博碩士論文 101626014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.16.203.151
姓名 廖文軒(Wen-Hsuan Liao)  查詢紙本館藏   畢業系所 國際研究生博士學位學程
論文名稱 西北太平洋人為氣膠對微量金屬循環的影響
(The Impact of Anthropogenic Aerosols on Trace Metal Cycling in the Northwestern Pacific Ocean)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 大氣氣溶膠沉降中的微量金屬可促進浮游植物的生長、並改變海洋浮游生物群落結構,進而影響海洋微量金屬的生物地球化學過程。在西北太平洋中,人為氣溶膠沉降更為海洋提供了大量高溶解性的微量金屬,而其在海洋生地化循環所扮演的角色與可能造成的影響與日俱增。為了研究微量金屬的來源及循環過程,本研究首先於西菲律賓海和鄰近東海黑潮區域的表水中進行顆粒態微量金屬分佈之初探,並由顆粒態微量金屬的元素比發現人為氣溶膠是表水中顆粒態微量金屬的主要來源。且這些金屬大多都是吸附或聚集於在表水中的顆粒上。藉由統整文獻資料,本研究發現全球的顆粒態微量金屬濃度與大氣氣溶膠沉降通量呈正相關,證實了氣溶膠沉降是影響表水中顆粒態微量金屬組成的主要因子。於研究的微量金屬中,鋅具有一個有別於其他金屬且全球一致的趨勢,即不同洋區中的顆粒態鋅磷比高於其已知藻類細胞內之鋅磷比,暗示了顆粒吸附及清除過程(scavenging)對鋅循環的重要性。
因此,有鑒於鋅於氣溶膠中的高濃度及具有被吸附清除的特性,鋅是研究海洋中人為氣溶膠金屬循環過程的理想代表元素。為了進一步研究海洋鋅循環,本研究建立了一套測量鋅同位素組成的技術,並結合已有的微量金屬分析技術以獲得更多資訊。為了研究鋅在西北太平洋中的來源和循環機制,本研究接著量測了不同性質的海洋樣品,包含海水、懸浮顆粒、沈降顆粒和氣溶膠中的鋅同位素組成。在西北太平洋的表層海水中,人為氣溶膠沉降的高通量導致溶解態鋅濃度相對高於其他海域觀察到的濃度。關於鋅同位素的分化作用,Rayleigh fractionation model 亦支持吸附清除是調節表水中鋅循環的主要機制,且吸附清除作用傾向將重的鋅同位素吸附於顆粒上,使溶解態的鋅同位素組成變輕。藉由統整全球溶解態鋅濃度及同位素資料,本研究發現氣溶膠沉降所供應的鋅不僅提高了海水中的鋅濃度,且增強了吸附清除作用對海水中鋅同位素的分化,使觀測到的同位素值比其他氣溶膠沉降通量較低的海域中觀察到的值更
加輕。此外,本研究於顆粒中觀察到的鋅同位素組成亦支持了顆粒清除吸附作用對表層海洋中鋅循環的重要性。
於深層海水中,本研究使用鋅同位素做質量平衡計算,發現人為氣溶膠鋅佔南海沉降顆粒態鋅總量的70%左右。雖然南海只是世界上最大的邊緣海域之一,但人為氣溶膠鋅的影響已至深海。除此之外,在北太平洋中,藉由統整本研究中的結果及文獻中的溶解態鋅同位素數據,發現太平洋西側的深水鋅同位素組成略輕於太平洋東側。此一趨勢可歸因於兩種機制運行的結果,包括太平洋西側輕同位素源的輸入及東側輕同位素的移除。在北太平洋中,人為氣溶膠沉降和潛在的底水沉積源輸入可能是輕同位素的來源,而藉由質量平衡計算發現底水沉積源輸入貢獻更甚於人為氣溶膠沉降,人為氣溶膠沉降對溶解態深水的影響相對有限。此外,硫化鋅沉澱可能是於太平洋東側輕同位素的移除機制,因為於太平洋東側的深水中最少含氧濃度較低且低溶氧水層較厚。透過顆粒態微量金屬和鋅同位素組成,本研究揭示了氣溶膠沉降在調節全球海洋表水中微量金屬分佈的主導角色,並證實了吸附清除作用對海水中鋅循環的重要性。此外、人為氣溶膠對海洋的影響不僅只在邊緣海且極可能延伸到一般的開放大洋、亦可能已經觸及深海。
摘要(英) Trace metals from atmospheric aerosol deposition can enhance the growth of phytoplankton and modify plankton community structure in the ocean, thus changing marine trace metal biogeochemistry. In the Northwestern Pacific Ocean (NWPO), anthropogenic aerosols deposition further provides a significant amount of highly soluble trace metals to the ocean. We first investigated particulate trace metal distribution in the surface water of the Western Philippine Sea and the Kuroshio region adjacent to the East China Sea to study their sources and cycling processes. Applying elemental ratios, we found that anthropogenic aerosols were the dominant source of particulate trace metals in these oceanic regions. And most of these metals may be extracellularly adsorbed and/or aggregated on the particles in the surface water. Compiling the data observed globally, we found that particulate trace metal concentrations are positively associated with aerosol deposition fluxes in the surface ocean, validating the dominant role of aerosol deposition in controlling trace metal composition. Among the studied metals, Zn possesses a global pattern that particulate Zn/P ratios are consistently higher than the proposed intracellular Zn/P quotas, suggesting the importance of extracellular scavenging of Zn.
Zn thus is an ideal representative element to study the cycling processes of anthropogenic aerosol metals in the water column due to its high concentrations in the aerosols and its feature for scavenging. To further study marine Zn cycling, we developed a novel technique for measuring Zn isotopic composition and combined with regular trace metal analysis to obtain more information. We then determined Zn isotopic compositions in different marine samples, seawater, suspended particles, sinking particles, and aerosols, to investigate its sources and cycling processes in the NWPO. In the surface ocean of the NWPO, dissolved Zn concentrations are higher than the ones observed in other oceanic regions because of high anthropogenic aerosol deposition fluxes. In terms of Zn isotopic fractionation, Rayleigh fractionation model approaches supported scavenging is the dominant process regulating Zn in the surface ocean, and scavenging tends to fractionate heavy Zn to the particulate phase, leaving the ambient dissolved phase isotopically light. Globally, the extra Zn from aerosol deposition not only elevates its dissolved concentrations but also enhances Zn isotopic fractionation of scavenging to leave seawater isotopically lighter than the values observed in the regions with low aerosol deposition fluxes. Our direct observation of Zn isotopic composition in particles also demonstrated the importance of scavenging on fractionating Zn in the surface ocean.
In the deep ocean, we found anthropogenic aerosol Zn accounts for around 70% of the total Zn in the sinking particles collected by moored sediment traps in the South China Sea, which is constrained by a mass balance calculation of Zn isotopic composition. The impact of anthropogenic aerosol Zn has reached the deep water of the South China Sea. In the deep water of the North Pacific Ocean (NPO), dissolved Zn isotopic composition in the west end was found to be lighter than the values observed in the east end. The light dissolved Zn isotopic composition can be attributed to the isotopically light inputs from anthropogenic aerosol deposition and potential benthic input to the deep water. A box model estimate showed that benthic input may be the major source of light Zn input and anthropogenic aerosols may play a minor role in changing dissolved Zn isotopic composition. In addition, the heavy Zn isotopic composition in the east end might be attributed to the removal of isotopically light Zn by Zn sulfide precipitation since the dissolved oxygen concentration is lower and the oxygen minimum zone is thicker in the east end than in the west end of NPO. The spatial variation of Zn isotopic composition may be attributed to the combination effect of the input and the removal of isotopically light Zn in the west and east end of NPO, respectively.
Witnessed by the evidences from particulate trace metal composition and Zn isotopic composition obtained in this dissertation study, we revealed the dominant role of aerosol deposition on regulating trace metal distribution in the surface ocean globally and confirmed the importance of scavenging on regulating marine Zn cycle. Furthermore, the impact of anthropogenic aerosols may have also reached to the deep water of the marginal sea, and highly likely to the open ocean in the NWPO.
關鍵字(中) ★ 人為氣膠沉降
★ 顆粒態微量金屬
★ 鋅同位素
★ 清除作用
★ GEOTRACES
關鍵字(英) ★ anthropogenic aerosols
★ particulate trace metals
★ Zn isotopes
★ scavenging
★ GEOTRACES
論文目次 Table of content
摘要 i
Abstract iii
Acknowledgement v
Table of content vi
List of Figures viii
List of Tables xi
Chapter 1: Introduction 1
1.1 Preface 1
1.2 The importance of particles on material cycling 1
1.3 Intracellular trace metal composition in plankton 2
1.4 Extracellular trace metal adsorption and scavenging 4
1.5 A model element: Zn 4
1.6 General hypothesis of this dissertation study and its relationship with each chapter 5
Chapter 2: Trace metal composition of size-fractionated plankton in the Western Philippine Sea: the impact of anthropogenic aerosol deposition 7
2.1 Introduction 8
2.2 Materials 11
2.3 Results and Discussions 13
2.4 Conclusion 29
2.5 Supplementary information for Chapter 2 34
Chapter 3: Particulate trace metal composition and sources in the Kuroshio adjacent to the East China Sea: the importance of aerosol deposition 39
3.1 Introduction 40
3.2 Materials and Methods 42
3.3 Hydrographic and physical features 43
3.4 Particulate trace metal distribution patterns 44
3.5 Particulate trace metal fluxes along the Kuroshio path 47
3.6 Sources of particulate trace metals 52
3.7 The relationship between particulate trace metal composition and aerosol deposition 57
3.8 Conclusion: 62
3.9 Supplementary information for Chapter 3 66
Chapter 4: Zn isotopic composition in the water column of the tropical and subtropical Northwestern Pacific Ocean 73
4.1 Introduction 74
4.2 Materials and Methods 76
4.3 Results 81
4.4 Discussion 86
4.5 Conclusion 97
4.6 Supplementary information for Chapter 4 98
Chapter 5: Transport of anthropogenic aerosol Zn to the deep water of the South China Sea 112
5.1 Preface 113
5.2 Introduction 113
5.3 Methods 116
5.4 Results 120
5.5 Discussion 122
Chapter 6: Summary and outlook 131
6.1 Trace metal stoichiometry and global distribution of particulate trace metal to P ratios (Fe, Zn, and Cd) 131
6.2 Insights from the Zn isotopic composition studies in the NWPO 134
6.3 Recommendation for future research 135
Appendix I: Zn isotopic composition of suspended and sinking particles in the surface water: case studies in the South China Sea and the Western Philippine Sea 138
A.1 Introduction 139
A.2 Materials and Methods 141
A.3 Results 148
A.4 Discussion 153
A.5 Conclusion 157
A.6 Supplementary information for Appendix I 160
Appendix II: Aluminum or titanium, which one is the best representative metal of lithogenic materials? 162
References 165
參考文獻 References
Abouchami, W., S. J. G. Galer, H. J. W. de Baar, A. C. Alderkamp, R. Middag, P. Laan, H. Feldmann, & M. O. Andreae (2011), Modulation of the Southern Ocean cadmium isotope signature by ocean circulation and primary productivity, Earth and Planetary Science Letters, 305(1-2), 83-91. 10.1016/j.epsl.2011.02.044
Abouchami, W., S. J. G. Galer, H. J. W. de Baar, R. Middag, D. Vance, Y. Zhao, M. Klunder, K. Mezger, H. Feldmann, & M. O. Andreae (2014), Biogeochemical cycling of cadmium isotopes in the Southern Ocean along the Zero Meridian, Geochimica et Cosmochimica Acta, 127(Supplement C), 348-367. 10.1016/j.gca.2013.10.022
Adams, D. K., D. J. McGillicuddy, L. Zamudio, A. M. Thurnherr, X. Liang, O. Rouxel, C. R. German, & L. S. Mullineaux (2011), Surface-Generated Mesoscale Eddies Transport Deep-Sea Products from Hydrothermal Vents, Science, 332(6029), 580-583. 10.1126/science.1201066
Alldredge, A. L., & M. W. Silver (1988), Characteristics, dynamics and significance of marine snow, Progress in Oceanography, 20(1), 41-82. 10.1016/0079-6611(88)90053-5
Altabet, M. A. (1988), Variations in nitrogen isotopic composition between sinking and suspended particles: implications for nitrogen cycling and particle transformation in the open ocean, Deep Sea Research Part A. Oceanographic Research Papers, 35(4), 535-554. 10.1016/0198-0149(88)90130-6
Andersen, M. B., D. Vance, C. Archer, R. F. Anderson, M. J. Ellwood, & C. S. Allen (2011), The Zn abundance and isotopic composition of diatom frustules, a proxy for Zn availability in ocean surface seawater, Earth and Planetary Science Letters, 301(1-2), 137-145. 10.1016/j.epsl.2010.10.032
Anderson, R., & G. Henderson (2005), PROGRAM UPDATE | GEOTRACES—A Global Study of the Marine Biogeochemical Cycles of Trace Elements and Their Isotopes, Oceanography, 18(3), 76-79. 10.5670/oceanog.2005.31
Anderson, R. F., & C. T. Hayes (2015), Characterizing marine particles and their impact on biogeochemical cycles in the GEOTRACES program, Progress in Oceanography, 133, 1-5. 10.1016/j.pocean.2014.11.010
Arimoto, R., R. A. Duce, B. J. Ray, A. D. Hewitt, & J. Williams (1987), Trace elements in the atmosphere of American Samoa: Concentrations and deposition to the tropical South Pacific, Journal of Geophysical Research, 92(D7). 10.1029/JD092iD07p08465
Atkinson, L. P. (2010), Western Boundary Currents, in Carbon and Nutrient Fluxes in Continental Margins: A Global Synthesis, edited by K.-K. Liu, L. Atkinson, R. Quiñones and L. Talaue-McManus, pp. 121-169, Springer Berlin Heidelberg, Berlin, Heidelberg.
Baars, O., & P. L. Croot (2011), The speciation of dissolved zinc in the Atlantic sector of the Southern Ocean, Deep Sea Research Part II: Topical Studies in Oceanography, 58(25-26), 2720-2732. 10.1016/j.dsr2.2011.02.003
Baker, A. R., M. Thomas, H. W. Bange, & E. Plasencia Sánchez (2016), Soluble trace metals in aerosols over the tropical south-east Pacific offshore of Peru, Biogeosciences, 13(3), 817-825. 10.5194/bg-13-817-2016
Barrett, P. M., J. A. Resing, M. M. Grand, C. I. Measures, & W. M. Landing (2018), Trace element composition of suspended particulate matter along three meridional CLIVAR sections in the Indian and Southern Oceans: Impact of scavenging on Al distributions, Chemical Geology. 10.1016/j.chemgeo.2018.06.015
Becagli, S., et al. (2012), Evidence for heavy fuel oil combustion aerosols from chemical analyses at the island of Lampedusa: a possible large role of ships emissions in the Mediterranean, Atmospheric Chemistry and Physics, 12(7), 3479-3492. 10.5194/acp-12-3479-2012
Bentahila, Y., D. Ben Othman, & J.-M. Luck (2008), Strontium, lead and zinc isotopes in marine cores as tracers of sedimentary provenance: A case study around Taiwan orogen, Chemical Geology, 248(1-2), 62-82. 10.1016/j.chemgeo.2007.10.024
Berger, C. J. M., S. M. Lippiatt, M. G. Lawrence, & K. W. Bruland (2008), Application of a chemical leach technique for estimating labile particulate aluminum, iron, and manganese in the Columbia River plume and coastal waters off Oregon and Washington, Journal of Geophysical Research, 113, C00B01. 10.1029/2007jc004703
Bermin, J., D. Vance, C. Archer, & P. J. Statham (2006), The determination of the isotopic composition of Cu and Zn in seawater, Chemical Geology, 226(3), 280-297. 10.1016/j.chemgeo.2005.09.025
Bianchi, D., T. S. Weber, R. Kiko, & C. Deutsch (2018), Global niche of marine anaerobic metabolisms expanded by particle microenvironments, Nature Geoscience, 11(4), 263-268. 10.1038/s41561-018-0081-0
Biller, D. V., & K. W. Bruland (2012), Analysis of Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in seawater using the Nobias-chelate PA1 resin and magnetic sector inductively coupled plasma mass spectrometry (ICP-MS), Marine Chemistry, 130-131, 12-20. 10.1016/j.marchem.2011.12.001
Bishop, J. K. B., J. M. Edmond, D. R. Ketten, M. P. Bacon, & W. B. Silker (1977), The chemistry, biology, and vertical flux of particulate matter from the upper 400 m of the equatorial Atlantic Ocean, Deep Sea Research, 24(6), 511-548. 10.1016/0146-6291(77)90526-4
Bligh, M. W., & T. D. Waite (2011), Formation, reactivity, and aging of ferric oxide particles formed from Fe(II) and Fe(III) sources: Implications for iron bioavailability in the marine environment, Geochimica et Cosmochimica Acta, 75(24), 7741-7758. 10.1016/j.gca.2011.10.013
Bourne, H. L., J. K. B. Bishop, P. J. Lam, & D. C. Ohnemus (2018), Global Spatial and Temporal Variation of Cd:P in Euphotic Zone Particulates, Global Biogeochemical Cycles, 32(7), 1123-1141. 10.1029/2017gb005842
Bowie, A. R., A. T. Townsend, D. Lannuzel, T. A. Remenyi, & P. van der Merwe (2010), Modern sampling and analytical methods for the determination of trace elements in marine particulate material using magnetic sector inductively coupled plasma-mass spectrometry, Analytica Chimica Acta, 676(1-2), 15-27. 10.1016/j.aca.2010.07.037
Boyd, P. W., & T. W. Trull (2007), Understanding the export of biogenic particles in oceanic waters: Is there consensus?, Progress in Oceanography, 72(4), 276-312. 10.1016/j.pocean.2006.10.007
Boyle, E. A., F. Sclater, & J. M. Edmond (1976), On the marine geochemistry of cadmium, Nature, 263(5572), 42-44.
Bridgestock, L., M. Rehkämper, T. van de Flierdt, K. Murphy, R. Khondoker, A. R. Baker, R. Chance, S. Strekopytov, E. Humphreys-Williams, & E. P. Achterberg (2017), The Cd isotope composition of atmospheric aerosols from the Tropical Atlantic Ocean, Geophysical Research Letters, 44(6), 2932-2940. 10.1002/2017gl072748
Bruland, K. W. (1980), Oceanographic distributions of cadmium, zinc, nickel, and copper in the North Pacific, Earth and Planetary Science Letters, 47(2), 176-198. 10.1016/0012-821X(80)90035-7
Bruland, K. W., G. A. Knauer, & J. H. Martin (1978), Zinc in north-east Pacific water, Nature, 271(5647), 741-743. 10.1038/271741a0
Bruland, K. W., J. R. Donat, & D. A. Hutchins (1991), Interactive Influences of Bioactive Trace-Metals on Biological Production in Oceanic Waters, Limnology and Oceanography, 36(8), 1555-1577.
Buat-Menard, P., & R. Chesselet (1979), Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter, Earth and Planetary Science Letters, 42(3), 399-411. 10.1016/0012-821x(79)90049-9
Buck, C. S., W. M. Landing, & J. Resing (2013), Pacific Ocean aerosols: Deposition and solubility of iron, aluminum, and other trace elements, Marine Chemistry, 157, 117-130. 10.1016/j.marchem.2013.09.005
Buck, C. S., W. M. Landing, J. A. Resing, & C. I. Measures (2010), The solubility and deposition of aerosol Fe and other trace elements in the North Atlantic Ocean: Observations from the A16N CLIVAR/CO2 repeat hydrography section, Marine Chemistry, 120(1-4), 57-70. 10.1016/j.marchem.2008.08.003
Burd, A. B., S. B. Moran, & G. A. Jackson (2000), A coupled adsorption–aggregation model of the POC/234Th ratio of marine particles, Deep Sea Research Part I: Oceanographic Research Papers, 47(1), 103-120. 10.1016/S0967-0637(99)00047-3
Chance, R., T. D. Jickells, & A. R. Baker (2015), Atmospheric trace metal concentrations, solubility and deposition fluxes in remote marine air over the south-east Atlantic, Marine Chemistry, 177, 45-56. 10.1016/j.marchem.2015.06.028
Chang, M.-H., T. Y. Tang, C.-R. Ho, & S.-Y. Chao (2013), Kuroshio-induced wake in the lee of Green Island off Taiwan, Journal of Geophysical Research: Oceans, 118(3), 1508-1519. 10.1002/jgrc.20151
Chao, S.-Y. (1990), Circulation of the East China Sea, a numerical study, Journal of Oceanography, 46(6), 273-295. 10.1007/bf02123503
Chappaz, A., T. W. Lyons, G. W. Gordon, & A. D. Anbar (2012), Isotopic fingerprints of anthropogenic molybdenum in lake sediments, Environmental Science and Technology, 46(20), 10934-10940. 10.1021/es3019379
Checkley, D. M., & L. C. Entzeroth (1985), Elemental and isotopic fractionation of carbon and nitrogen by marine, planktonic copepods and implications to the marine nitrogen cycle, Journal of Plankton Research, 7(4), 553-568. 10.1093/plankt/7.4.553
Chen, C.-C., S. Jan, T.-H. Kuo, & S.-Y. Li (2017), Nutrient flux and transport by the Kuroshio east of Taiwan, Journal of Marine Systems, 167(Supplement C), 43-54. 10.1016/j.jmarsys.2016.11.004
Chen, C.-T. A., S.-L. Wang, B.-J. Wang, & S.-C. Pai (2001), Nutrient budgets for the South China Sea basin, Marine Chemistry, 75(4), 281-300. 10.1016/s0304-4203(01)00041-x
Chen, J.-M., P.-H. Tan, C.-M. Hsieh, J.-S. Liu, H.-S. Chen, L.-H. Hsu, & J.-L. Huang (2014), Seasonal Climate Associated with Major Shipping Routes in the North Pacific and North Atlantic, Terrestrial Atmospheric and Oceanic Sciences, 25(3), 381-400. 10.3319/TAO.2013.12.31.01(A)
Chen, K.-S., C.-C. Hung, G.-C. Gong, W.-C. Chou, C.-C. Chung, Y.-Y. Shih, & C.-C. Wang (2013), Enhanced POC export in the oligotrophic northwest Pacific Ocean after extreme weather events, Geophysical Research Letters, 40(21), 5728-5734. 10.1002/2013GL058300
Chen, S., Y. Liu, J. Hu, Z. Zhang, Z. Hou, F. Huang, & H. Yu (2016), Zinc Isotopic Compositions of NIST SRM 683 and Whole-Rock Reference Materials, Geostandards and Geoanalytical Research, 40(3), 417-432. 10.1111/j.1751-908X.2015.00377.x
Chen, Y.-l. L. (2005), Spatial and seasonal variations of nitrate-based new production and primary production in the South China Sea, Deep Sea Research Part I: Oceanographic Research Papers, 52(2), 319-340. 10.1016/j.dsr.2004.11.001
Chen, Y.-l. L., H.-Y. Chen, S.-h. Tuo, & K. Ohki (2008), Seasonal dynamics of new production from Trichodesmium N-2 fixation and nitrate uptake in the upstream Kuroshio and South China Sea basin, Limnology and Oceanography, 53(5), 1705-1721. 10.4319/lo.2008.53.5.1705
Chiang, K.-P., M.-C. Kuo, J. Chang, R.-H. Wang, & G.-C. Gong (2002), Spatial and temporal variation of the Synechococcus population in the East China Sea and its contribution to phytoplankton biomass, Continental Shelf Research, 22(1), 3-13. 10.1016/S0278-4343(01)00067-X
Collier, R., & J. Edmond (1984), The Trace-Element Geochemistry of Marine Biogenic Particulate Matter, Progress in Oceanography, 13(2), 113-199. 10.1016/0079-6611(84)90008-9
Conway, T. M., & S. G. John (2014a), Quantification of dissolved iron sources to the North Atlantic Ocean, Nature, 511(7508), 212-215. 10.1038/nature13482
Conway, T. M., & S. G. John (2014b), The biogeochemical cycling of zinc and zinc isotopes in the North Atlantic Ocean, Global Biogeochemical Cycles, 28(10), 1111-1128. 10.1002/2014GB004862
Conway, T. M., & S. G. John (2015a), Biogeochemical cycling of cadmium isotopes along a high-resolution section through the North Atlantic Ocean, Geochimica et Cosmochimica Acta, 148, 269-283. 10.1016/j.gca.2014.09.032
Conway, T. M., & S. G. John (2015b), The cycling of iron, zinc and cadmium in the North East Pacific Ocean – Insights from stable isotopes, Geochimica et Cosmochimica Acta, 164, 262-283. 10.1016/j.gca.2015.05.023
Conway, T. M., A. D. Rosenberg, J. F. Adkins, & S. G. John (2013), A new method for precise determination of iron, zinc and cadmium stable isotope ratios in seawater by double-spike mass spectrometry, Analytica Chimica Acta, 793, 44-52. 10.1016/j.aca.2013.07.025
Coutaud, A., M. Meheut, J. Viers, J.-L. Rols, & O. S. Pokrovsky (2014), Zn isotope fractionation during interaction with phototrophic biofilm, Chemical Geology, 390, 46-60. 10.1016/j.chemgeo.2014.10.004
Cullen, J. T. (2006), On the nonlinear relationship between dissolved cadmium and phosphate in the modern global ocean: Could chronic iron limitation of phytoplankton growth cause the kink?, Limnology and Oceanography, 51(3), 1369-1380. 10.4319/lo.2006.51.3.1369
Cullen, J. T., & R. M. Sherrell (1999), Techniques for determination of trace metals in small samples of size-fractionated particulate matter: phytoplankton metals off central California, Marine Chemistry, 67(3-4), 233-247. 10.1016/S0304-4203(99)00060-2
Cullen, J. T., Z. Chase, K. H. Coale, S. E. Fitzwater, & R. M. Sherrell (2003), Effect of iron limitation on the cadmium to phosphorus ratio of natural phytoplankton assemblages from the Southern Ocean, Limnology and Oceanography, 48(3), 1079-1087.
Cunningham, B. R., & S. G. John (2017), The effect of iron limitation on cyanobacteria major nutrient and trace element stoichiometry, Limnology and Oceanography, 62(2), 846-858. 10.1002/lno.10484
Cutter, G., P. Andersson, L. Codispoti, P. Croot, R. François, M. C. Lohan, H. Obata, & M. Rutgers v. d. Loeff (2014), Sampling and Sample-Handling Protocols for GEOTRACES Cruises. Version 2. 〈http://www.geotraces.org/libraries/documents/Intercalibration/Cookbook.pdf〉.
Desboeufs, K. V., A. Sofikitis, R. Losno, J. L. Colin, & P. Ausset (2005), Dissolution and solubility of trace metals from natural and anthropogenic aerosol particulate matter, Chemosphere, 58(2), 195-203. 10.1016/j.chemosphere.2004.02.025
Dunne, J. P., J. L. Sarmiento, & A. Gnanadesikan (2007), A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor, Global Biogeochemical Cycles, 21(4), n/a-n/a. 10.1029/2006gb002907
Dupont, C. L., K. Barbeau, & B. Palenik (2008), Ni uptake and limitation in marine Synechococcus strains, Applied and Environmental Microbiology, 74(1), 23-31. 10.1128/AEM.01007-07
Ellwood, M. J., & K. A. Hunter (1999), Determination of the Zn/Si ratio in diatom opal: a method for the separation, cleaning and dissolution of diatoms, Marine Chemistry, 66(3-4), 149-160. 10.1016/s0304-4203(99)00037-7
Fiedler, P. C., & L. D. Talley (2006), Hydrography of the eastern tropical Pacific: A review, Progress in Oceanography, 69(2-4), 143-180. 10.1016/j.pocean.2006.03.008
Finkel, Z. V., J. Beardall, K. J. Flynn, A. Quigg, T. A. V. Rees, & J. A. Raven (2009), Phytoplankton in a changing world: cell size and elemental stoichiometry, Journal of Plankton Research, 32(1), 119-137. 10.1093/plankt/fbp098
Francois, R., S. Honjo, R. Krishfield, & S. Manganini (2002), Factors controlling the flux of organic carbon to the bathypelagic zone of the ocean, Global Biogeochemical Cycles, 16(4), 34-31-34-20. 10.1029/2001gb001722
Gao, S., B. Zhang, Q. Xie, X. Gu, J. Ouyang, D. Wang, & C. Gao (1991), Average chemical compositions of post-Archean sedimentary and volcanic rocks from the Qinling Orogenic Belt and its adjacent North China and Yangtze Cratons, Chemical Geology, 92(4), 261-282. 10.1016/0009-2541(91)90074-2
Gardner, W. D., M. Jo Richardson, A. V. Mishonov, & P. E. Biscaye (2018), Global comparison of benthic nepheloid layers based on 52 years of nephelometer and transmissometer measurements, Progress in Oceanography, 168, 100-111. 10.1016/j.pocean.2018.09.008
Gault-Ringold, M., T. Adu, C. H. Stirling, R. D. Frew, & K. A. Hunter (2012), Anomalous biogeochemical behavior of cadmium in subantarctic surface waters: Mechanistic constraints from cadmium isotopes, Earth and Planetary Science Letters, 341-344, 94-103. 10.1016/j.epsl.2012.06.005
Goldberg, E. D. (1954), Marine Geochemistry .1. Chemical Scavengers of the Sea, Journal of Geology, 62(3), 249-265.
Guinoiseau, D., S. J. G. Galer, & W. Abouchami (2018), Effect of cadmium sulphide precipitation on the partitioning of Cd isotopes: Implications for the oceanic Cd cycle, Earth and Planetary Science Letters, 498, 300-308. 10.1016/j.epsl.2018.06.039
Guo, X., X.-H. Zhu, Q.-S. Wu, & D. Huang (2012), The Kuroshio nutrient stream and its temporal variation in the East China Sea, Journal of Geophysical Research: Oceans, 117(C1), n/a-n/a. 10.1029/2011jc007292
Guo, X., X. H. Zhu, Y. Long, & D. J. Huang (2013), Spatial variations in the Kuroshio nutrient transport from the East China Sea to south of Japan, Biogeosciences, 10(10), 6403-6417. 10.5194/bg-10-6403-2013
Hasegawa, D., H. Yamazaki, T. Ishimaru, H. Nagashima, & Y. Koike (2008), Apparent phytoplankton bloom due to island mass effect, Journal of Marine Systems, 69(3-4), 238-246. 10.1016/j.jmarsys.2006.04.019
Henderson, G. M., & O. Marchal (2015), Recommendations for future measurement and modelling of particles in GEOTRACES and other ocean biogeochemistry programmes, Progress in Oceanography, 133, 73-78. 10.1016/j.pocean.2015.01.015
Hendry, K. R., & M. B. Andersen (2013), The zinc isotopic composition of siliceous marine sponges: Investigating nature′s sediment traps, Chemical Geology, 354, 33-41. 10.1016/j.chemgeo.2013.06.025
Ho, T.-Y. (2006), The trace metal composition of marine microalgae in cultures and natural assemblages, in Algal cultures: Analogues of blooms and applications, editted by, D. V. Subba Rao, pp. 271–299, Science Publishers, New Hampshire, USA.
Ho, T.-Y., L.-S. Wen, C.-F. You, & D.-C. Lee (2007), The trace metal composition of size-fractionated plankton in the South China Sea: Biotic versus abiotic sources, Limnology and Oceanography, 52(5), 1776-1788. 10.4319/lo.2007.52.5.1776
Ho, T.-Y., W.-C. Chou, H.-L. Lin, & D. D. Sheu (2011), Trace metal cycling in the deep water of the South China Sea: The composition, sources, and fluxes of sinking particles, Limnology and Oceanography, 56(4), 1225-1243. 10.4319/lo.2011.56.4.1225
Ho, T.-Y., C.-F. You, W.-C. Chou, S.-C. Pai, L.-S. Wen, & D. D. Sheu (2009), Cadmium and phosphorus cycling in the water column of the South China Sea: The roles of biotic and abiotic particles, Marine Chemistry, 115(1), 125-133. 10.1016/j.marchem.2009.07.005
Ho, T.-Y., W.-C. Chou, C.-L. Wei, F.-J. Lin, G. T. F. Wong, & H.-L. Lin (2010), Trace metal cycling in the surface water of the South China Sea: Vertical fluxes, composition, and sources, Limnology and Oceanography, 55(5), 1807-1820. 10.4319/lo.2010.55.5.1807
Ho, T.-Y., A. Quigg, Z. V. Finkel, A. J. Milligan, K. Wyman, P. G. Falkowski, & F. M. M. Morel (2003), THE ELEMENTAL COMPOSITION OF SOME MARINE PHYTOPLANKTON1, Journal of Phycology, 39(6), 1145-1159. 10.1111/j.0022-3646.2003.03-090.x
Holzer, M., F. W. Primeau, T. DeVries, & R. Matear (2014), The Southern Ocean silicon trap: Data-constrained estimates of regenerated silicic acid, trapping efficiencies, and global transport paths, Journal of Geophysical Research: Oceans, 119(1), 313-331. 10.1002/2013jc009356
Homoky, W. B., T. Weber, W. M. Berelson, T. M. Conway, G. M. Henderson, M. van Hulten, C. Jeandel, S. Severmann, & A. Tagliabue (2016), Quantifying trace element and isotope fluxes at the ocean-sediment boundary: a review, Philos Trans A Math Phys Eng Sci, 374(2081). 10.1098/rsta.2016.0246
Hong, Q., P. Cai, W. Geibert, Z. Cao, I. Stimac, L. Liu, & Q. Li (2018), Benthic fluxes of metals into the Pearl River Estuary based on 224 Ra/ 228 Th disequilibrium: From alkaline earth (Ba) to redox sensitive elements (U, Mn, Fe), Geochimica et Cosmochimica Acta, 237, 223-239. 10.1016/j.gca.2018.06.036
Hsin, Y.-C., C.-R. Wu, & P.-T. Shaw (2008), Spatial and temporal variations of the Kuroshio east of Taiwan, 1982–2005: A numerical study, Journal of Geophysical Research, 113(C4). 10.1029/2007jc004485
Hsu, S.-C., et al. (2010), Sources, solubility, and dry deposition of aerosol trace elements over the East China Sea, Marine Chemistry, 120(1), 116-127. 10.1016/j.marchem.2008.10.003
Hu, Z., & S. Gao (2008), Upper crustal abundances of trace elements: A revision and update, Chemical Geology, 253(3), 205-221. 10.1016/j.chemgeo.2008.05.010
Hudson, R. J. M., & F. M. M. Morel (1989), Distinguishing between extra- and intracellular iron in marine phytoplankton, Limnology and Oceanography, 34(6), 1113-1120. 10.4319/lo.1989.34.6.1113
Jakuba, R. W., M. A. Saito, J. W. Moffett, & Y. Xu (2012), Dissolved zinc in the subarctic North Pacific and Bering Sea: Its distribution, speciation, and importance to primary producers, Global Biogeochemical Cycles, 26(2), n/a-n/a. 10.1029/2010gb004004
Jan, S., Y. J. Yang, J. Wang, V. Mensah, T.-H. Kuo, M.-D. Chiou, C.-S. Chern, M.-H. Chang, & H. Chien (2015), Large variability of the Kuroshio at 23.75°N east of Taiwan, Journal of Geophysical Research: Oceans, 120(3), 1825-1840. 10.1002/2014jc010614
Janssen, D. J., & J. T. Cullen (2015), Decoupling of zinc and silicic acid in the subarctic northeast Pacific interior, Marine Chemistry, 177, 124-133. 10.1016/j.marchem.2015.03.014
Janssen, D. J., W. Abouchami, S. J. G. Galer, & J. T. Cullen (2017), Fine-scale spatial and interannual cadmium isotope variability in the subarctic northeast Pacific, Earth and Planetary Science Letters, 472(Supplement C), 241-252. 10.1016/j.epsl.2017.04.048
Janssen, D. J., T. M. Conway, S. G. John, J. R. Christian, D. I. Kramer, T. F. Pedersen, & J. T. Cullen (2014), Undocumented water column sink for cadmium in open ocean oxygen-deficient zones, Proceedings of the National Academy of Sciences of the United States of America, 111(19), 6888-6893. 10.1073/pnas.1402388111
Jeandel, C., M. R. van der Loeff, P. J. Lam, M. Roy-Barman, R. M. Sherrell, S. Kretschmer, C. German, & F. Dehairs (2015), What did we learn about ocean particle dynamics in the GEOSECS-JGOFS era?, Progress in Oceanography, 133, 6-16. 10.1016/j.pocean.2014.12.018
Jiao, N., Y. Yang, N. Hong, Y. Ma, S. Harada, H. Koshikawa, & M. Watanabe (2005), Dynamics of autotrophic picoplankton and heterotrophic bacteria in the East China Sea, Continental Shelf Research, 25(10), 1265-1279. 10.1016/j.csr.2005.01.002
Jickells, T. D., et al. (2005), Global Iron Connections Between Desert Dust, Ocean Biogeochemistry, and Climate, Science, 308(5718), 67-71. 10.1126/science.1105959
John, S. G. (2012), Optimizing sample and spike concentrations for isotopic analysis by double-spike ICPMS, Journal of Analytical Atomic Spectrometry, 27(12). 10.1039/c2ja30215b
John, S. G., & T. M. Conway (2014), A role for scavenging in the marine biogeochemical cycling of zinc and zinc isotopes, Earth and Planetary Science Letters, 394(Supplement C), 159-167. 10.1016/j.epsl.2014.02.053
John, S. G., J. Helgoe, & E. Townsend (2017a), Biogeochemical cycling of Zn and Cd and their stable isotopes in the Eastern Tropical South Pacific, Marine Chemistry. 10.1016/j.marchem.2017.06.001
John, S. G., R. W. Geis, M. A. Saito, & E. A. Boyle (2007a), Zinc isotope fractionation during high-affinity and low-affinity zinc transport by the marine diatomThalassiosira oceanica, Limnology and Oceanography, 52(6), 2710-2714. 10.4319/lo.2007.52.6.2710
John, S. G., J. Genevieve Park, Z. Zhang, & E. A. Boyle (2007b), The isotopic composition of some common forms of anthropogenic zinc, Chemical Geology, 245(1-2), 61-69. 10.1016/j.chemgeo.2007.07.024
John, S. G., M. Kunzmann, E. J. Townsend, & A. D. Rosenberg (2017b), Zinc and cadmium stable isotopes in the geological record: A case study from the post-snowball Earth Nuccaleena cap dolostone, Palaeogeography, Palaeoclimatology, Palaeoecology, 466, 202-208. 10.1016/j.palaeo.2016.11.003
Kim, T., H. Obata, J. Nishioka, & T. Gamo (2017), Distribution of Dissolved Zinc in the Western and Central Subarctic North Pacific, Global Biogeochemical Cycles, 31(9), 1454-1468. 10.1002/2017gb005711
Kim, T., H. Obata, Y. Kondo, H. Ogawa, & T. Gamo (2015), Distribution and speciation of dissolved zinc in the western North Pacific and its adjacent seas, Marine Chemistry, 173, 330-341. 10.1016/j.marchem.2014.10.016
Köbberich, M., & D. Vance (2017), Kinetic control on Zn isotope signatures recorded in marine diatoms, Geochimica et Cosmochimica Acta, 210, 97-113. 10.1016/j.gca.2017.04.014
Köbberich, M., & D. Vance (2018), Zinc association with surface-bound iron-hydroxides on cultured marine diatoms: A zinc stable isotope perspective, Marine Chemistry, 202, 1-11. 10.1016/j.marchem.2018.01.002
Koshikawa, M. K., T. Takamatsu, J. Takada, M. Zhu, B. Xu, Z. Chen, S. Murakami, K. Xu, & M. Watanabe (2007), Distributions of dissolved and particulate elements in the Yangtze estuary in 1997–2002: Background data before the closure of the Three Gorges Dam, Estuarine, Coastal and Shelf Science, 71(1-2), 26-36. 10.1016/j.ecss.2006.08.010
Kuss, J., & K. Kremling (1999), Spatial variability of particle associated trace elements in near-surface waters of the North Atlantic (30 degrees N/60 degrees W to 60 degrees N/2 degrees W), derived by large-volume sampling, Marine Chemistry, 68(1-2), 71-86. 10.1016/S0304-4203(99)00066-3
Lacan, F., R. Francois, Y. Ji, & R. M. Sherrell (2006), Cadmium isotopic composition in the ocean, Geochimica et Cosmochimica Acta, 70(20), 5104-5118. 10.1016/j.gca.2006.07.036
Lam, P. J. (2014). Size-fractionated major and minor particle composition and concentration from R/V Knorr KN199-04, KN204-01 in the subtropical North Atlantic Ocean from 2010-2011 (U.S. GEOTRACES NAT project). Biological and Chemical Oceanography Data Management Office (BCO-DMO). Dataset version 2014-12-12 [Total particulate P, Al, Fe, Zn, and Cd concentrations in the top 200 m]. http://lod.bco-dmo.org/id/dataset/3871 [2018-01]
Lam, P. J., & J. K. B. Bishop (2008), The continental margin is a key source of iron to the HNLC North Pacific Ocean, Geophysical Research Letters, 35(7), n/a-n/a. 10.1029/2008GL033294
Lam, P. J., & O. Marchal (2015), Insights into particle cycling from thorium and particle data, Ann Rev Mar Sci, 7, 159-184. 10.1146/annurev-marine-010814-015623
Lam, P. J., D. C. Ohnemus, & M. E. Auro (2015), Size-fractionated major particle composition and concentrations from the US GEOTRACES North Atlantic Zonal Transect, Deep Sea Research Part II: Topical Studies in Oceanography, 116, 303-320. 10.1016/j.dsr2.2014.11.020
Lam, P. J., J.-M. Lee, M. I. Heller, S. Mehic, Y. Xiang, & N. R. Bates (2018), Size-fractionated distributions of suspended particle concentration and major phase composition from the U.S. GEOTRACES Eastern Pacific Zonal Transect (GP16), Marine Chemistry, 201, 90-107. 10.1016/j.marchem.2017.08.013
Lane, E. S., D. M. Semeniuk, R. F. Strzepek, J. T. Cullen, & M. T. Maldonado (2009), Effects of iron limitation on intracellular cadmium of cultured phytoplankton: Implications for surface dissolved cadmium to phosphate ratios, Marine Chemistry, 115(3-4), 155-162. 10.1016/j.marchem.2009.07.008
Liao, W.-H., & T.-Y. Ho (2018), Particulate trace metal composition and sources in the Kuroshio adjacent to the East China Sea: the importance of aerosol deposition, Journal of Geophysical Research: Oceans. 10.1029/2018jc014113
Liao, W.-H., S.-C. Yang, & T.-Y. Ho (2017), Trace metal composition of size-fractionated plankton in the Western Philippine Sea: The impact of anthropogenic aerosol deposition, Limnology and Oceanography, 62(5), 2243-2259. 10.1002/lno.10564
Lin, F.-J., S.-C. Hsu, & W.-L. Jeng (2000), Lead in the southern East China Sea, Marine Environmental Research, 49(4), 329-342. 10.1016/s0141-1136(99)00076-8
Lin, I. I., J.-P. Chen, G. T. F. Wong, C.-W. Huang, & C.-C. Lien (2007), Aerosol input to the South China Sea: Results from the MODerate Resolution Imaging Spectro-radiometer, the Quick Scatterometer, and the Measurements of Pollution in the Troposphere Sensor, Deep Sea Research Part II: Topical Studies in Oceanography, 54(14), 1589-1601. 10.1016/j.dsr2.2007.05.013
Lin, Y.-C., J.-P. Chen, T.-Y. Ho, & I. C. Tsai (2015), Atmospheric iron deposition in the northwestern Pacific Ocean and its adjacent marginal seas: The importance of coal burning, Global Biogeochemical Cycles, 29(2), 138-159. 10.1002/2013GB004795
Little, S. H., D. Vance, C. Walker-Brown, & W. M. Landing (2014), The oceanic mass balance of copper and zinc isotopes, investigated by analysis of their inputs, and outputs to ferromanganese oxide sediments, Geochimica et Cosmochimica Acta, 125, 673-693. 10.1016/j.gca.2013.07.046
Little, S. H., D. Vance, J. McManus, & S. Severmann (2016), Key role of continental margin sediments in the oceanic mass balance of Zn and Zn isotopes, Geology, 44(3), 207-210. 10.1130/g37493.1
Liu, K. K., L. W. Wang, M. Dai, C. M. Tseng, Y. Yang, C. H. Sui, L. Oey, K. Y. Tseng, & S. M. Huang (2013), Inter-annual variation of chlorophyll in the northern South China Sea observed at the SEATS Station and its asymmetric responses to climate oscillation, Biogeosciences, 10(11), 7449-7462. 10.5194/bg-10-7449-2013
Liu, Z., & J. Gan (2017), Three-dimensional pathways of water masses in the South China Sea: A modeling study, Journal of Geophysical Research: Oceans, 122(7), 6039-6054. 10.1002/2016jc012511
Lui, H.-K., K.-Y. Chen, C.-T. Chen, B.-S. Wang, H.-L. Lin, S.-H. Ho, C.-J. Tseng, Y. Yang, & J.-W. Chan (2018), Physical Forcing-Driven Productivity and Sediment Flux to the Deep Basin of Northern South China Sea: A Decadal Time Series Study, Sustainability, 10(4). 10.3390/su10040971
Mackey, K. R., C. T. Chien, A. F. Post, M. A. Saito, & A. Paytan (2014), Rapid and gradual modes of aerosol trace metal dissolution in seawater, Front Microbiol, 5, 794. 10.3389/fmicb.2014.00794
Mahowald, N. M., D. S. Hamilton, K. R. M. Mackey, J. K. Moore, A. R. Baker, R. A. Scanza, & Y. Zhang (2018), Aerosol trace metal leaching and impacts on marine microorganisms, Nature Communications, 9(1), 2614. 10.1038/s41467-018-04970-7
Mantyla, A. W., & J. L. Reid (1983), Abyssal characteristics of the World Ocean waters, Deep Sea Research Part A. Oceanographic Research Papers, 30(8), 805-833. 10.1016/0198-0149(83)90002-x
Maranon, E. (2015), Cell size as a key determinant of phytoplankton metabolism and community structure, Ann Rev Mar Sci, 7, 241-264. 10.1146/annurev-marine-010814-015955
Maréchal, C. N., E. Nicolas, C. Douchet, & F. Albarède (2000), Abundance of zinc isotopes as a marine biogeochemical tracer, Geochemistry, Geophysics, Geosystems, 1(5), n/a-n/a. 10.1029/1999gc000029
Marković, T., S. Manzoor, E. Humphreys-Williams, G. J. D. Kirk, R. Vilar, & D. J. Weiss (2016), Experimental Determination of Zinc Isotope Fractionation in Complexes with the Phytosiderophore 2′-Deoxymugeneic Acid (DMA) and Its Structural Analogues, and Implications for Plant Uptake Mechanisms, Environmental Science & Technology, 51(1), 98-107. 10.1021/acs.est.6b00566
Martin, J. H., K. W. Bruland, & W. W. Broenkow (1976), Cadmium transport in the California current, in Marine Pollutant Transfer, editted by H. L. Windom, & R. A. Duce, pp. 159–184, Lexington Books (D. C. Health and Co., Toronto).
Martin, J. H., & G. A. Knauer (1973), Elemental Composition of Plankton, Geochimica et Cosmochimica Acta, 37(7), 1639-1653. 10.1016/0016-7037(73)90154-3
Matsui, H., N. M. Mahowald, N. Moteki, D. S. Hamilton, S. Ohata, A. Yoshida, M. Koike, R. A. Scanza, & M. G. Flanner (2018), Anthropogenic combustion iron as a complex climate forcer, Nat Commun, 9(1), 1593. 10.1038/s41467-018-03997-0
Mattielli, N., J. C. J. Petit, K. Deboudt, P. Flament, E. Perdrix, A. Taillez, J. Rimetz-Planchon, & D. Weis (2009), Zn isotope study of atmospheric emissions and dry depositions within a 5 km radius of a Pb–Zn refinery, Atmospheric Environment, 43(6), 1265-1272. 10.1016/j.atmosenv.2008.11.030
McCave, I. N. (1975), Vertical flux of particles in the ocean, Deep Sea Research and Oceanographic Abstracts, 22(7), 491-502. 10.1016/0011-7471(75)90022-4
McDonnell, A. M. P., & K. O. Buesseler (2010), Variability in the average sinking velocity of marine particles, Limnology and Oceanography, 55(5), 2085-2096. 10.4319/lo.2010.55.5.2085
Morel, F. M. M. & R. J. M. Hudson (1985), The geobiological cycle of trace elements in aquatic systems: Redfield revisited, in Chemical Processes in Lakes, editted by W. Strumm, pp. 251–281, John Wiley, New York.
Morel, F. M. M., J. R. Reinfelder, S. B. Roberts, C. P. Chamberlain, J. G. Lee, & D. Yee (1994), Zinc and carbon co-limitation of marine phytoplankton, Nature, 369(6483), 740-742. 10.1038/369740a0
Morton, P. L. (2010) Trace metal biogeochemistry in the Western North Pacific, Doctoral dissertation. Old Dominion University, Norfolk, VA, USA
Moynier, F., D. Vance, T. Fujii, & P. Savage (2017), The Isotope Geochemistry of Zinc and Copper, Reviews in Mineralogy and Geochemistry, 82(1), 543-600. 10.2138/rmg.2017.82.13
Nishioka, J., & H. Obata (2017), Dissolved iron distribution in the western and central subarctic Pacific: HNLC water formation and biogeochemical processes, Limnology and Oceanography, 62(5), 2004-2022. 10.1002/lno.10548
Nishioka, J., et al. (2013), Intensive mixing along an island chain controls oceanic biogeochemical cycles, Global Biogeochemical Cycles, 27(3), 920-929. 10.1002/gbc.20088
Nishioka, J., et al. (2007), Iron supply to the western subarctic Pacific: Importance of iron export from the Sea of Okhotsk, Journal of Geophysical Research, 112(C10). 10.1029/2006jc004055
Nitani, H. (1972), Beginning of the Kuroshio, in Kuroshio, editted by H. Stommel & Y. Yoshida, pp. 129–164, University of Washington Press, Seattle, WA, USA.
Nriagu, J. O., & J. M. Pacyna (1988), Quantitative assessment of worldwide contamination of air, water and soils by trace metals, Nature, 333(6169), 134-139. 10.1038/333134a0
Nuester, J., S. Vogt, M. Newville, A. B. Kustka, & B. S. Twining (2012), The unique biogeochemical signature of the marine diazotroph Trichodesmium, Frontiers in Microbiology, 3. 10.3389/fmicb.2012.00150
Obata, H., J. Nishioka, T. Kim, K. Norisuye, S. Takeda, Y. Wakuta, & T. Gamo (2017), Dissolved iron and zinc in Sagami Bay and the Izu-Ogasawara Trench, Journal of Oceanography, 73(3), 333-344. 10.1007/s10872-016-0407-8
Ohnemus, D. C., & P. J. Lam (2015), Cycling of lithogenic marine particles in the US GEOTRACES North Atlantic transect, Deep Sea Research Part II: Topical Studies in Oceanography, 116, 283-302. 10.1016/j.dsr2.2014.11.019
Ohnemus, D. C., S. Rauschenberg, G. A. Cutter, J. N. Fitzsimmons, R. M. Sherrell, & B. S. Twining (2017), Elevated trace metal content of prokaryotic communities associated with marine oxygen deficient zones, Limnology and Oceanography, 62(1), 3-25. 10.1002/lno.10363
Okubo, A., S. Takeda, & H. Obata (2013), Atmospheric deposition of trace metals to the western North Pacific Ocean observed at coastal station in Japan, Atmospheric Research, 129(Supplement C), 20-32. 10.1016/j.atmosres.2013.03.014
Pacyna, J. M., & E. G. Pacyna (2001), An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide, Environmental Reviews, 9(4), 269-298. 10.1139/a01-012
Pan, X., G. T. F. Wong, J.-H. Tai, & T.-Y. Ho (2015), Climatology of physical hydrographic and biological characteristics of the Northern South China Sea Shelf-sea (NoSoCS) and adjacent waters: Observations from satellite remote sensing, Deep Sea Research Part II: Topical Studies in Oceanography, 117, 10-22. 10.1016/j.dsr2.2015.02.022
Patey, M. D., E. P. Achterberg, M. J. Rijkenberg, & R. Pearce (2015), Aerosol time-series measurements over the tropical Northeast Atlantic Ocean: Dust sources, elemental composition and mineralogy, Marine Chemistry, 174, 103-119. 10.1016/j.marchem.2015.06.004
Payne, C. D., & N. M. Price (1999), Effects of cadmium toxicity on growth and elemental composition of marine phytoplankton, Journal of Phycology, 35(2), 293-302. 10.1046/j.1529-8817.1999.3520293.x
Pichat, S., C. Douchet, & F. Albarède (2003), Zinc isotope variations in deep-sea carbonates from the eastern equatorial Pacific over the last 175 ka, Earth and Planetary Science Letters, 210(1-2), 167-178. 10.1016/s0012-821x(03)00106-7
Planquette, H., & R. M. Sherrell (2012), Sampling for particulate trace element determination using water sampling bottles: methodology and comparison to in situ pumps, Limnology and Oceanography-Methods, 10, 367-388. 10.4319/lom.2012.10.367
Planquette, H., R. M. Sherrell, S. Stammerjohn, & M. P. Field (2013), Particulate iron delivery to the water column of the Amundsen Sea, Antarctica, Marine Chemistry, 153, 15-30. 10.1016/j.marchem.2013.04.006
Powell, C. F., A. R. Baker, T. D. Jickells, H. W. Bange, R. J. Chance, & C. Yodle (2015), Estimation of the Atmospheric Flux of Nutrients and Trace Metals to the Eastern Tropical North Atlantic Ocean*, Journal of the Atmospheric Sciences, 72(10), 4029-4045. 10.1175/jas-d-15-0011.1
Qu, T. (2001), Role of ocean dynamics in determining the mean seasonal cycle of the South China Sea surface temperature, Journal of Geophysical Research: Oceans, 106(C4), 6943-6955. 10.1029/2000jc000479
Qu, T., J. B. Girton, & J. A. Whitehead (2006), Deepwater overflow through Luzon Strait, Journal of Geophysical Research, 111(C1). 10.1029/2005jc003139
Quay, P., J. Cullen, W. Landing, & P. Morton (2015), Processes controlling the distributions of Cd and PO4in the ocean, Global Biogeochemical Cycles, 29(6), 830-841. 10.1002/2014gb004998
Rauschenberg, S., & B. S. Twining (2015), Evaluation of approaches to estimate biogenic particulate trace metals in the ocean, Marine Chemistry, 171, 67-77. 10.1016/j.marchem.2015.01.004
Redfield, A. C. (1934), On the proportions of organic derivations in sea water and their relation to the composition of plankton, in James Johnstone Memorial Volume, editted by R. J. Daniel, pp. 177–192, University Press of Liverpool, Liverpool, UK.
Redfield, A. C. (1958), The Biological Control of Chemical Factors in the Environment, American Scientist, 46(3), 205-221.
Ren, J.-L., J.-L. Xuan, Z.-W. Wang, D. Huang, & J. Zhang (2015), Cross-shelf transport of terrestrial Al enhanced by the transition of northeasterly to southwesterly monsoon wind over the East China Sea, Journal of Geophysical Research: Oceans, 120(7), 5054-5073. 10.1002/2014jc010655
Richardson, T. L., & G. A. Jackson (2007), Small phytoplankton and carbon export from the surface ocean, Science, 315(5813), 838-840. 10.1126/science.1133471
Ripperger, S., M. Rehkämper, D. Porcelli, & A. N. Halliday (2007), Cadmium isotope fractionation in seawater — A signature of biological activity, Earth and Planetary Science Letters, 261(3), 670-684. 10.1016/j.epsl.2007.07.034
Rodriguez, I. B., & T.-Y. Ho (2015), Influence of Co and B-12 on the growth and nitrogen fixation of Trichodesmium, Frontiers in Microbiology, 6. 10.3389/fmicb.2015.00623
Rosca, C., R. Schoenberg, E. L. Tomlinson, & B. S. Kamber (2018), Combined zinc-lead isotope and trace-metal assessment of recent atmospheric pollution sources recorded in Irish peatlands, Science of the Total Environment, 658, 234-249. 10.1016/j.scitotenv.2018.12.049
Roshan, S., & J. Wu (2015), Water mass mixing: The dominant control on the zinc distribution in the North Atlantic Ocean, Global Biogeochemical Cycles, 29(7), 1060-1074. 10.1002/2014GB005026
Saito, M. A., J. W. Moffett, S. W. Chisholm, & J. B. Waterbury (2002), Cobalt limitation and uptake in Prochlorococcus, Limnology and Oceanography, 47(6), 1629-1636.
Saito, M. A., T. J. Goepfert, A. E. Noble, E. M. Bertrand, P. N. Sedwick, & G. R. DiTullio (2010), A seasonal study of dissolved cobalt in the Ross Sea, Antarctica: micronutrient behavior, absence of scavenging, and relationships with Zn, Cd, and P, Biogeosciences, 7(12), 4059-4082. 10.5194/bg-7-4059-2010
Samanta, M., M. J. Ellwood, & R. F. Strzepek (2017a), Zinc isotope fractionation by Emiliania huxleyi cultured across a range of free zinc ion concentrations, Limnology and Oceanography. 10.1002/lno.10658
Samanta, M., M. J. Ellwood, M. Sinoir, & C. S. Hassler (2017b), Dissolved zinc isotope cycling in the Tasman Sea, SW Pacific Ocean, Marine Chemistry, 192, 1-12. 10.1016/j.marchem.2017.03.004
Schlitzer, R., et al. (2018), The GEOTRACES Intermediate Data Product 2017, Chemical Geology, 493, 210-223. 10.1016/j.chemgeo.2018.05.040
Shaked, Y., Y. Xu, K. Leblanc, & F. M. M. Morel (2006), Zinc availability and alkaline phosphatase activity in Emiliania huxleyi: Implications for Zn-P co-limitation in the ocean, Limnology and Oceanography, 51(1), 299-309. 10.4319/lo.2006.51.1.0299
Sherrell, R. M., & E. A. Boyle (1992), The Trace-Metal Composition of Suspended Particles in the Oceanic Water Column near Bermuda, Earth and Planetary Science Letters, 111(1), 155-174. 10.1016/0012-821X(92)90176-V
Shih, Y.-Y., C.-C. Hung, G.-C. Gong, W.-C. Chung, Y.-H. Wang, I. H. Lee, K.-S. Chen, & C.-Y. Ho (2015), Enhanced Particulate Organic Carbon Export at Eddy Edges in the Oligotrophic Western North Pacific Ocean, PLoS ONE, 10(7), e0131538. 10.1371/journal.pone.0131538
Shiller, A. M., & E. Boyle (1985), Dissolved zinc in rivers, Nature, 317(6032), 49-52. 10.1038/317049a0
Shiozaki, T., S. Takeda, S. Itoh, T. Kodama, X. Liu, F. Hashihama, & K. Furuya (2015), Why is Trichodesmium abundant in the Kuroshio?, Biogeosciences, 12(23), 6931-6943. 10.5194/bg-12-6931-2015
Sholkovitz, E. R., P. N. Sedwick, T. M. Church, A. R. Baker, & C. F. Powell (2012), Fractional solubility of aerosol iron: Synthesis of a global-scale data set, Geochimica et Cosmochimica Acta, 89, 173-189. 10.1016/j.gca.2012.04.022
Siebert, C., T. F. Nägler, & J. D. Kramers (2001), Determination of molybdenum isotope fractionation by double-spike multicollector inductively coupled plasma mass spectrometry, Geochemistry, Geophysics, Geosystems, 2(7), n/a-n/a. 10.1029/2000gc000124
Sohrin, Y., S. Urushihara, S. Nakatsuka, T. Kono, E. Higo, T. Minami, K. Norisuye, & S. Umetani (2008), Multielemental determination of GEOTRACES key trace metals in seawater by ICPMS after preconcentration using an ethylenediaminetriacetic acid chelating resin, Analytical Chemistry, 80(16), 6267-6273. 10.1021/ac800500f
Su, H., R. Yang, A. Zhang, & Y. Li (2015), Dissolved iron distribution and organic complexation in the coastal waters of the East China Sea, Marine Chemistry, 173, 208-221. 10.1016/j.marchem.2015.03.007
Sunda, W. G. (2012), Feedback interactions between trace metal nutrients and phytoplankton in the ocean, Frontiers in Microbiology, 3. 10.3389/fmicb.2012.00204
Sunda, W. G., & S. A. Huntsman (1992), Feedback interactions between zinc and phytoplankton in seawater, Limnology and Oceanography, 37(1), 25-40. 10.4319/lo.1992.37.1.0025
Sunda, W. G., & S. A. Huntsman (1995), Cobalt and zinc interreplacement in marine phytoplankton: Biological and geochemical implications, Limnology and Oceanography, 40(8), 1404-1417.
Sunda, W. G., & S. A. Huntsman (2000), Effect of Zn, Mn, and Fe on Cd accumulation in phytoplankton: Implications for oceanic Cd cycling, Limnology and Oceanography, 45(7), 1501-1516. 10.4319/lo.2000.45.7.1501
Tai, J.-H., G. T. F. Wong, & X. Pan (2017), Upper water structure and mixed layer depth in tropical waters: The SEATS station in the northern South China Sea, Terrestrial, Atmospheric and Oceanic Sciences, 28(6), 1019-1032. 10.3319/tao.2017.01.09.01
Takano, S., M. Tanimizu, T. Hirata, K.-C. Shin, Y. Fukami, K. Suzuki, & Y. Sohrin (2017), A simple and rapid method for isotopic analysis of nickel, copper, and zinc in seawater using chelating extraction and anion exchange, Analytica Chimica Acta, 967(Supplement C), 1-11. 10.1016/j.aca.2017.03.010
Tang, D., & F. M. M. Morel (2006), Distinguishing between cellular and Fe-oxide-associated trace elements in phytoplankton, Marine Chemistry, 98(1), 18-30. 10.1016/j.marchem.2005.06.003
Taylor, S. R., & S. M. McLennan (1995), The geochemical evolution of the continental crust, Reviews of Geophysics, 33(2), 241-265. 10.1029/95RG00262
Tebo, B. M., J. R. Bargar, B. G. Clement, G. J. Dick, K. J. Murray, D. Parker, R. Verity, & S. M. Webb (2004), Biogenic manganese oxides: Properties and mechanisms of formation, Annual Review of Earth and Planetary Sciences, 32, 287-328. 10.1146/annurev.earth.32.101802.120213
Tovar-Sanchez, A., S. A. Sañudo-Wilhelmy, M. Garcia-Vargas, R. S. Weaver, L. C. Popels, & D. A. Hutchins (2003), A trace metal clean reagent to remove surface-bound iron from marine phytoplankton, Marine Chemistry, 82(1-2), 91-99. 10.1016/s0304-4203(03)00054-9
Tovar-Sanchez, A., S. A. Sanudo-Wilhelmy, A. B. Kustka, S. Agusti, J. Dachs, D. A. Hutchins, D. G. Capone, & C. M. Duarte (2006), Effects of dust deposition and river discharges on trace metal composition of Trichodesmium spp. in the tropical and subtropical North Atlantic Ocean, Limnology and Oceanography, 51(4), 1755-1761.
Tseng, C.-M. (2005), A unique seasonal pattern in phytoplankton biomass in low-latitude waters in the South China Sea, Geophysical Research Letters, 32(8). 10.1029/2004gl022111
Tsutsumi, E., T. Matsuno, R.-C. Lien, H. Nakamura, T. Senjyu, & X. Guo (2017), Turbulent mixing within the Kuroshio in the Tokara Strait, Journal of Geophysical Research: Oceans, 122(9), 7082-7094. 10.1002/2017jc013049
Twining, B. S., S. B. Baines, & N. S. Fisher (2004), Element stoichiometries of individual plankton cells collected during the Southern Ocean Iron Experiment (SOFeX), Limnology and Oceanography, 49(6), 2115-2128.
Twining, B. S., S. Rauschenberg, P. L. Morton, & S. Vogt (2015a), Metal contents of phytoplankton and labile particulate material in the North Atlantic Ocean, Progress in Oceanography, 137, 261-283. 10.1016/j.pocean.2015.07.001
Twining, B. S., S. Rauschenberg, P. L. Morton, D. C. Ohnemus, & P. J. Lam (2015b), Comparison of particulate trace element concentrations in the North Atlantic Ocean as determined with discrete bottle sampling and in situ pumping, Deep-Sea Research Part Ii-Topical Studies in Oceanography, 116, 273-282. 10.1016/j.dsr2.2014.11.005
Twining, B. S., S. B. Baines, J. B. Bozard, S. Vogt, E. A. Walker, & D. M. Nelson (2011), Metal quotas of plankton in the equatorial Pacific Ocean, Deep-Sea Research Part Ii-Topical Studies in Oceanography, 58(3-4), 325-341. 10.1016/j.dsr2.2010.08.018
Twining, B. S., S. B. Baines, N. S. Fisher, J. Maser, S. Vogt, C. Jacobsen, A. Tovar-Sanchez, & S. A. Sañudo-Wilhelmy (2003), Quantifying Trace Elements in Individual Aquatic Protist Cells with a Synchrotron X-ray Fluorescence Microprobe, Analytical Chemistry, 75(15), 3806-3816. 10.1021/ac034227z
Twining, B. S., S. D. Nodder, A. L. King, D. A. Hutchins, G. R. LeCleir, J. M. DeBruyn, E. W. Maas, S. Vogt, S. W. Wilhelm, & P. W. Boyd (2014), Differential remineralization of major and trace elements in sinking diatoms, Limnology and Oceanography, 59(3), 689-704. 10.4319/lo.2014.59.3.0689
Vance, D., Susan H. Little, Gregory F. de Souza, S. Khatiwala, Maeve C. Lohan, & R. Middag (2017), Silicon and zinc biogeochemical cycles coupled through the Southern Ocean, Nature Geoscience, 10(3), 202-206. 10.1038/ngeo2890
Vance, D., S. H. Little, C. Archer, V. Cameron, M. B. Andersen, M. J. A. Rijkenberg, & T. W. Lyons (2016), The oceanic budgets of nickel and zinc isotopes: the importance of sulfidic environments as illustrated by the Black Sea, Philos Trans A Math Phys Eng Sci, 374(2081). 10.1098/rsta.2015.0294
Vouk, V. B., & W. T. Piver (1983), Metallic elements in fossil fuel combustion products: amounts and form of emissions and evaluation of carcinogenicity and mutagenicity, Environmental Health Perspectives, 47, 201-225. 10.1289/ehp.8347201
Wang, B.-S. and T.-Y. Ho, Aerosol Fe cycling in the surface water of the Northwestern Pacific Ocean, in preparation.
Wang, B. S., C. P. Lee, & T. Y. Ho (2014), Trace metal determination in natural waters by automated solid phase extraction system and ICP-MS: the influence of low level Mg and Ca, Talanta, 128, 337-344. 10.1016/j.talanta.2014.04.077
Wang, R. M., C. Archer, A. R. Bowie, & D. Vance (2018), Zinc and nickel isotopes in seawater from the Indian Sector of the Southern Ocean: The impact of natural iron fertilization versus Southern Ocean hydrography and biogeochemistry, Chemical Geology. 10.1016/j.chemgeo.2018.09.010
Weber, T., S. John, A. Tagliabue, & T. DeVries (2018), Biological uptake and reversible scavenging of zinc in the global ocean, Science, 361(6397), 72-76. 10.1126/science.aap8532
Wedepohl, K. H. (1995), The composition of the continental crust, Geochimica et Cosmochimica Acta, 59(7), 1217-1232. 10.1016/0016-7037(95)00038-2
Wei, C.-L., K.-L. Jen, & K. Chu (1994), Sediment trap experiments in the water column off southwestern Taiwan:234Th fluxes, Journal of Oceanography, 50(4), 403-414. 10.1007/bf02234963
Wen, L.-S., K.-T. Jiann, & P. H. Santschi (2006), Physicochemical speciation of bioactive trace metals (Cd, Cu, Fe, Ni) in the oligotrophic South China Sea, Marine Chemistry, 101(1-2), 104-129. 10.1016/j.marchem.2006.01.005
Wen, L. S., C. P. Lee, W. H. Lee, & A. Chuang (2018), An Ultra-clean Multilayer Apparatus for Collecting Size Fractionated Marine Plankton and Suspended Particles, J Vis Exp(134). 10.3791/56811
Wen, L.-S., W.-H. Li, & G.-Z. Zhuang (2005), Multiple Layer Filtering and Collecting Device. Taiwan Patent No. M275880.
Weyer, S., & J. B. Schwieters (2003), High precision Fe isotope measurements with high mass resolution MC-ICPMS, International Journal of Mass Spectrometry, 226(3), 355-368. 10.1016/s1387-3806(03)00078-2
Wong, G. T. F., C.-M. Tseng, L.-S. Wen, & S.-W. Chung (2007), Nutrient dynamics and N-anomaly at the SEATS station, Deep Sea Research Part II: Topical Studies in Oceanography, 54(14-15), 1528-1545. 10.1016/j.dsr2.2007.05.011
Wong, G. T. F., X. Pan, K.-Y. Li, F.-K. Shiah, T.-Y. Ho, & X. Guo (2015), Hydrography and nutrient dynamics in the No rthern So uth C hina Sea S helf-sea (NoSoCS), Deep Sea Research Part II: Topical Studies in Oceanography, 117, 23-40. 10.1016/j.dsr2.2015.02.023
Wyatt, N. J., A. Milne, E. M. S. Woodward, A. P. Rees, T. J. Browning, H. A. Bouman, P. J. Worsfold, & M. C. Lohan (2014), Biogeochemical cycling of dissolved zinc along the GEOTRACES South Atlantic transect GA10 at 40°S, Global Biogeochemical Cycles, 28(1), 44-56. 10.1002/2013gb004637
Xie, R. C., S. J. G. Galer, W. Abouchami, M. J. A. Rijkenberg, H. J. W. de Baar, J. De Jong, & M. O. Andreae (2017), Non-Rayleigh control of upper-ocean Cd isotope fractionation in the western South Atlantic, Earth and Planetary Science Letters, 471(Supplement C), 94-103. 10.1016/j.epsl.2017.04.024
Yang, H.-H. (2009), Phytoplankton community structure in the Northern South China Sea and West Philippine Sea. Master thesis, National Taiwan Normal University, Taipei, Taiwan
Yang, L. (2009), Accurate and precise determination of isotopic ratios by MC-ICP-MS: a review, Mass Spectrometry Reviews, 28(6), 990-1011. 10.1002/mas.20251
Yang, L., et al. (2018a), Inter-laboratory study for the certification of trace elements in seawater certified reference materials NASS-7 and CASS-6, Analytical and Bioanalytical Chemistry, 410(18), 4469-4479. 10.1007/s00216-018-1102-y
Yang, S.-C., D.-C. Lee, & T.-Y. Ho (2012), The isotopic composition of Cadmium in the water column of the South China Sea, Geochimica et Cosmochimica Acta, 98, 66-77. 10.1016/j.gca.2012.09.022
Yang, S.-C., D.-C. Lee, & T.-Y. Ho (2014), Reply to the “Comment by on ‘the isotopic composition of Cadmium in the water column of the South China Sea’”, Geochimica et Cosmochimica Acta, 134, 339-341. 10.1016/j.gca.2014.02.015
Yang, S.-C., D.-C. Lee, & T.-Y. Ho (2015), Cd isotopic composition in the suspended and sinking particles of the surface water of the South China Sea: The effects of biotic activities, Earth and Planetary Science Letters, 428, 63-72. 10.1016/j.epsl.2015.07.025
Yang, S.-C., J. Zhang, Y. Sohrin, & T.-Y. Ho (2018b), Cadmium cycling in the water column of the Kuroshio-Oyashio Extension region: insights from dissolved and particulate isotopic composition, Geochimica et Cosmochimica Acta. 10.1016/j.gca.2018.05.001
Yasuda, I. (2003), Hydrographic Structure and Variability in the Kuroshio-Oyashio Transition Area, Journal of Oceanography, 59(4), 389-402. 10.1023/a:1025580313836
Yasuda, I. (2004), North Pacific Intermediate Water: Progress in SAGE (SubArctic Gyre Experiment) and Related Projects, Journal of Oceanography, 60(2), 385-395. 10.1023/b:Joce.0000038344.25081.42
You, Y., N. Suginohara, M. Fukasawa, I. Yasuda, I. Kaneko, H. Yoritaka, & M. Kawamiya (2000), Roles of the Okhotsk Sea and Gulf of Alaska in forming the North Pacific Intermediate Water, Journal of Geophysical Research: Oceans, 105(C2), 3253-3280. 10.1029/1999jc900304
Yuan, X., J. Li, C. Mao, J. Ji, & Z. Yang (2012), Geochemistry of Water and Suspended Particulate in the Lower Yangtze River: Implications for Geographic and Anthropogenic Effects, International Journal of Geosciences, 03(01), 81-92. 10.4236/ijg.2012.31010
Zhang, Y., Z. Liu, Y. Zhao, W. Wang, J. Li, & J. Xu (2014), Mesoscale eddies transport deep-sea sediments, Scientific Reports, 4, 5937. 10.1038/srep05937
Zhang, Z., W. Zhao, J. Tian, & X. Liang (2013), A mesoscale eddy pair southwest of Taiwan and its influence on deep circulation, Journal of Geophysical Research: Oceans, 118(12), 6479-6494. 10.1002/2013jc008994
Zhao, Y., D. Vance, W. Abouchami, & H. J. W. de Baar (2014), Biogeochemical cycling of zinc and its isotopes in the Southern Ocean, Geochimica et Cosmochimica Acta, 125, 653-672. 10.1016/j.gca.2013.07.045
Zhuang, G., R. A. Duce, & D. R. Kester (1990), The Dissolution of Atmospheric Iron in Surface Seawater of the Open Ocean, Journal of Geophysical Research-Oceans, 95(C9), 16207-16216. 10.1029/JC095iC09p16207
指導教授 何東垣(Tung-Yuan Ho) 審核日期 2019-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明