博碩士論文 105521024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:65 、訪客IP:3.133.108.241
姓名 吳孟昕(Meng-Hsin Wu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 矽基熱電元件開發及特性量測
(The Research and Measurement of Si-based Thermoelectric Devices)
相關論文
★ 以熱熔異質磊晶成長法製造之鍺光偵測器★ 在SOI基板上以快速熱熔法製造高品質鍺及近紅外線光偵測元件之研製
★ 鉭錳合金及銅鍺化合物應用於積體電路後段製程中銅導線之研究★ 快速熱熔磊晶成長法製造側向PIN(Ge-Ge-Si)光偵測器
★ 二維薄膜及三維塊材Seebeck係數量測★ 塊材、薄膜與奈米線之熱導係數量測方法探討
★ 以快速熱熔異質磊晶成長法製作鍺矽累增型光偵測器★ 以快速熱熔融磊晶成長法製作 鍺錫合金PIN型光偵測器
★ 利用火花電漿燒結法製備以矽為基底之奈米材料於熱電特性上之應用研究★ P型金屬氧化物薄膜的製備應用於軟性電子
★ 金屬氧化物製備應用於軟性電子元件★ 超導材料釔鋇銅氧化物熱電特性量測分析
★ 鎂矽錫合金熱電特性研究及應用★ 矽基熱電模組開發及特性研究
★ P型金屬氧化物與硫化物之研究★ 物聯網之熱感測器應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 能源議題是近年來最重要的議題之一,目前人類最常使用的火力發電及核能發電都會產生無法利用的熱能,若是能夠利用熱電材料將這些熱能轉換成為電能,將能夠更有效的使用這些能源。
本研究使用輕摻雜之矽晶片,先在未拋光面鍍上鎳,進行矽化鎳反應後,利用一步金屬輔助化學蝕刻製作奈米線,進行P/N-type摻雜後進行封裝,量測範圍從室溫到473K,探討其熱電特性。
摘要(英) The energy issue is one of the most important issues in recent years. At present, the most commonly used thermal power generation and nuclear power generation will generate unutilized heat energy. If it can convert these thermal energy into electrical energy by using thermoelectric materials, it will be able to use these energy more effectively.
In this study, a light-doped wafer was used. First, nickel was plated on the unpolished surface. After the silicide reaction, the nanowire was fabricated by one-step metal-assisted chemical etching, and the nanowire was doped and packaged. The thermoelectric properties measured was from room temperature to 473K.
關鍵字(中) ★ 矽奈米線 關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
第一章、導論 1
1-1前言 1
1-2熱電歷史 1
1-3熱電效應 2
1-4研究動機 4
第二章、實驗方法與儀器 6
2-1 金屬輔助化學蝕刻法(Metal-assisted chemical etch) 6
2-2 聚醯亞胺(Polyimide)填充 9
2-3 儀器量測 9
2-3-1 電導率量測 9
2-3-2 Seebeck量測 12
2-3-3 結構分析 13
2-3-4 材料分析 14
第三章、實驗流程與步驟 16
3-1 前言 16
3-2 實驗流程設計 17
3-3 實驗步驟 18
3-3-1 蝕刻矽奈米線 18
3-3-2 N-type摻雜 19
3-3-3 P-type摻雜 19
3-3-4 聚醯亞胺填充矽奈米線晶片 20
3-3-5 紫外光臭氧清洗機(UV-Ozone Stripper) 21
3-3-6 手術刀切割元件 21
3-3-7 量測元件製作 21
第四章、實驗結果與討論 28
4-1 前言 28
4-2 結構分析 28
4-3 XRD分析 34
4-4 N/P-type之量測 36
4-4-1 電導率量測 36
4-4-2 Seebeck係數量測 36
4-4-3 功率因子計算 36
第五章、結論 40
參考文獻 41
參考文獻 1. OECD/IEA. Electricity and Heat for 2015. 2015; Available from: http://www.iea.org/statistics/statisticssearch/report/?year=2015&country=WORLD&product=ElectricityandHeat.
2. Singer, J.G., Combustion fossil power. Combustion Engineering Inc., Windsor, CT, 1991.
3. Snyder, G.J. and E.S. Toberer, Complex thermoelectric materials, in Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. 2011, World Scientific. p. 101-110.
4. 勢動科技. 常見的熱電材料有哪些?. Available from: http://www.acttr.com/tw/tw-faq/tw-faq-thermal-analysis/248-tw-faq-common-thermoelectric-materials.html.
5. Kraemer, D., et al., High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nature materials, 2011. 10(7): p. 532.
6. Thermoelectric effect. Available from: https://zh.scribd.com/document/255525454/Thermo-Electric-Effect#.
7. Bhandari, C. and D.M. Rowe, CRC Handbook of thermoelectrics. CRC Press, Boca Raton, FL, 1995: p. 49.
8. Thomson effect. Available from: https://www.britannica.com/science/Thomson-effect.
9. Mahan, G. and B. Sales, Thermoelectric materials: New approaches to an old problem. Physics today, 1997. 50(3): p. 42-47.
10. Ioffe, A.F., et al., Semiconductor thermoelements and thermoelectric cooling. Physics Today, 1959. 12: p. 42.
11. Goldsmid, H. and R. Douglas, The use of semiconductors in thermoelectric refrigeration. British Journal of Applied Physics, 1954. 5(11): p. 386.
12. Chandler, D.L., Explained: Phonons. 2010.
13. Thomson effect and Thomson coefficient (σ). Available from: http://www.brainkart.com/article/Thomson-effect-and-Thomson-coefficient----963--_547/.
14. Boukai, A.I., et al., Silicon nanowires as efficient thermoelectric materials, in Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. 2011, World Scientific. p. 116-119.
15. Hochbaum, A.I., et al., Enhanced thermoelectric performance of rough silicon nanowires. Nature, 2008. 451: p. 163.
16. Li, Y., et al. Silicon nanowires thermoelectric devices. in 2010 Conference Proceedings IPEC. 2010.
17. Kim, K. and C. Baek. Silicon nanowire based thermoelectric device for energy harvesting. in 2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO). 2017.
18. Xu, B., W. Khouri, and K. Fobelets, Two-Sided Silicon Nanowire Array/Bulk Thermoelectric Power Generator. IEEE Electron Device Letters, 2014. 35(5): p. 596-598.
19. Cheng, S.L., C.H. Chung, and H.C. Lee. Fabrication of Vertically Aligned Silicon Nanowire Arrays and Investigation on the Formation of the Nickel Silicide Nanowires. in 2007 IEEE Conference on Electron Devices and Solid-State Circuits. 2007.
20. Watanabe, T. Silicon-based micro thermoelectric generator fabricated by CMOS compatible process. in 2017 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK). 2017.
21. Tahrim, A.A., A. Ahmad, and M.S.M. Ali. Silicon nanowire arrays thermoelectric power harvester. in 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS). 2017.
22. 王威傑, 矽基熱電模組開發及特性研究; The Research and Development of Si-based Thermoelectric Modules. 2017, 國立中央大學.
23. Peng, K.Q., et al., Synthesis of large‐area silicon nanowire arrays via self‐assembling nanoelectrochemistry. Advanced Materials, 2002. 14(16): p. 1164-1167.
24. Bai, F., et al., Template-free fabrication of silicon micropillar/nanowire composite structure by one-step etching. Nanoscale research letters, 2012. 7(1): p. 557.
25. Nassiopoulou, A.G., V. Gianneta, and C. Katsogridakis, Si nanowires by a single-step metal-assisted chemical etching process on lithographically defined areas: formation kinetics. Nanoscale research letters, 2011. 6(1): p. 597.
26. Han, H., Z. Huang, and W. Lee, Metal-assisted chemical etching of silicon and nanotechnology applications. Nano Today, 2014. 9(3): p. 271-304.
27. Osminkina, L.A., et al., Optical properties of silicon nanowire arrays formed by metal-assisted chemical etching: evidences for light localization effect. Nanoscale research letters, 2012. 7(1): p. 524.
28. Ouertani, R., et al., Formation of silicon nanowire packed films from metallurgical-grade silicon powder using a two-step metal-assisted chemical etching method. Nanoscale research letters, 2014. 9(1): p. 574.
29. Li, S., et al., Fabrication of p-type porous silicon nanowire with oxidized silicon substrate through one-step MACE. Journal of Solid State Chemistry, 2014. 213: p. 242-249.
30. To, W.-K., et al., Fabrication of n-type mesoporous silicon nanowires by one-step etching. Nano letters, 2011. 11(12): p. 5252-5258.
31. Li, S., et al., Fabrication of porous silicon nanowires by MACE method in HF/H2O2/AgNO3 system at room temperature. Nanoscale Research Letters, 2014. 9(1): p. 196.
32. Qu, Y., et al., Electrically conductive and optically active porous silicon nanowires. Nano letters, 2009. 9(12): p. 4539-4543.
33. Zhang, M.-L., et al., Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching. The Journal of Physical Chemistry C, 2008. 112(12): p. 4444-4450.
34. Zhong, X., et al., Unveiling the formation pathway of single crystalline porous silicon nanowires. ACS applied materials & interfaces, 2011. 3(2): p. 261-270.
35. Qi, Y., et al., A processing window for fabricating heavily doped silicon nanowires by metal-assisted chemical etching. The Journal of Physical Chemistry C, 2013. 117(47): p. 25090-25096.
36. Jiang, J.-S. and B.-S. Chiou, The effect of polyimide passivation on the electromigration of Cu multilayer interconnections. Journal of Materials Science: Materials in Electronics, 2001. 12(11): p. 655-659.
37. Li, Y., et al., Improved Vertical Silicon Nanowire Based Thermoelectric Power Generator With Polyimide Filling. IEEE Electron Device Letters, 2012. 33(5): p. 715-717.
38. Warren, B.E., X-ray Diffraction. 1990: Courier Corporation.
39. Liu, X.-B., L. Yu, and H. M. Wang, Synthesis of a nickel silicide-base composite coating on austenitic steel by laser cladding. Vol. 20. 2001. 1489-1492.
40. Vanderwalker, D.M., Amorphous transition phase of NiSi2. Applied Physics Letters, 1986. 48(11): p. 707-708.
41. King-Ning, T., et al., Epitaxial Growth of Nickel Silicide NiSi 2 on Silicon. Japanese Journal of Applied Physics, 1974. 13(S1): p. 669.
42. Julies, B.A., et al., A study of the NiSi to NiSi2 transition in the Ni–Si binary system11Presented at the ICMCTF ’98 Conference San Diego, CA, USA, April 1998. Thin Solid Films, 1999. 347(1): p. 201-207.
43. NOYA, A. and M.B. TAKEYAMA, Low-Temperature Formation of NiSi2 Phase in Ni/Si System. Electron. Commun. Japan, 2016. 99(9): p. 85-91.
44. NickelEtch. Available from: https://www.inrf.uci.edu/wordpress/wp-content/uploads/sop-wet-nickel-etch.pdf.
指導教授 辛正倫(Cheng-Lun Hsin) 審核日期 2018-10-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明