博碩士論文 105328008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:69 、訪客IP:3.22.217.242
姓名 林柏均(Bo-Jyun Lin)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 雷射直寫草酸銀複合墨水製作金屬銀網格透明電極
(Synthesis of Silver Oxalate Complex Ink for Fabricating Ag-metal-mesh Transparent Electrode by Laser-Direct-Write Method)
相關論文
★ 碳化矽光輔助化學處理之表面特性探討★ 超快雷射薄石英晶圓微鑽孔研究
★ 藍寶石薄基板圓通孔和啞鈴形通孔之超快脈 衝雷射微鑽孔研究★ 新型光學式自動聚焦顯微鏡的設計與其性能分析
★ 以田口法作微型動壓軸承最佳化設計與性能評價★ 開發以 ANSYS-Fluent 為架構之數值模擬法探 討行星式 MOCVD 反應腔體內之三維氣體流場
★ 使用擴散片降低雷射幾何擾動方法之最佳化設計與實驗驗證★ 雷射還原石墨烯之場發射特性探討
★ 崁入式網印金屬網格電極製作於有機發光二極體之應用★ 三氧化鉬晶體薄膜之大氣環境製備技術開發及特性探討
★ 雷射直寫技術應用於金屬網格軟性透明電極製作★ AISI-H13工具鋼之雷射衝擊強化處理與衝擊壓力檢測
★ 多功能崁入式金屬網格透明電極技術開發★ 結合雷射直寫與無電鍍技術應用於嵌入式金屬網格透明電極製作
★ 複數光源二步驟照射法應用於無鹼玻璃之無裂痕雷射加工★ 靜電紡絲結合選擇性無電鍍沉積製作可撓式金屬網絡透明電極
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 氧化銦錫(ITO)雖為優異的透明電極的材料,但具有以下缺點:材料稀有、製程容易造成材料浪費和機械性質硬脆、不易應用於穿戴式電子產品。近年來,許多研究顯示金屬網格電極在透光度和導電性表現已相當優異,是相當有潛力的ITO替代電極。本研究旨在開發一製程簡單、能於大氣下直接以雷射直寫技術快速製作金屬網格透明電極之技術。此技術,首先由草酸銀和丙二胺配置成新型金屬墨水,經雷射直寫製得銀網格電極,並研究其導電性、透光度和機械性質。
新金屬墨水的配置以草酸銀為前驅物,其優點為具有高銀含量,並能直接熱分解為金屬銀和二氧化碳,而無其它副產物。本研究再以乙醇和水作為溶劑來合成油墨,並研究水和乙醇在不同重量百分比配置下,通過雷射直寫技術進行圖案化後,對金屬銀線的表面形貌及電性影響。此種油墨穩定性佳,在室溫下放置 7 天仍維持無色透明狀態穩定性良好。實驗結果顯示,使用乙醇作為溶劑所配置之墨水,同一雷射直寫參數下,所製作出之銀線具有良好的表面形貌及電性,其電阻率可達塊材銀 1.8 倍且透光度大於 86%、平均厚度 800 nm 的金屬網格銀透明電極。
本研究之第二部份為金屬銀網格於在透明電極上的應用,將前述完成之銀電極崁入 PI(液態聚醯亞胺)基板中製作金屬軟性電極,並在 5000 次彎曲循環下,曲率半徑為 5 mm 進行機械性質測試,電阻的變化(ΔR /R0)在其原始值的 40%之內,仍在容許範圍之內。
摘要(英) Indium tin oxide (ITO) is an excellent transparent electrode material, but it has some disadvantages, such as it is rare in nature, its fabrication process is material wasting and poor in flexibility, and it is not applicable to wearable electronics. Recently, many studies have shown that metal mesh electrodes are quite excellent in light transmittance and conductivity, and are fairly potential ITO replacement electrodes. The main purpose of this research is to develop a new approach for rapidly fabricating metal mesh transparent electrodes using the technique of laser direct writing in the ambient environment. In this study, we first synthesize a new type of metal ink based on silver oxalate and propylenediamine. It is then subjected to the method of laser direct write to fabricate into a silver-based metal mesh electrode. Finally, the conductivity, transparency and mechanical properties of the electrode are examined.
For metal ink configurations, the advantage of using silver oxalate as a precursor is its high silver content and which can be directly thermally decomposed into metallic silver and carbon dioxide without other by-products. In this study, we combine both ethanol and water as the solvent to synthesize inks, and the effects of the weight ratios between water and ethanol on the surface morphology and electrical properties of the resulting mesh were studied. The proposed ink has good stability and is stable in colorless and transparent state after being left in the ambient for 7 days. By a fixing set of laser writing parameters, the results indicate that the higher the content of ethanol in the solvent, the better surface morphology as well as higher conductivity on the resulting silver metal mesh. As the average thickness of the written meshes is of 800 nm and the transmittance of the electrode is up to 86% (@550 nm), the electrode’s resistivity is only 1.8 times that of the block silver.
The second part of this study is to examine the electrode’s flexibility. The originally fabricated silver electrode on a glass substrate is embedded into a flexible PI (liquid polyimide) thin film to make the electrode flexible. Its flexibility is examined by a cyclely bending test which is executed 5000 cycles with a radius of bending curvature of 5 mm. The increase of relative resistance (ΔR/R0) was less than 40% of its original one and that was still within the allowable range.
關鍵字(中) ★ 雷射直寫技術
★ 金屬銀網格透明電極
★ 柔性基板
★ 草酸銀絡合物
關鍵字(英) ★ laser direct writing
★ metal metal mesh electrode
★ flexible substrate
★ silver oxalate complex
論文目次 摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 ix
第一章 緒論 1
1-1 前言 1
1-2 研究背景、目的與方法 3
第二章 文獻回顧與基礎理論 4
2-1 金屬電極 4
2-1-1 無電鍍製作透明電極 4
2-1-2 金屬奈米線 6
2-1-3 噴墨印刷 (Ink-jet Printed) 7
2-1-4 閃光燈燒結 (Flash sintering) 9
2-1-5 光刻(Lithography) 12
2-1-6 小結 13
2-2 雷射直寫 13
2-3 金屬墨水 17
2-4 金屬銀鹽 20
2-5 傳承與創新 20
第三章 實驗方法 26
3-1 實驗流程與方法 26
3-2 實驗步驟 27
3-2-1 玻璃基板處理 27
3-2-2 草酸銀合成 27
3-2-3 金屬墨水配製 27
3-2-4 薄膜製備 27
3-2-5 雷射直寫 27
3-2-6 翻模 28
3-3 實驗用品 29
3-4 材料檢測分析儀器 32
3-4-1 熱重分析儀 (Thermogravimetric analysis, TGA) 32
3-4-2 單晶X光繞射儀 (Single-Crystal X-ray Diffraction, XRD) 32
3-4-3 場發掃描式電子顯微鏡 (Field-emmision Scanning Electronic Microscopy, FE-SEM) 32
3-4-4 傅里葉轉換紅外光譜 33
第四章 結果與討論 34
4-1 材料製備結果 34
4-1-1 草酸銀 34
4-1-2 草酸銀油墨 36
4-2 雷射直寫 39
4-3 表面形貌與成份分析 40
4-3-1 表面形貌 40
4-3-2 XRD和EDX分析 46
4-3-3 小結 48
4-4 電性 49
4-5 墨水穩定性 52
4-6 機械性質 53
第五章 結論與未來研究方向 55
5-1 結論 55
5-2 未來研究方向 55
參考文獻 57
碩士論文口試教授問題集 62
參考文獻 [1] Metal price of Indium. 取自http://www.51wctt.com/News/18645/Detail/2
[2] ITO replacement. 取自https://www.digitimes.com.tw/tw/dt/n/shwnws.asp?cnlid=13&cat=&id=239583
[3] Tsujioka, Tsuyoshi. "Metal-vapor deposition modulation on polymer surfaces prepared by the coffee-ring effect." Soft Matter9.24 (2013): 5681-5685.
[4] Yang, Liqiang, et al. "Solution-processed flexible polymer solar cells with silver nanowire electrodes." ACS applied materials & interfaces 3.10 (2011): 4075-4084.
[5] Gruner, George. "Carbon nanotube films for transparent and plastic electronics." Journal of Materials Chemistry 16.35 (2006): 3533-3539.
[6] Elschner, Andreas, and Wilfried Lövenich. "Solution-deposited PEDOT for transparent conductive applications." MRS bulletin36.10 (2011): 794-798.
[7] Kamyshny, Alexander, Joachim Steinke, and Shlomo Magdassi. "Metal-based inkjet inks for printed electronics." The Open Applied Physics Journal 4.1 (2011).
[8] Farraj, Yousef, Michael Grouchko, and Shlomo Magdassi. "Self-reduction of a copper complex MOD ink for inkjet printing conductive patterns on plastics." Chemical Communications 51.9 (2015): 1587-1590.
[9] Cohen, Adam E., and Roderick R. Kunz. "Large-area interdigitated array microelectrodes for electrochemical sensing." Sensors and Actuators B: Chemical 62.1 (2000): 23-29.
[10] Tsigara, A., et al. "Metal microelectrode nanostructuring using nanosphere lithography and photolithography with optimization of the fabrication process." Thin Solid Films 537 (2013): 269-274.
[11] Setoura, Kenji, Syoji Ito, and Hiroshi Miyasaka. "Stationary bubble formation and Marangoni convection induced by CW laser heating of a single gold nanoparticle." Nanoscale 9.2 (2017): 719-730.
[12] Chung, Jaewon, et al. "Conductor microstructures by laser curing of printed gold nanoparticle ink." Applied Physics Letters84.5 (2004): 801-803.
[13] Yeo, Junyeob, et al. "Next generation non-vacuum, maskless, low temperature nanoparticle ink laser digital direct metal patterning for a large area flexible electronics." PLoS One 7.8 (2012): e42315.
[14] Lee, Daeho, et al. "Vacuum-free, maskless patterning of Ni electrodes by laser reductive sintering of NiO nanoparticle ink and its application to transparent conductors." ACS nano 8.10 (2014): 9807-9814.
[15] Kang, Bongchul, et al. "One-step fabrication of copper electrode by laser-induced direct local reduction and agglomeration of copper oxide nanoparticle." The Journal of Physical Chemistry C115.48 (2011): 23664-23670.
[16] Itoh, Mitsunori, et al. "Direct transformation into silver nanoparticles via thermal decomposition of oxalate-bridging silver oleylamine complexes." Journal of nanoscience and nanotechnology 9.11 (2009): 6655-6660.
[17] Hsu, Po-Chun, et al. "Electrolessly deposited electrospun metal nanowire transparent electrodes." Journal of the American Chemical Society 136.30 (2014): 10593-10596.
[18] Min, Sung-Yong, et al. "Room-Temperature-Processable Wire-Templated Nanoelectrodes for Flexible and Transparent All-Wire Electronics." ACS nano 11.4 (2017): 3681-3689.
[19] Lu, Haifei, et al. "Selective growth and integration of silver nanoparticles on silver nanowires at room conditions for transparent nano-network electrode." Acs Nano 8.10 (2014): 10980-10987.
[20] Liu, Yuan, et al. "Capillary-force-induced cold welding in silver-nanowire-based flexible transparent electrodes." Nano letters17.2 (2017): 1090-1096.
[21] Lee, Young-In, and Yong-Ho Choa. "Adhesion enhancement of ink-jet printed conductive copper patterns on a flexible substrate." Journal of Materials Chemistry 22.25 (2012): 12517-12522.
[22] Zhang, Zhiliang, and Jun Liu. "Interfacial adhesion enhancement of ink-jet printed transparent metallic grid electrodes induced by the coffee-ring effect." Journal of Materials Chemistry C 4.19 (2016): 4218-4225.
[23] Han, Won-Suk, et al. "Multi-pulsed white light sintering of printed Cu nanoinks." Nanotechnology 22.39 (2011): 395705.
[24] Hwang, Yeon-Taek, et al. "Intensive plasmonic flash light sintering of copper nanoinks using a band-pass light filter for highly electrically conductive electrodes in printed electronics." ACS applied materials & interfaces 8.13 (2016): 8591-8599.
[25] Li, Linjie, et al. "Fabrication of Flexible Transparent Electrode with Enhanced Conductivity from Hierarchical Metal Grids." ACS applied materials & interfaces 9.45 (2017): 39110-39115.
[26] Liu, Yi-Kai, and Ming-Tsang Lee. "Laser direct synthesis and patterning of silver nano/microstructures on a polymer substrate." ACS applied materials & interfaces 6.16 (2014): 14576-14582.
[27] Liu, Shanliangzi, et al. "Laser Sintering of Liquid Metal Nanoparticles for Scalable Manufacturing of Soft and Flexible Electronics." ACS applied materials & interfaces 10.33 (2018): 28232-28241.
[28] Tao, Yu, et al. "A facile approach to a silver conductive ink with high performance for macroelectronics." Nanoscale research letters 8.1 (2013): 296.
[29] Hong, Sukjoon, et al. "Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink." ACS nano 7.6 (2013): 5024-5031.
[30] Liang, Kai-Ling, et al. "Polymer-assisted self-assembly of silver nanoparticles into interconnected morphology and enhanced surface electric conductivity." RSC Advances 4.29 (2014): 15098-15103.
[31] Dearden, Angela L., et al. "A low curing temperature silver ink for use in ink‐jet printing and subsequent production of conductive tracks." Macromolecular Rapid Communications 26.4 (2005): 315-318.
[32] Chang, Yu, et al. "Preparation, characterization and reaction mechanism of a novel silver-organic conductive ink." Journal of Materials Chemistry 22.48 (2012): 25296-25301.
[33] Bhat, Kiesar Sideeq, et al. "Low-temperature sintering of highly conductive silver ink for flexible electronics." Journal of Materials Chemistry C 4.36 (2016): 8522-8527.
[34] Zope, Khushbu R., Denis Cormier, and Scott A. Williams. "Reactive Silver Oxalate Ink Composition with Enhanced Curing Conditions for Flexible Substrates." ACS applied materials & interfaces 10.4 (2018): 3830-3837.
[35]魏楷,’’雷射直寫技術應用於金屬網格軟性透明電極製作’’(2017).
[36] Boldyrev, V. V. "Thermal decomposition of silver oxalate." Thermochimica acta 388.1-2 (2002): 63-90.
[37] Sarada, K., K. R. Vijisha, and K. Muraleedharan. "Exploration of the thermal decomposition of oxalates of copper and silver by experimental and computational methods." Journal of analytical and applied pyrolysis 120 (2016): 207-214.
[38] Yang, Wendong, Changhai Wang, and Valeria Arrighi. "Silver Oxalate Ink with Low Sintering Temperature and Good Electrical Property." Journal of Electronic Materials 47.5 (2018): 2824-2835.
[39] Yang, Wendong, Changhai Wang, and Valeria Arrighi. "An organic silver complex conductive ink using both decomposition and self-reduction mechanisms in film formation." Journal of Materials Science: Materials in Electronics 29.4 (2018): 2771-2783.
[40] Park, Hye Jin, et al. "Ultrathin Plasmonic Optical/Thermal Barrier: Flashlight-Sintered Copper Electrodes Compatible with Polyethylene Terephthalate Plastic Substrates." ACS applied materials & interfaces 9.50 (2017): 43814-43821.
[41] Pyatenko, Alexander, et al. "Mechanism of pulse laser interaction with colloidal nanoparticles." Laser & Photonics Reviews 7.4 (2013): 596-604.
[42] Dong, Yue, et al. "A low temperature and air-sinterable copper–diamine complex-based metal organic decomposition ink for printed electronics." Journal of Materials Chemistry C (2018).
指導教授 何正榮(Jeng-Rong Ho) 審核日期 2019-1-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明