參考文獻 |
[1]. H.F. Li, Y.F. Zheng, L. Qin, “Progress of biodegradable metals”, Progress in Materials Science, 24 (2014), 414.
[2]. Y.F. Zheng, X.N. Gu, F. Witte, “Biodegradable metals”, Materials Science and Engineering: R: Reports, 77 (2014), 1.
[3]. M. Niinomi, “Metals for biomedical devices”, CRC Press, (2010).
[4]. M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, “Ti based biomaterials, the ultimate choice for orthopaedic implants- A review”, Progress in Materials Science, 54 (2009), 397.
[5]. W. Klement, R. Willens, P. Duwez, “Non-crystalline structure in solidified gold–silicon alloys”, Nature, 187 (1960), 869.
[6]. C. Suryanarayana, A. Inoue, “Bulk metallic glasses”, 2011, CRC Press (Taylor & Francis Group).
[7]. A. Inoue, A. Takeuchi, “Recent development and application products of bulk glassy alloys”, Acta Materialia, 59 (2011), 2243.
[8]. A. Inoue, T. Zhang, “Fabrication of bulk glassy Zr55Cu30Ni5Al10 alloy of 30 mm in diameter by a suction casting method”, Materials Transactions, 37 (1996), 185.
[9]. A. Peker, W.L. Johnson, “A highly processable metallic glass: Zr41.2Ti13.75Cu12.5Ni10Be22.5”, Applied Physics Letters, 3 (1993), 2342.
[10]. J.S.C. Jang, S.R. Jian, C.F. Chang, L.J. Chang, Y.C. Huang, T.H. Li, J.C. Huang, C.T. Liu, “Thermal and mechanical properties of the Zr53Cu30Ni9Al8 based bulk metallic glass microalloyed with silicon”, Journal of Alloys and Compounds, 478 (2009), 215.
[11]. A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta Materialia, 48 (2000), 279.
[12]. H.F. Li, Y.F. Zheng, “Recent advances in bulk metallic glasses for biomedical application”, Acta Biomaterialia, 36 (2016), 1.
[13]. J.B. Li, H.C. Lin, J.S.C. Jang, C.N. Kuo, J.C. Huang, “Novel open-cell bulk metallic glass foams with promising characteristics”, Materials Letters, 105 (2013), 140.
[14]. S.L. Zhu, X.M. Wang, F.X. Qin, A. Inoue, “A new Ti-based bulk glassy alloy with potential for biomedical application”, Materials Science and Engineering: A, 459 (2007), 233.
[15]. J.J. Oak, D.V.L. Luzgin, A. Inoue, “Fabrication of Ni-free Ti-based bulk-metallic glassy alloy having potential for application as biomaterial, and investigation of its mechanical properties, corrosion, and crystallization behavior”, Journal of Materials Research, 22 (2007), 1346.
[16]. Y.C. Kim, D.H. Bae, W.T. Kim, D.H. Kim, “Glass forming ability and crystallization behavior of Ti-based amorphous alloys with high specific strength”, Journal of Non-Crystalline Solids, 325 (2003), 242.
[17]. Y.B. Wang, H.F. Li, Y. Cheng, Y.F. Zheng, L.Q. Ruan, “In vitro and in vivo studies on Ti-based bulk metallic glass as potential dental implant material”, Materials Science and Engineering: C, 33 (2013), 3489.
[18]. S.J. Pang, Y. Liu, H.F. Li, L.L. Sun, Y. Li, T. Zhang, “New Ti-based Ti-Cu-Zr-Fe-Sn-Si-Ag bulk metallic glass for biomedical applications”, Journal of Alloys and Compounds, 625 (2015), 323.
[19]. M.L. Morrison, R.A. Buchanan, A. Peker, P.K. Liaw, J.A. Horton, “Electrochemical behavior of a Ti-based bulk metallic glass”, Journal of Non-Crystalline Solids, 353 (2007), 2115.
[20]. J. Fornell, E. Pellicer, N. Van Steenberge, S. González, A. Gebert, S. Suriñach, M.D. Baro, J. Sort, “Improved plasticity and corrosion behavior in Ti-Zr-Cu-Pd metallic glass with minor additions of Nb: an alloy composition intended for biomedical applications”, Materials Science and Engineering: A, 559 (2013), 159.
[21]. J.J. Oak, D.V.L. Luzgin, A. Inoue, “Investigation of glass-forming ability, deformation and corrosion behavior of Ni-free Ti-based BMG alloys designed for application as dental implants, Materials Science and Engineering: C, 29 (2009), 322.
[22]. J.J. Oak, G.W. Hwang, Y.H. Park, H. Kimura, S.Y. Yoon, A. Inoue, “Characterization of surface properties, osteoblast cell culture in vitro and processing with flow-viscosity of Ni-free Ti-based bulk metallic glass for biomaterials”, Journal of Biomechanical Science and Engineering, 4 (2009), 384.
[23]. M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, “Ti based biomaterials, the ultimate choice for orthopaedic implants- A review”, Progress in Materials Science, 54 (2009), 397.
[24]. C. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, T. Asahina, “Processing of biocompatible porous Ti and Mg”, Scripta Materialia, 45 (2001), 1147.
[25]. L.D. Zardiackas, D.E. Parsell, L.D. Dillon, D.W. Mitchell, L.A. Nunnery, R. Poggie, “Structure, metallurgy, and mechanical properties of a porous tantalum foam”, Journal of Biomedical Materials Research, 58 (2001), 180.
[26]. J.P. Kruth, G. Levy, F. Klocke, T.H.C. Childs, “Consolidation phenomena in laser and powder-bed based layered manufacturing”, CIRP Annals - Manufacturing Technology, 56 (2007), 730.
[27]. D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, “Laser additive manufacturing of metallic components: materials, processes and mechanisms”, International Materials Reviews, 57 (2012), 133.
[28]. I. Gibson, D.W. Rosen, B. Stucker, “Additive manufacturing technologies”, Springer, (2010).
[29]. B. Vandenbroucke, J.P. Kruth, “Selective laser melting of biocompatible metals for rapid manufacturing of medical parts”, Rapid Prototyping Journal, 13 (2007), 196.
[30]. T. Vilaro, V. K. Rexerodt, M. Thomas, C. Colin, P. Bertrand, L. Thivillon, S. Abed, V. Ji, P. Aubry, P. Peyre, T. Malot, “Direct fabrication of a Ti-47Al-2Cr-2Nb alloy by selective laser melting and direct metal deposition processes”, Advanced Materials Research, 89 (2010), 586.
[31]. T.G. Spears, S.A. Gold, “In-process sensing in selective laser melting (SLM) additive manufacturing”, Integrating Materials and Manufacturing Innovation, 5 (2016), 2.
[32]. S. Pauly, L. Lober, R. Petters, M. Stoica, S. Scudino, U. Kuhn, J. Eckert, “Processing metallic glasses by selective laser melting”, Materials Today, 16 (2013), 37.
[33]. B. Vrancken, L. Thijs, J.P. Kruth, J.V. Humbeeck, “Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties”, Journal of Alloys and Compounds, 541 (2012), 177.
[34]. J. Banks, “Adding value in additive manufacturing: researchers in the United Kingdom and Europe look to 3D printing for customization”, IEEE Pulse, 4 (2013), 22.
[35]. C. Schubert, M.C.V. Langeveld, L.A. Donoso, “Innovations in 3D printing: a 3D overview from optics to organs”, Br J Ophthalmol. 98 (2014), 159.
[36]. I.D. Ursan, L. Chiu, A. Pierce, “Three-dimensional drug printing: A structured review”, Journal of the American Pharmacists Association, 53 (2013), 136.
[37]. B.C. Gross, J.L. Erkal, S.Y. Lockwood, C. Chen, D.M. Spence, “Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences”, Analytical Chemistry, 86 (2014), 3240.
[38]. A. Inoue, T. Zhang, “Fabrication of bulk glass Zr55Al10Ni5Cu30 alloy of 30 mm in diameter by a suction casting method”, Materials Transactions, 37 (1996), 185.
[39]. W. Zhang, Q. Zhang, C. Qin, A. Inoue, “Synthesis and properties of Cu–Zr–Ag–Al glassy alloys with high glass-forming ability”, Materials Science and Engineering B, 148 (2008), 92.
[40]. W.L. Johnson, “Fundamental aspects of Bulk Metallic Glass Formation in Multicomponent Alloys”, Materials Science Forum, 225-227 (1996), 35.
[41]. A. Inoue, N. Nishiyama, H. Kimura, “ Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72 mm in diameter”, Materials Transactions, 38 (1997), 179.
[42]. Y. Zeng, N. Nishiyama, T. Yamamoto, A. Inoue, “Ni-rich bulk metallic glasses with high glass-forming ability and good metallic properties”, Materials Transactions, 50 (2009), 2441.
[43]. Q. Zheng, J. Xu, E. Ma, “High glass-forming ability correlated with fragility of Mg–Cu(Ag)–Gd alloys”, Journal of Applied Physics, 102 (2007), 113519.
[44]. R. Li, S. Pang, C. Ma, T. Zhang, “Influence of similar atom substitution on glass formation in (La–Ce)–Al–Co bulk metallic glasses”, Acta Materialia, 55 (2007), 3719.
[45]. Q.K. Jianga, G.Q. Zhang, L.Y. Chen, J.Z. Wu, H.G. Zhang, J.Z. Jiang, “Glass formability, thermal stability and mechanical properties of La-based bulk metallic glasses”, Journal of Alloys and Compounds, 424 (2006), 183.
[46]. Z. Yuqiao, N. Nishiyama, A. Inoue, “Development of Ni-Pd-P-B bulk metallic glasses with high glass-forming ability”, Materials Transactions, 50 (2009), 1243.
[47]. V. Ponnambalam, S.J. Poon, G.J. Shiflet, “Fe-based bulk metallic glasses with diameter thickness larger than one centimeter”, Journal of Materials Research, 19 (2004), 1320.
[48]. S.L. Zhu, X.M. Wang, A. Inoue, “Glass-forming ability and mechanical properties of Ti-based bulk glassy alloys with large diameters of up to 1cm”, Intermetallics, 16 (2008), 1031.
[49]. A. Inoue, B. Shen, “New Fe-based bulk glassy alloys with high saturated magnetic flux density of 1.4–1.5T”, Materials Science and Engineering A, 375–377 (2004), 302.
[50]. A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta Materialia, 48 (2000), 279.
[51]. H.S. Chen, “Glassy metals”, Reports on Progress in Physics, 43 (1980), 353.
[52]. A. Inoue, “High strength bulk amorphous alloys with low critical cooling rates”, Materials Transactions, 36 (1995), 866.
[53]. A. Inoue, “Bulk amorphous alloys with soft and hard magnetic properties”, Materials Science and Engineering A, 226–228 (1997), 357.
[54]. A. Inoue, T. Zhang, A. Takeuchi, “Ferrous and nonferrous bulk amorphous alloys", Materials Science Forum, 269-272 (1998), 855.
[55]. A. Inoue, “Bulk Amorphous Alloys”. Trans Tech Publications, Zurich, 1998.
[56]. A. Takeuchi, A. Inoue, “Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element”, Materials Transactions, 46 (2005), 2817.
[57]. D.B. Miracle, “A structural model for metallic glasses”, Nature Materials, 3 (2004), 697.
[58]. H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, E. Ma, “Atomic packing and short-to-medium-range order in metallic glasses”, Nature, 439 (2006), 419.
[59]. A.R. Yavari, “Materials science: A new order for metallic glasses”, Nature, 439 (2006), 405.
[60]. D.B. Miracle, “The efficient cluster packing model-An atomic structural model for metallic glasses”, Acta Materialia, 54 (2006), 4317.
[61]. A. Takeuchi, K. Yubuta, Y. Yokoyama, A. Makino, A. Inoue, “Noncrystalline atomic arrangements computationally created from crystalline compound by treating groups of atoms as hypothetical clusters”, Intermetallics, 16 (2008), 283.
[62]. N. Nishiyama, A. Inoue, “Glass-forming ability of Pd42.5Cu30Ni7.5P20 alloy with a low critical cooling rate of 0.067 K/s”, Applied Physics Letters, 80 (2002), 568.
[63]. H. Choi-Yim, D. Xu, W.L. Johnson, “Ni-based bulk metallic glass formation in the Ni–Nb–Sn and Ni–Nb–Sn–X (X=B, Fe, Cu) alloy systems”, Applied Physics Letters, 82 (2003), 1030.
[64]. H.W. Kui, A.L. Greer, D. Turnbull, “Formation of bulk metallic glass by fluxing”, Applied Physics Letters, 45 (1984), 615.
[65]. S. Li, D.Q. Zhao, M.X. Pan, W.H. Wang, “A bulk metallic glass based on heavy rare earth gadolinium”, Journal of Non-Crystalline Solids, 351 (2005), 2568.
[66]. W.H. Wang, J.J. Lewandowski, A.L. Greer, “Understanding the glass-forming ability of Cu50Zr50 alloys in terms of a metastable eutectic”, Journal of Materials Research, 20 (2005), 2307.
[67]. Z.P. Lu, C.T. Liu, W.D. Porter, “Role of yttrium in glass formation of Fe-based bulk metallic glasses”, Applied Physics Letters, 83 (2003), 2581.
[68]. Z.P. Lu, C.T. Liu, J.R. Thompson, W.D. Porter, “Structural Amorphous Steels”, Physical Review Letters, 92 (2004), 245503.
[69]. D. Ma, H. Tan, D. Wang, Y. Li, “Strategy for pinpointing the best glass-forming alloys”, Applied Physics Letters, 86 (2005), 191906.
[70]. Z.P. Lu, J. Shen, D.W. Xing, J.F. Sun, C.T. Liu, “Binary eutectic clusters and glass formation in ideal glass-forming liquids”, Applied Physics Letters, 89 (2006), 071910.
[71]. G.J. Hao, J.P. Lin, Y. Zhang, G.L. Chen, Z.P. Lu, “Ti–Zr–Be ternary bulk metallic glasses correlated with binary eutectic clusters”, Materials Science and Engineering A, 527 (2010), 6248.
[72]. T. Egami, Y. Waseda, “Atomic size effect on the formability of metallic glasses”, Journal of Non-Crystalline Solids, 64 (1983), 113.
[73]. O.N. Senkov, D.B. Miracle, ”Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys”, Materials research bulletin, 36 (2001), 2183.
[74]. O.N. Senkov, D.B. Miracle, “Topological critierion for metallic glass formation”, Materials Science and Engineering A, 327 (2003), 50.
[75]. A. Takeuchi, A. Inoue, “Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys”, Materials Transactions, 41 (2000), 1372.
[76]. G.A. Mansoori, N.F. Carnahan, K.E. Starling, T.W. Leland Jr., “Equilibrium thermodynamic properties of the mixture of hard spheres”, The Journal of Chemical Physics, 54 (1971), 1523.
[77]. S. Fang, X. Xiao, L. Xia, W. Li, Y. Dong, “Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses”, Journal of Non-Crystalline Solids, 321 (203), 120.
[78]. S. Fang, Z. Zhou, J. Zhang, M. Yao, D.O. Northwood, F. Feng, “Two mathematical models for the hydrogen storage properties of AB2 type alloys”, Journal of Alloys and Compounds, 293-295, 20 (1999), 10.
[79]. Z.P. Lu, C.T. Liu, “A new glass-forming ability criterion for bulk metallic glasses”, Acta Materialia, 50 (2002), 3501.
[80]. X.H. Du, J.C. Huang, C.T. Liu, Z.P. Lu, “New criterion of glass forming ability for bulk metallic glasses”, Journal of Applied Physics, 101 (2007), 086108.
[81]. D. Turnbull, “Under what conditions can a glass be formed? ”, Contemporary Physics, 10 (1969), 473.
[82]. P.G. Debenedetti1, F.H. Stillinger, “Supercooled liquids and the glass transition”, Nature, 410 (2001), 259.
[83]. A. Inoue, T. Zhang, T. Masumoto, “Glass-forming ability of alloys”, Journal of Non-Crystalline Solids, 156–158 (1993), 473.
[84]. Z.P. Lu, C.T. Liu, “Glass formation criterion for various glass-forming systems”, Physical Review Journals, 91 (2003), 115505.
[85]. K.H. Frosch MD, K.M. Stürmer, “Metallic biomaterials in skeletal repair”, European Journal of Trauma and Emergency Surgery, 32 (2006), 149.
[86]. M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, “Ti based biomaterials, the ultimate choice for orthopaedic implants - A review”, Progress in Materials Science, 54 (2009), 397.
[87]. A.L. Greer, “Metallic glasses…on the threshold”, Materials Today, 12 (2009), 14.
[88]. A.C. Lund, C.A. Schuh, “Topological and chemical arrangement of binary alloys during severe deformation”, Journal of Applied Physics, 95 (2004), 4815.
[89]. L. Liu, C.L. Qiu, C.Y. Huang, Y. Yu, H. Huang, S.M. Zhang, “Biocompatibility of Ni-free Zr-based bulk metallic glasses”, Intermetallics, 17 (2009), 235.
[90]. A. Morita, H. Fukui, H. Tadano, S. Hayashi, J. Hasegawa, M. Niinomi, “Alloying titanium and tantalum by cold crucible levitation melting (CCLM) furnace”, Materials Science and Engineering A, 280 (2000), 208.
[91]. W.M. Elshahawy, I. Watanabe, P. Kramer, “In vitro cytotoxicity evaluation of elemental ions released from different prosthodontic materials”, Dental Materials, 25 (2009), 1551.
[92]. S.G. Steinemann, in: G.D. Winte, J.L. Leray, K. de Goot (Eds.), Evaluation of Biomaterials, Wiley, New York, 1980.
[93]. A. Léonard, R. Lauwerys, “Mutagenicity, carcinogenicity and teratogenicity of beryllium”, Mutation Research, 186 (1987), 35.
[94]. R.G. Cooper, A.P. Harrison, “The uses and adverse effects of beryllium on health”, Indian Journal of Occupational and Environmental Medicine, 13 (2009), 65.
[95]. A.C. Alfrey, H. Tomita, “Trace Elements in Clinical Medicine”, Proceedings of the Second Meeting of the International Society for Trace Element Research in Humans (ISTERH) August 28–September 1, 1989, Tokyo, 459.
[96]. D.G. Barceloux, “Vanadium”, Journal of Toxicology. Clinical Toxicology, 37 (1999), 265.
[97]. B. Zambelli, S. Ciurli, “Nickel and human health”, Metal Ions in Life Sciences, 13 (2013), 321.
[98]. M. Bost, S. Houdart, M. Oberlib, E. Kalonjib, J.F. Huneauc, I. Margaritisb, “Dietary copper and human health: Current evidence and unresolved issues”, Journal of Trace Elements in Medicine and Biology, 35 (2016), 107.
[99]. W.M. Elshahawy, I. Watanabe, P. Kramer, “In vitro cytotoxicity evaluation of elemental ions released from different prosthodontic materials”, Dental Materials, 25 (2009), 1551.
[100]. R.G. Craig, C.T. Hanks, “Cytotoxicity of experimental casting alloys evaluated by cell culture tests”, Journal of Dental Research, 69 (1990), 1539.
[101]. D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, T. Yashiro, “Design and mechanical properties of new β type titanium alloys for implant materials”, Materials Science and Engineering A, 243 (1998), 244.
[102]. S. Blunden, T. Wallace, “Tin in canned food: a review and understanding of occurrence and effect“, Food and Chemical Toxicology. 41 (2003), 1651.
[103]. S.P. Nielsen, “The biological role of strontium”, Bone, 35 (2004), 583.
[104]. B.H. Lee, Y.D. Kim, K.H. Lee, “XPS study of bioactive graded layer in Ti–In–Nb–Ta alloy prepared by alkali and heat treatments”, Biomaterials, 24 (2003), 2257.
[105]. J. Zhu, A. Kamiya, T. Yamada, W. Shi, K. Naganuma, “Influence of boron addition on microstructure and mechanical properties of dental cast titanium alloys”, Materials Science and Engineering A, 339 (2003), 53.
[106]. M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, “Magnesium and its alloys as orthopedic biomaterials: A review”, Biomaterials, 27 (2006), 1728.
[107]. J.J. Oak, A. Inoue, “Attempt to develop Ti-based amorphous alloys for biomaterials”, Materials Science and Engineering A, 449-451 (2007), 220.
[108]. M. Calin, A. Gebert, A.C. Ghinea, P.F. Gostin, S. Abdi, C. Mickel, J. Eckert, “ Designing biocompatible Ti-based metallic glasses for implant applications”, Materials Science and Engineering C, 33 (2013), 875.
[109]. M.G. Zywiel, J.J. Cherian, S.Banerjee, A. C. Cheung, F. Wong, J. Butany, C. Gilbert, C. Overgaard, K. Syed, J.J. Jacobs, M.A. Mont, “Systemic cobalt toxicity from total hip arthroplasties: review of a rare condition Part 2. measurement, risk factors, and step-wise approach to treatment”, The bone & joint journal, 98-B (2016), 14.
[110]. Y. Liao, E. Hoffman, M. Wimmer, A. Fischer, J. Jacobs, L. Marks, “CoCrMo Metal-on-Metal Hip Replacements”, Physical Chemistry Chemical Physics, 15 (2013), 764.
[111]. W.E. Frazier, “Metal Additive Manufacturing: A Review”, Journal of Materials Engineering and Performance, 23 (2014), 1917.
[112]. J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock, “ 3D printing of high-strength aluminium alloys”, Nature, 549 (2017), 365.
[113]. Robert E. Reed-Hill, “physical metallurgy principles”, Cl-Engineering Publishing.
[114]. Y.M. Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza, T. Zhu, “Additively manufactured hierarchical stainless steels with high strength and ductility”, Nature Materials, 17 (2018), 63.
[115]. E. Britannica, http://global.britannica.com/EBchecked/topic/72869/bone.
[116]. S.M. Kelly, S.L. Kampe, “Microstructural evolution in laser deposited multilayer Ti-6Al-4V builds: Part II thermal modeling”, Metallurgical and Materials Transactions A, 35 (2004), 1869.
[117]. F. Wang, S. Williams, P. Colegrove, A.A. Antonysamy, “Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V”, Metallurgical and Materials Transactions A, 44 (2013), 968.
[118]. M.J. Matthews, G. Guss, S.A. Khairallah, A.M. Rubenchik, P.J. Depond, W.E. King, “Denudation of metal powder layers in laser powder bed fusion processes”, Acta Materialia, 114 (2016), 33.
[119]. S.A. Khairallah, A.T. Anderson, A. Rubenchik, W.E. King, “Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones”, Acta Materialia, 108 (2016), 36.
[120]. H. Nakamura, Y. Kawahito, K. Nishimoto, S. Katayama, “Elucidation of melt flows and spatter formation mechanisms during high power laser welding of pure titanium”, Journal of Laser Applications, 27 (2015), 032012.
[121]. X.P. Li, M.P. Roberts, S. O′Keeffe, T.B. Sercombe, “Selective laser melting of Zr-based bulk metallic glasses: Processing, microstructure and mechanical properties”, Materials & Design, 112 (2016), 217.
[122]. H.Y. Jung, S.J. Choi, K.G. Prashanth, M. Stoica, S. Scudino, S. Yi, U. Kuhn, D.H. Kim, K.B. Kim, J. Eckert, “Fabrication of Fe-based bulk metallic glass by selective laser melting: A parameter study”, Materials & Design, 86 (2015), 703.
[123]. X.P. Li, C.W. Kang, H. Huang, L.C. Zhang, T.B. Sercombe, “Selective laser melting of an Al86Ni6Y4.5Co2La1.5 metallic glass: Processing, microstructure evolution and mechanical properties”, Materials Science and Engineering A, 606 (2014), 370.
[124]. L.J. Chang, J.S.C. Jang, B.C. Yang, J.C. Huang, “Crystallization and thermal stability of the Mg65Cu25−xGd10Agx (x = 0-10) amorphous alloys”, Journal of Alloys and Compounds, 434-435 (2007), 221.
[125]. Binary Phase Diagram, 2nd edition plus updates, ASM International, Ohio, USA, 1996.
[126]. J.S.C. Jang, S.R. Jian, C.F. Chang, L.J. Chang, Y.C. Huang, T.H. Li, J.C. Huang, C.T. Liu, “Thermal and mechanical properties of the Zr53Cu30Ni9Al8 based bulk metallic glass microalloyed with silicon”, Journal of Alloys and Compounds, 478 (2009), 215.
[127]. M. Morakotjinda, K. Fakpan, T. Yotkaew, N. Tosangthum, R. Krataithong, A. Daraphan, P. Siriphol, P. Wila, B. Vetayanugul, R. Tongsri, “Gas atomization of low melting-point metal powders”, Chiang Mai Journal of Science, 37 (2010), 55.
[128]. H.W. Ouyang, X. Chen, B.Y. Huang, “Influence of melt superheat on breakup process of close-coupled gas atomization”, Transactions of Nonferrous Metals Society of China, 17 (2007), 967.
[129]. H.C. Lin, P.H. Tsai, J.H. Ke, J.B. Li, J.S.C. Jang, C.H. Huang, J.C. Haung, “Designing a toxic-element-free Ti-based amorphous alloy with remarkable supercooled liquid region for biomedical application”, Intermetallics, 55 (2014), 22.
[130]. S.F. Zhao, Y. Shao, P. Gong, K. F. Yao, “A Centimeter-Sized Quaternary Ti-Zr-Be-Ag Bulk Metallic Glass”, Advances in Materials Science and Engineering, 2014 (2014), 5.
[131]. Y.H. Wu, C. Wang, C.H. Hsueh, T.H. Li, C.H. Chang, H.C. Chen, J.S.C. Jang, J.C. Huang, Z.H. Ma, “Microstructure and mechanical properties of Zr-Ti-Cu-Nd metallic glass composites”, Journal of Alloys and Compounds, 702 (2017), 318.
[132]. P.G. Debenedetti1, F.H. Stillinger, “Supercooled liquids and the glass transition”, Nature, 410 (2001), 259.
[133]. J.S.C. Jang, S.R. Jian, C.F. Chang, L.J. Chang, Y.C. Huang, T.H. Li , J.C. Huang, C.T. Liu, “Thermal and mechanical properties of the Zr53Cu30Ni9Al8 based bulk metallic glass microalloyed with silicon”, Journal of Alloys and Compounds, 478 (2009), 215.
[134]. A. Inoue, A. Kato, T. Zhang, S. G. Kim, T. Masumoto, “Mg–Cu–Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method”, Materials Transactions, 32 (1991), 609.
[135]. A. Slipenyuk, J. Eckert, “Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55Cu30Al10Ni5 metallic glass”, Scripta Materialia, 50 (2004), 39.
[136]. J.S.C. Jang a, C.F. Chang, Y.C. Huang, J.C. Huang, W.J. Chiang, C.T. Liu, “Viscous flow and microforming of a Zr-base bulk metallic glass”, Intermetallics, 17 (2009), 200.
[137]. T.G. Nieh, J. Wadsworth, “Homogeneous deformation of bulk metallic glasses”, Scripta Materialia, 54 (2006), 387.
[138]. R. Raghavan, U. Ramamurty, J. Basu, S. Ranganathan, N. Nishiyama, “Structural Relaxation and Crystallization in a Pd40Cu30Ni10P20 Bulk Metallic Glass”, Materials Research Society, 806 (2004), MM9.6.
[139]. D. Turnbull, M.H. Cohen, “On the Free‐Volume Model of the Liquid‐Glass Transition”, the Journal of Chemical Physics, 52 (1970), 3038.
[140]. T.W. Wu, F. Spaepen, “The relation between enbrittlement and structural relaxation of an amorphous metal”, Philosophical Magazine Part B, 61 (1990), 739.
[141]. J. Jackle, “Models of the glass transition”, Reports on Progress in Physics, 49 (1986), 171.
[142]. M. Weiss, M. Moske, K. Samwer, “Kohlrausch exponent of amorphous Zr65Al7.5Cu27.5 determined by anelastic relaxation measurements”, Applied Physics Letters, 69 (1996), 3200.
[143]. D. Suh, R.H. Dauskardt, “Mechanical relaxation time scales in a Zr–Ti–Ni–Cu–Be bulk metallic glass”, Journal of Materials Research, 17(2002), 1254.
[144]. T. Zhang, A. Inoue, T. Masumoto, “Amorphous Zr–Al–TM (TM=Co, Ni, Cu) alloys with significant supercooled liquid region of over 100 K”, Materials Transactions, 32 (1991), 1005.
[145]. Z. Long, H. Wei, Y. Ding, P. Zhang, G. Xie, A. Inoue, “A new criterion for predicting the glass-forming ability of bulk metallic glasses”, Journal of Alloys and Compounds, 475 (2009), 207.
[146]. Q. Zhang, W. Zhang, A. Inoue, “Preparation of Cu36Zr48Ag8Al8 Bulk Metallic Glass with a Diameter of 25 mm by Copper Mold Casting”, Materials Transactions, 48 (2007), 629.
[147]. F. Guo, S.J. Poon, G.J. Shiflet, “Metallic glass ingots based on yttrium”, Applied Physics Letters, 83 (2003), 2575.
[148]. J. Jackle, “Cooperative dynamics in glassy solidifying liquids”, Physikalische Blätter, 52 (1996), 351.
[149]. D. Suh, R.H. Dauskardt, “Mechanical relaxation time scales in a Zr–Ti–Ni–Cu–Be bulk metallic glass”, Journal of Materials Research, 17 (2002), 1254.
[150]. R. Busch, E. Bakke, W.L. Johnson, “Viscosity of the supercooled liquid and relaxation at the glass transition of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass forming alloy”, Acta Materialia, 46 (1998), 4725.
[151]. A. Inoue, T. Zhang, W. Zhang, A. Takeuchi, “Bulk Nd-Fe-Al amorphous alloys with hard magnetic properties”, Materials Transactions, 37 (1996), 99.
[152]. S. Kumar, “10.05-Selective Laser Sintering/Melting”, Comprehensive Materials Processing, 10 (2014), 93. |