博碩士論文 105523032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:34.230.84.106
姓名 羅仕安(Shih-An Lo)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 基於軟體定義無線電之全雙工中繼解碼轉發系統設計與實現
(Design and Implementation of Full-Duplex Decode-and-Forward Relay Systems Utilizing Software-Defined Radio)
相關論文
★ 基於干擾對齊方法於多用戶多天線下之聯合預編碼器及解碼器設計★ 應用壓縮感測技術於正交分頻多工系統之稀疏多路徑通道追蹤與通道估計方法
★ 應用於行動LTE 上鏈SC-FDMA 系統之通道等化與資源分配演算法★ 以因子圖為基礎之感知無線電系統稀疏頻譜偵測
★ Sparse Spectrum Detection with Sub-blocks Partition for Cognitive Radio Systems★ 中繼網路於多路徑通道環境下基於領航信號的通道估測方法研究
★ 基於代價賽局在裝置對裝置間通訊下之資源分配與使用者劃分★ 應用於多用戶雙向中繼網路之聯合預編碼器及訊號對齊與天線選擇研究
★ 多用戶波束成型和機會式排程於透明階層式蜂巢式系統★ 應用於能量採集中繼網路之最佳傳輸策略研究設計及模擬
★ 感知無線電中繼網路下使用能量採集的傳輸策略之設計與模擬★ 以綠能為觀點的感知無線電下最佳傳輸策略的設計與模擬
★ 二使用者於能量採集網路架構之合作式傳輸策略設計及模擬★ 基於Q-Learning之雙向能量採集通訊傳輸方法設計與模擬
★ 多輸入多輸出下同時訊息及能量傳輸系統之設計與模擬★ 附無線充電裝置間通訊於蜂巢式系統之設計與模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 由於全雙工通訊系統擁有同時同頻帶傳送和接收的能力,理論上與傳統半雙工系統相比可使頻譜效率加倍。然而全雙工收發器的效能表現因自干擾而有所限制,如何克服自干擾問題將是個挑戰。
此篇論文中,吾人提出包含隨機梯度下降法和遞迴最小平方法兩種最小化功率數位自干擾消除演算法之數學模型與模擬,將可應用於全雙工中繼解碼轉發系統。演算法模擬結果顯示其效果可適應性地估計出多路徑自干擾通道狀態並消除自干擾訊號。
接著,吾人使用 Zynq-7000 + AD9361 軟體定義無線電平台實現基於 LTE 下行標準之全雙工中繼系統原型。此外,在中繼端類比射頻部分使用方向天線做被動抑制和兩種最小化功率演算法做數位自干擾消除。所提出的方法總體自干擾消除效果可達 55 dB。此篇論文中的研究與應用可作為全雙工中繼解碼轉發通訊系統之原型實例。
摘要(英) Due to the capability of transmitting and receiving signals at the same time on the same frequency band, full-duplex communication systems can theoretically double the spectral efficiency, as compared with the conventional half-duplex systems. However, the performance of a full-duplex transceiver is limited by the inherent self-interference. Thus, how to overcome the self-interference problem becomes a challenging issue in successfully realizing the full-duplex communication systems.
In this thesis, we first present the mathematical system models for full-duplex relay communications with the decode-and-forward protocol, and design two digital self-interference cancellation algorithms, including stochastic gradient descent and recursive least square, based on the idea of minimizing the average received power after the self-interference. The resultant algorithms can adaptively estimate the self-interference channel with multipaths and successfully cancel the self-interference signals to a sufficiently low level.
Next, we use a Zynq-7000 + AD9361 software-defined radio platform to implement the full-duplex relay system prototype based on the long-term evolution (LTE) downlink standard. In addition, directional antennas are used at the relay node for passive self-interference suppression in the RF analog part, and the two proposed digital self-interference cancellation algorithms are implemented at the relay node. Throughout real experiments, it demonstrates that the proposed scheme can achieve the self-interference cancellation up to 55 dB in total. The proposed design methodology in this thesis could be served as a prototype for the development of full-duplex decode-and-forward relay communications.
關鍵字(中) ★ 全雙工
★ 自干擾
★ 中繼網路
★ 解碼轉發
★ 軟體定義無線電
關鍵字(英) ★ Full-Duplex
★ Self-Interference
★ Relay
★ Decode-and-Forward
★ Software-Defined Radio
論文目次 摘要 i
ABSTRACT ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
符號說明 ix
第一章 緒論 1
1.1 研究動機 1
1.2 背景簡介 2
1.2.1 雙工 2
1.2.2 中繼網路 6
1.2.3 軟體定義無線電 8
1.3 文獻探討 9
第二章 系統架構 11
2.1 中繼端自干擾接收模型 11
2.2 目的端接收模型 12
第三章 數位自干擾消除演算法 13
3.1 隨機梯度下降法 (Stochastic Gradient Descent) 14
3.2 遞迴最小平方法 (Recursive Least-Squares) 15
第四章 演算法模擬結果與討論 20
第五章 軟體定義無線電平台設計與實現 28
5.1 硬體平台介紹 28
5.2 傳送訊號架構 31
5.3 實驗測試 34
5.3.1 中繼端自傳自收實驗結果 35
5.3.2 全雙工中繼節點系統實驗結果 38
第六章 結論 45
附錄 46
附錄A 46
附錄B 47
參考文獻 48
參考文獻 [1] C. V. Forecast, “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016–2021,” Cisco Public Info., pp. 3, Fed. 2017.
[2] G. Wunder, P. Jung, M. Kasparick, T. Wild, F. Schaich, Y. Chen, S. Brink, I. Gaspar, N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Ktenas, M. Dryjanski, S. Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications,” IEEE Commun. Mag., vol. 52, no. 2, pp. 97–105, Feb. 2014.
[3] Vision, I. M. T. “Framework and overall objectives of the future development of IMT for 2020 and beyond,” International Telecommunication Union (ITU), Document, Radiocommunication Study Groups, pp. 3–9, Sep. 2015.
[4] A. Osseiran et al., “Scenarios for 5G mobile and wireless communications: The vision of the METIS project,” IEEE Commun. Mag., vol. 52, no. 5, pp. 26–35, May 2014.
[5] J. G. Andrews et al., “What will 5G be?,” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1065–1082, Jun. 2014.
[6] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag., vol. 52, no. 2, pp. 74–80, Feb. 2014.
[7] C.-X. Wang et al., “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag., vol. 52, no. 2, pp. 122–130, Feb. 2014.
[8] S. Chen, J. Zhao, “The requirements challenges and technologies for 5G of terrestrial mobile telecommunication,” IEEE Commun. Mag., vol. 52, no. 5, pp. 36–43, May 2014.
[9] C.-L. I, C. Rowell, S. Han, Z. Xu, G. Li, Z. Pan, “Toward green and soft: A 5G perspective,” IEEE Commun. Mag., vol. 52, no. 2, pp. 66–73, Feb. 2014.
[10] B. Bangerter, S. Talwar, R. Arefi, K. Stewart, “Networks and devices for the 5G era,” IEEE Commun. Mag., vol. 52, no. 2, pp. 90–96, Feb. 2014.
[11] F.-L. Luo and C. J. Zhang, “General Principles and Basic Algorithms for Full-duplex Transmission,” in Signal Processing for 5G: Algorithms and Implementations, New York, NY USA: Wiley, 2016, ch. 16, sec.2, pp. 374–376.
[12] Z. Zhang, K. Long, A. V. Vasilakos, and L. Hanzo, “Full-duplex wireless communications: Challenges, solutions, and future research directions,” in Proc. IEEE, vol. 104, no. 7, pp. 1369–1409, Jul. 2016.
[13] D. Bharadia, E. McMilin, and S. Katti, “Full duplex radios,” in Proc. ACM SIGCOMM, pp. 375–386, Aug. 2013.
[14] A. Sabharwal et al., “In-band full-duplex wireless: Challenges and opportunities,” IEEE J. Sel. Areas Commun., vol. 32, no. 9, pp. 1637–1652, Sep. 2014.
[15] J. I. Choi, M. Jain, K. Srinivasan, P. Levis, S. Katti, “Achieving single channel full duplex wireless communication,” in Proc. ACM MobiCom, 2010, pp. 1–12.
[16] M. Jain, J. I. Choi, T. Kim, D. Bharadia, S. Seth, K. Srinivasan, P. Levis, S. Katti, P. Sinha, “Practical real-time full duplex wireless,” Proc. ACM MobiCom, 2011, pp. 301–312.
[17] E. C. van der Meulen, “Three-terminal communication channels,” Adv. Appl. Probab., vol. 3, pp. 120–154, 1971.
[18] A. Nosratinia, T. E. Hunter, and A. Hedayat, “Cooperative communication in wireless networks,” IEEE Commun. Mag., vol. 42, no. 10, pp. 74–80, Oct. 2004.
[19] G. Kramer, G. Gastpar, and P. Gupta, “Cooperative Strategies and Capacity Theorems for Relay Networks,” IEEE Trans. Inform. Theory, vol. 51, pp. 3037–3063, Sep. 2005.
[20] A. Host Madsen and J. Zhang, “Capacity Bounds and Power Allocation for the Wireless Relay Channels,” IEEE Trans. Inform. Theory, vol. 51, pp. 2020–2040, Jun. 2005.
[21] J. Mitola, “The software radio architecture,” IEEE Commun. Mag., vol. 33, pp. 26–38, May 1995.
[22] P. Murphy, A. Sabharwal, B. Aazhang, “Design of WARP: Wireless open-access research platform,” European Signal Processing Conference, Jun. 2006, pp. 1–5.
[23] El-Hajjar et al., “Demonstrating the Practical Challenges of Wireless Communications using USRP,” IEEE Commun. Mag., vol. 52, no. 5, May 2014, pp. 194–201. [24] A. M. Wyglinski, D. P. Orofino, M. N. Ettus, T. W. Rondeau, “Revolutionizing software defined radio: Case studies in hardware software and education,” IEEE Commun. Mag., vol. 54, no. 1, pp. 68–75, Jan. 2016.
[25] Q. Wang, Y. Dong, X. Xu, X. Tao, “Outage probability of full-duplex AF relaying with processing delay and residual self-interference,” IEEE Commun. Lett., vol. 19, no. 5, pp. 783–786, May 2015.
[26] M. Khafagy, A. Ismail, M.-S. Alouini, and S. Aissa, ‘‘On the outage performance of full-duplex selective decode-and-forward relaying,’’ IEEE Commun. Lett., vol. 17, no. 6, pp. 1180–1183, Jan. 2013.
[27] S. Hong, J. Brand, J. Choi, M. Jain, J. Mehlman, S. Katti, P. Levis, “Applications of self-interference cancellation in 5G and beyond,” IEEE Commun. Mag., vol. 52, no. 2, pp. 114–121, Feb. 2014.
[28] M. Duarte, A. Sabharwal, “Full-duplex wireless communications using off-the-shelf radios: feasibility and first results,” Proc. AsilomarConf. Signals Syst. Comput., 2010, pp. 1558–1562.
[29] E. Aryafar et al., “MIDU: Enabling MIMO Full Duplex,” in Proc. ACM MobiCom, 2012, pp. 257–68.
[30] M. Chung, M. S. Sim, J. Kim, D. K. Kim, and C. B. Chae, “Prototyping real-time full duplex radios,” IEEE Commun. Mag., vol. 53, no. 9, pp. 56–63, Sep. 2015.
[31] E. Antonio-Rodriguez, S. Werner, R. López-Valcarce, T. Riihonen, R. Wichman, “Wideband full-duplex MIMO relays with blind adaptive self-interference cancellation,” Signal Processing, vol. 130, pp. 74–85, Jan. 2017.
[32] Analog Devices Inc., (2014), AD9361 Data Sheet (Rev. E.), [Online]. Available: http://www.analog.com/media/en/technical-documentation/data-sheets/AD9361.pdf
[33] Xilinx, (2018), Zynq-7000 SoC Data Sheet: Overview [Online]. Available: https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
[34] S. Sesia, I. Toufik, and M. Baker, “Introduction to Downlink Physical Layer Design,” in LTE: The UMTS Long Term Evolution, New York, NY, USA: Wiley, 2009, ch. 6, pp. 145–150.
指導教授 古孟霖(Meng-Lin Ku) 審核日期 2018-10-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明