “Fabrication of bulk glassy Zr55Cu30Ni5Al10 alloy of 30 mm in diameter by a suction casting method”, Materials Transactions, 37 (1996), 185.
[9]. A. Peker, W.L. Johnson, “A highly processable metallic glass: Zr41.2Ti13.75Cu12.5Ni10Be22.5”, Applied Physics Letters, 3 (1993), 2342.
[10]. J.S.C. Jang, S.R. Jian, C.F. Chang, L.J. Chang, Y.C. Huang, T.H. Li, J.C. Huang, C.T. Liu, “Thermal and mechanical properties of the Zr53Cu30Ni9Al8 based bulk metallic glass microalloyed with silicon”, Journal of Alloys and Compounds, 478 (2009), 215.
[11]. A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta Materialia, 48 (2000), 279.
[12]. H.F. Li, Y.F. Zheng, “Recent advances in bulk metallic glasses for biomedical application”, Acta Biomaterialia, 36 (2016), 1.
[13]. J.B. Li, H.C. Lin, J.S.C. Jang, C.N. Kuo, J.C. Huang, “Novel open-cell bulk metallic glass foams with promising characteristics”, Materials Letters, 105 (2013), 140.
[14]. S.L. Zhu, X.M. Wang, F.X. Qin, A. Inoue, “A new Ti-based bulk glassy alloy with potential for biomedical application”, Materials Science and Engineering: A, 459 (2007), 233.
[15]. J.J. Oak, D.V.L. Luzgin, A. Inoue, “Fabrication of Ni-free Ti-based bulk-metallic glassy alloy having potential for application as biomaterial, and investigation of its mechanical properties, corrosion, and crystallization behavior”, Journal of Materials Research, 22 (2007), 1346.
[16]. Y.C. Kim, D.H. Bae, W.T. Kim, D.H. Kim, “Glass forming ability and crystallization behavior of Ti-based amorphous alloys with high specific strength”, Journal of Non-Crystalline Solids, 325 (2003), 242.
[17]. Y.B. Wang, H.F. Li, Y. Cheng, Y.F. Zheng, L.Q. Ruan, “In vitro and in vivo studies on Ti-based bulk metallic glass as potential dental implant material”, Materials Science and Engineering: C, 33 (2013), 3489.
[18]. S.J. Pang, Y. Liu, H.F. Li, L.L. Sun, Y. Li, T. Zhang, “New Ti-based Ti-Cu-Zr-Fe-Sn-Si-Ag bulk metallic glass for biomedical applications”, Journal of Alloys and Compounds, 625 (2015), 323.
[19]. M.L. Morrison, R.A. Buchanan, A. Peker, P.K. Liaw, J.A. Horton, “Electrochemical behavior of a Ti-based bulk metallic glass”, Journal of Non-Crystalline Solids, 353 (2007), 2115.
[20]. J. Fornell, E. Pellicer, N. Van Steenberge, S. González, A. Gebert, S. Suriñach, M.D. Baro, J. Sort, “Improved plasticity and corrosion behavior in Ti-Zr-Cu-Pd metallic glass with minor additions of Nb: an alloy composition intended for biomedical applications”, Materials Science and Engineering: A, 559 (2013), 159.
[21]. J.J. Oak, D.V.L. Luzgin, A. Inoue, “Investigation of glass-forming ability, deformation and corrosion behavior of Ni-free Ti-based BMG alloys designed for application as dental implants, Materials Science and Engineering: C, 29 (2009), 322.
[22]. J.J. Oak, G.W. Hwang, Y.H. Park, H. Kimura, S.Y. Yoon, A. Inoue, “Characterization of surface properties, osteoblast cell culture in vitro and processing with flow-viscosity of Ni-free Ti-based bulk metallic glass for biomaterials”, Journal of Biomechanical Science and Engineering, 4 (2009), 384.
[23]. M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, “Ti based biomaterials, the ultimate choice for orthopaedic implants- A review”, Progress in Materials Science, 54 (2009), 397.
[24]. C. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, T. Asahina, “Processing of biocompatible porous Ti and Mg”, Scripta Materialia, 45 (2001), 1147.
[25]. L.D. Zardiackas, D.E. Parsell, L.D. Dillon, D.W. Mitchell, L.A. Nunnery, R. Poggie, “Structure, metallurgy, and mechanical properties of a porous tantalum foam”, Journal of Biomedical Materials Research, 58 (2001), 180.
[26]. J.P. Kruth, G. Levy, F. Klocke, T.H.C. Childs, “Consolidation phenomena in laser and powder-bed based layered manufacturing”, CIRP Annals - Manufacturing Technology, 56 (2007), 730.
[27]. D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, “Laser additive manufacturing of metallic components: materials, processes and mechanisms”, International Materials Reviews, 57 (2012), 133.
[28]. I. Gibson, D.W. Rosen, B. Stucker, “Additive manufacturing technologies”, Springer, (2010).
[29]. B. Vandenbroucke, J.P. Kruth, “Selective laser melting of biocompatible metals for rapid manufacturing of medical parts”, Rapid Prototyping Journal, 13 (2007), 196.
[30]. T. Vilaro, V. K. Rexerodt, M. Thomas, C. Colin, P. Bertrand, L. Thivillon, S. Abed, V. Ji, P. Aubry, P. Peyre, T. Malot, “Direct fabrication of a Ti-47Al-2Cr-2Nb alloy by selective laser melting and direct metal deposition processes”, Advanced Materials Research, 89 (2010), 586.
[31]. T.G. Spears, S.A. Gold, “In-process sensing in selective laser melting (SLM) additive manufacturing”, Integrating Materials and Manufacturing Innovation, 5 (2016), 2.
[32]. S. Pauly, L. Lober, R. Petters, M. Stoica, S. Scudino, U. Kuhn, J. Eckert, “Processing metallic glasses by selective laser melting”, Materials Today, 16 (2013), 37.
[33]. B. Vrancken, L. Thijs, J.P. Kruth, J.V. Humbeeck, “Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties”, Journal of Alloys and Compounds, 541 (2012), 177.
[34]. J. Banks, “Adding value in additive manufacturing: researchers in the United Kingdom and Europe look to 3D printing for customization”, IEEE Pulse, 4 (2013), 22.
[35]. C. Schubert, M.C.V. Langeveld, L.A. Donoso, “Innovations in 3D printing: a 3D overview from optics to organs”, Br J Ophthalmol. 98 (2014), 159.
[36]. I.D. Ursan, L. Chiu, A. Pierce, “Three-dimensional drug printing: A structured review”, Journal of the American Pharmacists Association, 53 (2013), 136.
[37]. B.C. Gross, J.L. Erkal, S.Y. Lockwood, C. Chen, D.M. Spence, “Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences”, Analytical Chemistry, 86 (2014), 3240.
[38]. A. Inoue, T. Zhang, “Fabrication of bulk glass Zr55Al10Ni5Cu30 alloy of 30 mm in diameter by a suction casting method”, Materials Transactions, 37 (1996), 185.
[39]. W. Zhang, Q. Zhang, C. Qin, A. Inoue, “Synthesis and properties of Cu–Zr–Ag–Al glassy alloys with high glass-forming ability”, Materials Science and Engineering B, 148 (2008), 92.
[40]. W.L. Johnson, “Fundamental aspects of Bulk Metallic Glass Formation in Multicomponent Alloys”, Materials Science Forum, 225-227 (1996), 35.
[41]. A. Inoue, N. Nishiyama, H. Kimura, “ Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72 mm in diameter”, Materials Transactions, 38 (1997), 179.
[42]. Y. Zeng, N. Nishiyama, T. Yamamoto, A. Inoue, “Ni-rich bulk metallic glasses with high glass-forming ability and good metallic properties”, Materials Transactions, 50 (2009), 2441.
[43]. Q. Zheng, J. Xu, E. Ma, “High glass-forming ability correlated with fragility of Mg–Cu(Ag)–Gd alloys”, Journal of Applied Physics, 102 (2007), 113519.
[44]. R. Li, S. Pang, C. Ma, T. Zhang, “Influence of similar atom substitution on glass formation in (La–Ce)–Al–Co bulk metallic glasses”, Acta Materialia, 55 (2007), 3719.
[45]. Q.K. Jianga, G.Q. Zhang, L.Y. Chen, J.Z. Wu, H.G. Zhang, J.Z. Jiang, “Glass formability, thermal stability and mechanical properties of La-based bulk metallic glasses”, Journal of Alloys and Compounds, 424 (2006), 183.
[46]. Z. Yuqiao, N. Nishiyama, A. Inoue, “Development of Ni-Pd-P-B bulk metallic glasses with high glass-forming ability”, Materials Transactions, 50 (2009), 1243.
[47]. V. Ponnambalam, S.J. Poon, G.J. Shiflet, “Fe-based bulk metallic glasses with diameter thickness larger than one centimeter”, Journal of Materials Research, 19 (2004), 1320.
[48]. S.L. Zhu, X.M. Wang, A. Inoue, “Glass-forming ability and mechanical properties of Ti-based bulk glassy alloys with large diameters of up to 1cm”, Intermetallics, 16 (2008), 1031.
[49]. A. Inoue, B. Shen, “New Fe-based bulk glassy alloys with high saturated magnetic flux density of 1.4–1.5T”, Materials Science and Engineering A, 375–377 (2004), 302.
[50]. A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta Materialia, 48 (2000), 279.
[51]. H.S. Chen, “Glassy metals”, Reports on Progress in Physics, 43 (1980), 353.
[52]. A. Inoue, “High strength bulk amorphous alloys with low critical cooling rates”, Materials Transactions, 36 (1995), 866.
[53]. A. Inoue, “Bulk amorphous alloys with soft and hard magnetic properties”, Materials Science and Engineering A, 226–228 (1997), 357.
[54]. A. Inoue, T. Zhang, A. Takeuchi, “Ferrous and nonferrous bulk amorphous alloys", Materials Science Forum, 269-272 (1998), 855.
[55]. A. Inoue, “Bulk Amorphous Alloys”. Trans Tech Publications, Zurich, 1998.
[56]. A. Takeuchi, A. Inoue, “Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element”, Materials Transactions, 46 (2005), 2817.
[57]. D.B. Miracle, “A structural model for metallic glasses”, Nature Materials, 3 (2004), 697.
[58]. H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, E. Ma, “Atomic packing and short-to-medium-range order in metallic glasses”, Nature, 439 (2006), 419.
[59]. A.R. Yavari, “Materials science: A new order for metallic glasses”, Nature, 439 (2006), 405.
[60]. D.B. Miracle, “The efficient cluster packing model-An atomic structural model for metallic glasses”, Acta Materialia, 54 (2006), 4317.
[61]. A. Takeuchi, K. Yubuta, Y. Yokoyama, A. Makino, A. Inoue, “Noncrystalline atomic arrangements computationally created from crystalline compound by treating groups of atoms as hypothetical clusters”, Intermetallics, 16 (2008), 283.
[62]. N. Nishiyama, A. Inoue, “Glass-forming ability of Pd42.5Cu30Ni7.5P20 alloy with a low critical cooling rate of 0.067 K/s”, Applied Physics Letters, 80 (2002), 568.
[63]. H. Choi-Yim, D. Xu, W.L. Johnson, “Ni-based bulk metallic glass formation in the Ni–Nb–Sn and Ni–Nb–Sn–X (X=B, Fe, Cu) alloy systems”, Applied Physics Letters, 82 (2003), 1030.
[64]. H.W. Kui, A.L. Greer, D. Turnbull, “Formation of bulk metallic glass by fluxing”, Applied Physics Letters, 45 (1984), 615.
[65]. S. Li, D.Q. Zhao, M.X. Pan, W.H. Wang, “A bulk metallic glass based on heavy rare earth gadolinium”, Journal of Non-Crystalline Solids, 351 (2005), 2568.
[66]. W.H. Wang, J.J. Lewandowski, A.L. Greer, “Understanding the glass-forming ability of Cu50Zr50 alloys in terms of a metastable eutectic”, Journal of Materials Research, 20 (2005), 2307.
[67]. Z.P. Lu, C.T. Liu, W.D. Porter, “Role of yttrium in glass formation of Fe-based bulk metallic glasses”, Applied Physics Letters, 83 (2003), 2581.
[68]. Z.P. Lu, C.T. Liu, J.R. Thompson, W.D. Porter, “Structural Amorphous Steels”, Physical Review Letters, 92 (2004), 245503.
[69]. D. Ma, H. Tan, D. Wang, Y. Li, “Strategy for pinpointing the best glass-forming alloys”, Applied Physics Letters, 86 (2005), 191906.
[70]. Z.P. Lu, J. Shen, D.W. Xing, J.F. Sun, C.T. Liu, “Binary eutectic clusters and glass formation in ideal glass-forming liquids”, Applied Physics Letters, 89 (2006), 071910.
[71]. G.J. Hao, J.P. Lin, Y. Zhang, G.L. Chen, Z.P. Lu, “Ti–Zr–Be ternary bulk metallic glasses correlated with binary eutectic clusters”, Materials Science and Engineering A, 527 (2010), 6248.
[72]. T. Egami, Y. Waseda, “Atomic size effect on the formability of metallic glasses”, Journal of Non-Crystalline Solids, 64 (1983), 113.
[73]. O.N. Senkov, D.B. Miracle, ”Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys”, Materials research bulletin, 36 (2001), 2183.
[74]. O.N. Senkov, D.B. Miracle, “Topological critierion for metallic glass formation”, Materials Science and Engineering A, 327 (2003), 50.
[75]. A. Takeuchi, A. Inoue, “Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys”, Materials Transactions, 41 (2000), 1372.
[76]. G.A. Mansoori, N.F. Carnahan, K.E. Starling, T.W. Leland Jr., “Equilibrium thermodynamic properties of the mixture of hard spheres”, The Journal of Chemical Physics, 54 (1971), 1523.
[77]. S. Fang, X. Xiao, L. Xia, W. Li, Y. Dong, “Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses”, Journal of Non-Crystalline Solids, 321 (203), 120.
[78]. S. Fang, Z. Zhou, J. Zhang, M. Yao, D.O. Northwood, F. Feng, “Two mathematical models for the hydrogen storage properties of AB2 type alloys”, Journal of Alloys and Compounds, 293-295, 20 (1999), 10.
[79]. Z.P. Lu, C.T. Liu, “A new glass-forming ability criterion for bulk metallic glasses”, Acta Materialia, 50 (2002), 3501.
[80]. X.H. Du, J.C. Huang, C.T. Liu, Z.P. Lu, “New criterion of glass forming ability for bulk metallic glasses”, Journal of Applied Physics, 101 (2007), 086108.
[81]. D. Turnbull, “Under what conditions can a glass be formed? ”, Contemporary Physics, 10 (1969), 473.
[82]. P.G. Debenedetti1, F.H. Stillinger, “Supercooled liquids and the glass transition”, Nature, 410 (2001), 259.
[83]. A. Inoue, T. Zhang, T. Masumoto, “Glass-forming ability of alloys”, Journal of Non-Crystalline Solids, 156–158 (1993), 473.
[84]. Z.P. Lu, C.T. Liu, “Glass formation criterion for various glass-forming systems”, Physical Review Journals, 91 (2003), 115505.
[85]. K.H. Frosch MD, K.M. Stürmer, “Metallic biomaterials in skeletal repair”, European Journal of Trauma and Emergency Surgery, 32 (2006), 149.
[86]. M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, “Ti based biomaterials, the ultimate choice for orthopaedic implants - A review”, Progress in Materials Science, 54 (2009), 397.
[87]. A.L. Greer, “Metallic glasses…on the threshold”, Materials Today, 12 (2009), 14.
[88]. A.C. Lund, C.A. Schuh, “Topological and chemical arrangement of binary alloys during severe deformation”, Journal of Applied Physics, 95 (2004), 4815.
[89]. L. Liu, C.L. Qiu, C.Y. Huang, Y. Yu, H. Huang, S.M. Zhang, “Biocompatibility of Ni-free Zr-based bulk metallic glasses”, Intermetallics, 17 (2009), 235.
[90]. A. Morita, H. Fukui, H. Tadano, S. Hayashi, J. Hasegawa, M. Niinomi, “Alloying titanium and tantalum by cold crucible levitation melting (CCLM) furnace”, Materials Science and Engineering A, 280 (2000), 208.
[91]. W.M. Elshahawy, I. Watanabe, P. Kramer, “In vitro cytotoxicity evaluation of elemental ions released from different prosthodontic materials”, Dental Materials, 25 (2009), 1551.
[92]. S.G. Steinemann, in: G.D. Winte, J.L. Leray, K. de Goot (Eds.), Evaluation of Biomaterials, Wiley, New York, 1980.
[93]. A. Léonard, R. Lauwerys, “Mutagenicity, carcinogenicity and teratogenicity of beryllium”, Mutation Research, 186 (1987), 35.
[94]. R.G. Cooper, A.P. Harrison, “The uses and adverse effects of beryllium on health”, Indian Journal of Occupational and Environmental Medicine, 13 (2009), 65.
[95]. A.C. Alfrey, H. Tomita, “Trace Elements in Clinical Medicine”, Proceedings of the Second Meeting of the International Society for Trace Element Research in Humans (ISTERH) August 28–September 1, 1989, Tokyo, 459.
[96]. D.G. Barceloux, “Vanadium”, Journal of Toxicology. Clinical Toxicology, 37 (1999), 265.
[97]. B. Zambelli, S. Ciurli, “Nickel and human health”, Metal Ions in Life Sciences, 13 (2013), 321.
[98]. M. Bost, S. Houdart, M. Oberlib, E. Kalonjib, J.F. Huneauc, I. Margaritisb, “Dietary copper and human health: Current evidence and unresolved issues”, Journal of Trace Elements in Medicine and Biology, 35 (2016), 107.
[99]. W.M. Elshahawy, I. Watanabe, P. Kramer, “In vitro cytotoxicity evaluation of elemental ions released from different prosthodontic materials”, Dental Materials, 25 (2009), 1551.
[100]. R.G. Craig, C.T. Hanks, “Cytotoxicity of experimental casting alloys evaluated by cell culture tests”, Journal of Dental Research, 69 (1990), 1539.
[101]. D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, T. Yashiro, “Design and mechanical properties of new β type titanium alloys for implant materials”, Materials Science and Engineering A, 243 (1998), 244.
[102]. S. Blunden, T. Wallace, “Tin in canned food: a review and understanding of occurrence and effect“, Food and Chemical Toxicology. 41 (2003), 1651.
[103]. S.P. Nielsen, “The biological role of strontium”, Bone, 35 (2004), 583.
[104]. B.H. Lee, Y.D. Kim, K.H. Lee, “XPS study of bioactive graded layer in Ti–In–Nb–Ta alloy prepared by alkali and heat treatments”, Biomaterials, 24 (2003), 2257.
[105]. J. Zhu, A. Kamiya, T. Yamada, W. Shi, K. Naganuma, “Influence of boron addition on microstructure and mechanical properties of dental cast titanium alloys”, Materials Science and Engineering A, 339 (2003), 53.
[106]. M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, “Magnesium and its alloys as orthopedic biomaterials: A review”, Biomaterials, 27 (2006), 1728.
[107]. J.J. Oak, A. Inoue, “Attempt to develop Ti-based amorphous alloys for biomaterials”, Materials Science and Engineering A, 449-451 (2007), 220.
[108]. M. Calin, A. Gebert, A.C. Ghinea, P.F. Gostin, S. Abdi, C. Mickel, J. Eckert, “ Designing biocompatible Ti-based metallic glasses for implant applications”, Materials Science and Engineering C, 33 (2013), 875.
[109]. M.G. Zywiel, J.J. Cherian, S.Banerjee, A. C. Cheung, F. Wong, J. Butany, C. Gilbert, C. Overgaard, K. Syed, J.J. Jacobs, M.A. Mont, “Systemic cobalt toxicity from total hip arthroplasties: review of a rare condition Part 2. measurement, risk factors, and step-wise approach to treatment”, The bone & joint journal, 98-B (2016), 14.
[110]. Y. Liao, E. Hoffman, M. Wimmer, A. Fischer, J. Jacobs, L. Marks, “CoCrMo Metal-on-Metal Hip Replacements”, Physical Chemistry Chemical Physics, 15 (2013), 764.
[111]. W.E. Frazier, “Metal Additive Manufacturing: A Review”, Journal of Materials Engineering and Performance, 23 (2014), 1917.
[112]. J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock, “ 3D printing of high-strength aluminium alloys”, Nature, 549 (2017), 365.
[113]. Robert E. Reed-Hill, “physical metallurgy principles”, Cl-Engineering Publishing.
[114]. Y.M. Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza, T. Zhu, “Additively manufactured hierarchical stainless steels with high strength and ductility”, Nature Materials, 17 (2018), 63.
[115]. E. Britannica, http://global.britannica.com/EBchecked/topic/72869/bone.
[116]. S.M. Kelly, S.L. Kampe, “Microstructural evolution in laser deposited multilayer Ti-6Al-4V builds: Part II thermal modeling”, Metallurgical and Materials Transactions A, 35 (2004), 1869.
[117]. F. Wang, S. Williams, P. Colegrove, A.A. Antonysamy, “Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V”, Metallurgical and Materials Transactions A, 44 (2013), 968.
[118]. M.J. Matthews, G. Guss, S.A. Khairallah, A.M. Rubenchik, P.J. Depond, W.E. King, “Denudation of metal powder layers in laser powder bed fusion processes”, Acta Materialia, 114 (2016), 33.
[119]. S.A. Khairallah, A.T. Anderson, A. Rubenchik, W.E. King, “Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones”, Acta Materialia, 108 (2016), 36.
[120]. H. Nakamura, Y. Kawahito, K. Nishimoto, S. Katayama, “Elucidation of melt flows and spatter formation mechanisms during high power laser welding of pure titanium”, Journal of Laser Applications, 27 (2015), 032012.
[121]. X.P. Li, M.P. Roberts, S. O′Keeffe, T.B. Sercombe, “Selective laser melting of Zr-based bulk metallic glasses: Processing, microstructure and mechanical properties”, Materials & Design, 112 (2016), 217.
[122]. H.Y. Jung, S.J. Choi, K.G. Prashanth, M. Stoica, S. Scudino, S. Yi, U. Kuhn, D.H. Kim, K.B. Kim, J. Eckert, “Fabrication of Fe-based bulk metallic glass by selective laser melting: A parameter study”, Materials & Design, 86 (2015), 703.
[123]. X.P. Li, C.W. Kang, H. Huang, L.C. Zhang, T.B. Sercombe, “Selective laser melting of an Al86Ni6Y4.5Co2La1.5 metallic glass: Processing, microstructure evolution and mechanical properties”, Materials Science and Engineering A, 606 (2014), 370.
[124]. L.J. Chang, J.S.C. Jang, B.C. Yang, J.C. Huang, “Crystallization and thermal stability of the Mg65Cu25−xGd10Agx (x = 0-10) amorphous alloys”, Journal of Alloys and Compounds, 434-435 (2007), 221.
[125]. Binary Phase Diagram, 2nd edition plus updates, ASM International, Ohio, USA, 1996.
[126]. J.S.C. Jang, S.R. Jian, C.F. Chang, L.J. Chang, Y.C. Huang, T.H. Li, J.C. Huang, C.T. Liu, “Thermal and mechanical properties of the Zr53Cu30Ni9Al8 based bulk metallic glass microalloyed with silicon”, Journal of Alloys and Compounds, 478 (2009), 215.
[127]. M. Morakotjinda, K. Fakpan, T. Yotkaew, N. Tosangthum, R. Krataithong, A. Daraphan, P. Siriphol, P. Wila, B. Vetayanugul, R. Tongsri, “Gas atomization of low melting-point metal powders”, Chiang Mai Journal of Science, 37 (2010), 55.
[128]. H.W. Ouyang, X. Chen, B.Y. Huang, “Influence of melt superheat on breakup process of close-coupled gas atomization”, Transactions of Nonferrous Metals Society of China, 17 (2007), 967.
[129]. H.C. Lin, P.H. Tsai, J.H. Ke, J.B. Li, J.S.C. Jang, C.H. Huang, J.C. Haung, “Designing a toxic-element-free Ti-based amorphous alloy with remarkable supercooled liquid region for biomedical application”, Intermetallics, 55 (2014), 22.
[130]. S.F. Zhao, Y. Shao, P. Gong, K. F. Yao, “A Centimeter-Sized Quaternary Ti-Zr-Be-Ag Bulk Metallic Glass”, Advances in Materials Science and Engineering, 2014 (2014), 5.
[131]. Y.H. Wu, C. Wang, C.H. Hsueh, T.H. Li, C.H. Chang, H.C. Chen, J.S.C. Jang, J.C. Huang, Z.H. Ma, “Microstructure and mechanical properties of Zr-Ti-Cu-Nd metallic glass composites”, Journal of Alloys and Compounds, 702 (2017), 318.
[132]. P.G. Debenedetti1, F.H. Stillinger, “Supercooled liquids and the glass transition”, Nature, 410 (2001), 259.
[133]. J.S.C. Jang, S.R. Jian, C.F. Chang, L.J. Chang, Y.C. Huang, T.H. Li , J.C. Huang, C.T. Liu, “Thermal and mechanical properties of the Zr53Cu30Ni9Al8 based bulk metallic glass microalloyed with silicon”, Journal of Alloys and Compounds, 478 (2009), 215.
[134]. A. Inoue, A. Kato, T. Zhang, S. G. Kim, T. Masumoto, “Mg–Cu–Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method”, Materials Transactions, 32 (1991), 609.
[135]. A. Slipenyuk, J. Eckert, “Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55Cu30Al10Ni5 metallic glass”, Scripta Materialia, 50 (2004), 39.
[136]. J.S.C. Jang a, C.F. Chang, Y.C. Huang, J.C. Huang, W.J. Chiang, C.T. Liu, “Viscous flow and microforming of a Zr-base bulk metallic glass”, Intermetallics, 17 (2009), 200.
[137]. T.G. Nieh, J. Wadsworth, “Homogeneous deformation of bulk metallic glasses”, Scripta Materialia, 54 (2006), 387.
[138]. R. Raghavan, U. Ramamurty, J. Basu, S. Ranganathan, N. Nishiyama, “Structural Relaxation and Crystallization in a Pd40Cu30Ni10P20 Bulk Metallic Glass”, Materials Research Society, 806 (2004), MM9.6.
[139]. D. Turnbull, M.H. Cohen, “On the Free‐Volume Model of the Liquid‐Glass Transition”, the Journal of Chemical Physics, 52 (1970), 3038.
[140]. T.W. Wu, F. Spaepen, “The relation between enbrittlement and structural relaxation of an amorphous metal”, Philosophical Magazine Part B, 61 (1990), 739.
[141]. J. Jackle, “Models of the glass transition”, Reports on Progress in Physics, 49 (1986), 171.
[142]. M. Weiss, M. Moske, K. Samwer, “Kohlrausch exponent of amorphous Zr65Al7.5Cu27.5 determined by anelastic relaxation measurements”, Applied Physics Letters, 69 (1996), 3200.
[143]. D. Suh, R.H. Dauskardt, “Mechanical relaxation time scales in a Zr–Ti–Ni–Cu–Be bulk metallic glass”, Journal of Materials Research, 17(2002), 1254.
[144]. T. Zhang, A. Inoue, T. Masumoto, “Amorphous Zr–Al–TM (TM=Co, Ni, Cu) alloys with significant supercooled liquid region of over 100 K”, Materials Transactions, 32 (1991), 1005.
[145]. Z. Long, H. Wei, Y. Ding, P. Zhang, G. Xie, A. Inoue, “A new criterion for predicting the glass-forming ability of bulk metallic glasses”, Journal of Alloys and Compounds, 475 (2009), 207.
[146]. Q. Zhang, W. Zhang, A. Inoue, “Preparation of Cu36Zr48Ag8Al8 Bulk Metallic Glass with a Diameter of 25 mm by Copper Mold Casting”, Materials Transactions, 48 (2007), 629.
[147]. F. Guo, S.J. Poon, G.J. Shiflet, “Metallic glass ingots based on yttrium”, Applied Physics Letters, 83 (2003), 2575.
[148]. J. Jackle, “Cooperative dynamics in glassy solidifying liquids”, Physikalische Blätter, 52 (1996), 351.
[149]. D. Suh, R.H. Dauskardt, “Mechanical relaxation time scales in a Zr–Ti–Ni–Cu–Be bulk metallic glass”, Journal of Materials Research, 17 (2002), 1254.
[150]. R. Busch, E. Bakke, W.L. Johnson, “Viscosity of the supercooled liquid and relaxation at the glass transition of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass forming alloy”, Acta Materialia, 46 (1998), 4725.
[151]. A. Inoue, T. Zhang, W. Zhang, A. Takeuchi, “Bulk Nd-Fe-Al amorphous alloys with hard magnetic properties”, Materials Transactions, 37 (1996), 99.
[152]. S. Kumar, “10.05-Selective Laser Sintering/Melting”, Comprehensive Materials Processing, 10 (2014), 93.
指導教授 鄭憲清(Shian-Ching Jang) 審核日期 2019-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明