博碩士論文 105521027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:85 、訪客IP:18.221.214.175
姓名 游荃岳(YU CHUAN-YUE)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 磊晶成長三族氮化物於六英吋矽基板與其材料特性分析
(Growth and Characterization of III-nitride on 150 mm Si Substrates)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 從過去的文獻中得知大家致力於改善氮化鋁銦(氮化鋁鎵)/氮化鋁/氮化鎵異質結構的傳輸特性,藉由減緩合金散射、介面粗糙度散射等散射機制以求提升其電子遷移率,但其上升程度依舊有所侷限,在此基礎上為了進一步提高電子遷移率,改善背景雜質散射為目前重要的課題。
本論文研究主題為以有機金屬化學蒸氣沉積法成長氮化鋁銦(氮化鋁鎵)/氮化鋁/氮化鎵異質結構於矽基板上,並探討其緩衝層及各成長參數對於磊晶及元件特性之影響。研究目的一為降低在高阻值及675 μm矽基板成長所出現的高晶圓翹曲,本研究在成長氮化鎵緩衝層前成長了氮化鎵/氮化鋁以及氮化鎵/氮化鋁鎵兩種超晶格結構以減緩後續氮化鎵緩衝層所產生之高壓縮應力,以避免磊晶龜裂,並減少晶圓翹曲。研究目的二為提升磊晶電性,本研究利用不同成長前趨物以及成長參數如氣體五三比、溫度、載氣與壓力,降低通道中之背景碳濃度。經優化後,成長於1 mm矽基板之氮化鋁鎵/氮化鋁/氮化鎵異質結構,其室溫電子遷移率達2,190 cm2/V-s,二維電子氣濃度為7.2E12 cm-2,通道片電阻為397 ohm/⎕;10 K下之電子遷移率更可提升到28,000 cm2/V-s。此特性已是文獻中之最佳記錄之一。成長於675 um矽基板之磊晶片晶圓翹曲可低至2.8 um,電子遷移率亦可達2,090 cm2/V-s,二維電子氣濃度為7 x1012 cm-2,通道片電阻為429 ohm/⎕。
摘要(英) According to literature, everyone dedicate to improving the AlInN(AlGaN)/AlN/GaN heterostructures transport property by minizing the effect from alloy scattering and interface roughness scattering. But the improvement still has limits. So improving the impurity scattering is one of the topics to further improve mobility base on previous work.
This study aims to investigate the effect of different buffer and epitaxy growth parameter to epitaxy layer and device characteristic in AlInN(AlGaN)/AlN/GaN heterostructures grow on silicon substrate by using MOCVD. The first purpose of this research is to solve high wafer bow when we grow on high resistivity and 675 μm silicon substrate. To avoid wafer cracking and high wafer bow, we use AlN/GaN and GaN/AlGaN superlattice structure to slow down the compressive strain in thick GaN buffer growth in this study. The second purpose is to reduce carbon background impurity in GaN channel layer to improve carrier transport property by using different Ga precursor and growth parameter modulation ; like V/ III ratio、temperature、carrier gas and pressure. After optimizing, room temperature mobility in AlGaN/AlN/GaN heterostructures grow on 1 mm silicon can reach 2,190 cm2/V-s with 2DEG concentration 7.2E12 cm-2 and sheet resistance 397 ohm/⎕;even reach 28,000 cm2/V-s mobility under 10 K measurement. It’s one of the best result in literatures. In the end , we achieve low wafer bow 2.8 μm with excellent uniformity and high mobility 2,090 cm2/V-s、2DEG concentration 7E12 cm-2、sheet resistance 429 ohm/⎕ on 675 μm silicon substrate.
關鍵字(中) ★ 高電子遷移率電晶體
★ 有機金屬化學氣象沉積
★ 氮化鎵
關鍵字(英) ★ HEMT
★ MOCVD
★ GaN
論文目次 論文摘要 ................................................ii
Abstract...............................................iii
誌謝....................................................iv
目錄.....................................................v
圖目錄..................................................vii
表目錄...................................................ix
第一章 導論 .................................1
1.1 前言 .........................................1
1.2 研究動機 .........................................3
1.2.1 氮化鎵功率元件發展現況 3
1.2.2 氮化鋁銦(氮化鋁鎵)/氮化鎵異質結構之發展狀況 .........5
1.3 論文架構 .........................................8
第二章 氮化鋁銦/氮化鎵異質結構磊晶設計及其特性探討...9
2.1 氮化鋁銦/氮化鎵異質結構起源與其極化效應.............9
2.2 氮化物磊晶成長於矽基板之介紹...................... 13
2.3 氮化鋁銦/氮化鎵位障層厚度調變之探討................16
2.4 超晶格緩衝層磊晶結構設計與磊晶條件 ................20
2.4.1 超晶格緩衝層磊晶特性結果與分析 ................22
2.4.2 超晶格緩衝層之元件製作及特性分析 ................31
2.5 本章總結 ........................................41
第三章 探討氮化鎵通道層之碳背景摻雜................43
3.1 碳背景摻雜對於磊晶及元件之優缺點...................43
3.2 探討碳背景摻雜之磊晶實驗設計.......................45
3.3 不同前驅物及其成長參數對於氮化鎵背景碳摻雜之影響 ...47
3.4 磊晶結構與傳輸特性................................58
3.5 本章總結 ........................................64
第四章 結論與未來展望.............................65
參考文獻 ................................................67
參考文獻 [1]Y. Zhou, D. Wang, C. Ahyi, C.-C. Tin, J. Williams, and M. Park, et al., "High breakdown voltage Schottky rectifier fabricated on bulk n-GaN substrate," Solid-State Electronics, vol. 50, pp. 1744-1747, 2006.
[2] M. Gonschorek, J. F. Carlin, E. Feltin, M. A. Py, and N. Grandjean, "High electron mobility lattice-matched AlInN/GaN field-effect transistor heterostructures," APL, vol. 89, p. 062106, 2006.
[3] M. Hiroki, N. Maeda, and T. Kobayashi, "Fabrication of an InAlN/AlGaN/AlN/GaN Heterostructure with a Flat Surface and High Electron Mobility", Applied Physics Express, vol. 1, p. 111102, 2008.
[4] S. W. Kaun, E. Ahmadi, B. Mazumder, F. Wu, E. C. H. Kyle, and P. G. Burke, et al., "GaN-based high-electron-mobility transistor structures with homogeneous lattice-matched InAlN barriers grown by plasma-assisted molecular beam epitaxy", Semiconductor Science and Technology, vol. 29, p. 045011, 2014.
[5] Jeong-Gil Kim, Ki-Sik Im, Chul-Ho Won, Seung-Hyeon Kang, Sang-Heung Lee, Jong-Won Lim, Ji Heon Kim, and Jung-Hee Lee, "Growth of 10 nm-thick AlIn(Ga)N/GaNheterostructure with high electron mobility and low sheet resistance", Phys.Status Solidi B, 1600731 2017.
[6] J. Xue, J. Zhang, Y. Hou, H. Zhou, J. Zhang, and Y. Hao, "Pulsed metal organic chemical vapor deposition of nearly latticed-matched InAlN/GaN/InAlN/GaN double-channel high electron mobility transistors", APL, vol. 100, p. 013507, 2012.
[7] Y. L. Fang, S. B. Dun, B. Liu, J. Y. Yin, B. C. Sheng, and T. T. Han, et al., "High performance InAlN/GaN heterostructure and field effect transistor on sapphire substrate by MOCVD", 5th Global Symposium on Millimeter Waves, 2012.
[8] X. L. Jia, X. Y. Huang, T. Yin, L. H. Yang, D. J. Chen, H. Lu, R. Zhang, and Y. D. Zheng, "Ultrasensitive detection of phosphate using ion-imprinted polymer functionalized AlInN/GaN high electron mobility transistors", IEEE EDL, 0741-3106 (c) 2016
[9] F. Lecourt, N. Ketteniss, H. Behmenburg, N. Defrance, V. Hoel, and M. Eickelkamp, et al., "InAlN/GaN HEMTs on Sapphire Substrate With 2.9-W/mm Output Power Density at 18 GHz", IEEE EDL, vol. 32, pp. 1537-1539, 2011.
[10] Xueliang Zhu, Jun Ma, Tongde Huang, Ming Li, Ka Ming Wong, and
Kei May Lau, et al., "Improved surface morphology and mobility of
AlGaN/GaN HEMT grown on silicon substrate", Phys. Status Solidi
C 9, No. 3–4, 473–475 2012.
[11] Jr-Tai Chen, Ingemar Persson, Daniel Nilsson, Chih-Wei Hsu, Justinas Palisaitis, Urban Forsberg, Per O. A˚. Persson, and Erik Janzen, "Room-temperature mobility above 2200 cm2/V-s of two-dimensional electron gas in a sharp-interface AlGaN/GaN heterostructure", APL 106, 251601 2015.
[12] Xiaoqing Xu, Jiebin Zhong, Hongyun So, Aras Norvilas, Christof Sommerhalter, Debbie G. Senesky, and Mary Tang, "Wafer-level MOCVD growth of AlGaN/GaN-on-Si HEMT structures with ultra-high room temperature 2DEG mobility", AIP Advances 6, 115016 2016.
[13] H.-P. Lee, J. Perozek, L. D. Rosario, and C. Bayram, "Investigation of AlGaN/GaN high electron mobility transistor structures on 200-mm silicon (111) substrates employing different buffer layer
configurations", Sci. Rep. 6, 37588; doi: 10.1038/srep37588 2016.
[14] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, and
K. Chu, et al., "Two dimensional electron gases induced by
spontaneous and piezoelectric polarization in undoped and doped
AlGaN/GaN heterostructures", J. Appl. Phys, vol. 87, pp. 334-344,
2000.
[15] H. Morkoc, R. Cingolani, and B. Gil, "Polarization effects in nitride semiconductor device structures and performance of modulation doped field effect transistors", Solid-State Electronics, vol. 43, pp. 1909-1927,1999.
[16] A. Krost, A. Dadgar, J. Bläsing, A. Diez, T. Hempel, S. Petzold, et al., "Evolution of stress in GaN heteroepitaxy on AlN/Si (111) From hydrostatic compressive to biaxial tensile", APL, vol. 85, pp. 3441-3443, 2004.
[17] A. Dadgar, A. Strittmatter, J. Bläsing, M. Poschenrieder,
O. Contreras, and P. Veit, et al., "Metalorganic chemical vapor phase epitaxy of gallium-nitride on silicon", physica status solidi (c), pp. 1583-1606, 2003.
[18] Po-Jung Lin, Shih-Yung Huang, Wei-Kai Wang, Che-Lin Chen, Bu-Chin Chung, and Dong-Sing Wuu, "Controlling the stress of growing GaN on 150-mm Si (111) in an AlN/GaN strained layer superlattice", Applied Surface Science 362 2016.
[19] W. H. Sun, J. P. Zhang, J. W. Yang, H. P. Maruska, M. Asif Khan, R. Liu, and F. A. Ponce, "Fine structure of superlattice grown by pulsed atomic-layer epitaxy for dislocation filtering", APL, 87, 211915 2005.
[20] K. Hiramatsu, K. Nishiyama, M. Onishi, H. Mizutani, M. Narukawa, and A. Motogaito, et al., "Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth (FACELO) ", J. Crys. Growth, vol. 221, pp. 316-326, 2000.
[21] Z. Liliental-Weber, and D. Cherns, "Microstructure of laterally overgrown GaN layers," J. Appl. Phys, vol. 89, pp. 7833-7840, 2001.
[22] K. Cheng, M. Leys, S. Degroote, B. Van Daele, S. Boeykens, J.
Derluyn, et al., "Flat GaN epitaxial layers grown on Si(111) by metalorganic vapor Phase Epitaxy Using Step-Graded AlGaN Intermediate Layers", J. Electron. Mater., Vol. 35, No. 4, 2006.
[23] Weimann, N.G., Eastman, L.F., Doppalapudi, D., Ng, H.M., and
Moustakas, T.D, et al. "Scattering of electrons at threading
dislocations in GaN", J. Appl. Phys., 1998.
[24] Gurusinghe, M.N., and Andersson, T.G, et al. "Mobility in epitaxial
GaN limitations of free-electron concentration due to dislocations and compensation", Phys. Rev. B, 2003.
[25] J.K. Hite, P. Gaddipati, D.J. Meyer, M.A. Mastro and C.R. Eddy, Jr. "Correlation of threading screw dislocation density to GaN 2-DEG mobility", Electron. Lett 6th 2014.
[26] H.-P. Lee, J. Perozek, L. D. Rosario, and C. Bayram "Investigation of AlGaN/GaN high electron mobility transistor structures on 200-mm silicon (111) substrates employing different buffer layer configurations", Sci. Rep. 6:37588 DOI: 10.1038/srep37588 2016.
[27] Eric Feltin, B. Beaumont, M. Lau¨gt, P. de Mierry, P. Venne´gue`s, H. Lahre`che, M. Leroux, and P. Gibart, "Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy", APL Vol. 79, No. 20 ,2001.
[28] Qiankun Yang, Zhonghui Li, Lei Pan, Weike Luo, and Xun Dong "Role of different kinds of superlattices on the strain engineering of GaN films grown on Si (111)", 0749-6036/© Elsevier Ltd. 2017.
[29] J. Elsner, R. Jones, M. I. Heggie, P. K. Sitch, M. Haugk, Th. Frauenheim, S. O¨berg, and P. R. Briddon, "Deep acceptors trapped at threading-edge dislocations in GaN", Phys. Rev. B Vol. 58, No. 19 ,1998.
[30] Diego Marti, Lorenzo Lugani, Jean-François Carlin, Marco
Malinverni, Nicolas Grandjean, and C. R. Bolognesi, "W -Band MMIC Amplifiers Based on AlInN/GaN HEMTs Grown on Silicon", IEEE EDL, Vol. 37, No. 8,2016
[31] Arata Watanabe, Joseph J. Freedsman, Ryuhei Oda, Tatsuya Ito, and Takashi Egawa, "Characterization of InAlN/GaN high electron mobility transistors grown on Si substrate using graded layer and strain-layer superlattice ", Applied Physics Express 7, 041002 2014.
[32] Y. Liu, S. P. Singh, L. M. Kyaw, M. K. Bera, Y. J. Ngoo, H. R. Tan, S. Tripathy, G. Q. Lo, and E. F. Chor, "Mechanisms of Ohmic Contact Formation and Carrier Transport of Low Temperature Annealed Hf/Al/Ta on In0.18Al0.82N/GaN on Si", ECS Journal of Solid State Science and Technology, 4 (2) P30-P35 2015.
[33] S. Arulkumaran, Senior Member, K. Ranjan, G. I. Ng, C. M. Manoj Kumar, S. Vicknesh, S. B. Dolmanan, and S. Tripathy, "High-Frequency Microwave Noise Characteristics of InAlN/GaN High-Electron Mobility Transistors on Si (111) Substrate", IEEE EDL, Vol. 35, No. 10, 2014.
[34] Kai Cheng, S. Degroote, M. Leys, F. Medjdoub, J. Derluyn, B. Sijmus, M. Germain, and G. Borghs, "Very low sheet resistance AlInN/GaN HEMT grown on 100 mm Si (111) by MOVPE ", Phys. Status Solidi C 7, No. 7–8, 1967–1969 2010.
[35] Sandeep Kumar, Nayana Remesh, S.B. Dolmanan, S. Tripathy, S. Raghavan, R. Muralidharan, and Digbijoy N. Nath, "Interface traps at Al2O3/InAlN/GaN MOS-HEMT-on-200mm Si",
Solid-State Electronics 137 2017.
[36] J. Freedsman, A. Watanabe, Y. Urayama, and T. Egawa,
"Enhanced two dimensional electron gas transport characteristics in
Al2O3/AlInN/GaN metal-oxide-semiconductor high-electron-
mobility transistors on Si substrate " APL 107, 103506 2015.
[37] Anna Malmros, Piero Gamarra, Marie-Antoinette di Forte-Poisson,
Hans Hjelmgren, Cedric Lacam, Mattias Thorsell, Maurice
Tordjman, Raphaël Aubry, and Niklas Rorsman, "Evaluation of
thermal versus plasma-assisted ALD Al2O3 as passivation for
InAlN/AlN/GaN HEMTs", IEEE EDL, Vol. 36, No. 3, 2015.
[38] Geng-Yen Lee, Hsueh-Hsing Liu, and Jen-Inn Chyi, "High
Performance AlGaN/GaN Schottky Diodes with an AlGaN/AlN
Buffer Layer", IEEE EDL, Vol. 32, No. 11, 2011.
[39] Sebastian Gustafsson, Student Member, IEEE, Jr-Tai Chen, Johan
Bergsten, Urban Forsberg, Mattias Thorsell, Erik Janzén, and Niklas
Rorsman, "Dispersive effects in microwave AlGaN/AlN/GaN
HEMTs with carbon-doped buffer", IEEE TED, Vol. 62, No. 7,
2015.
[40] A. Armstrong, A. R. Arehart, B. Moran, S. P. DenBaars, U. K.
Mishra, J. S. Speck, and S. A. Ringel, "Impact of carbon on trap
states in n-type GaN grown by metalorganic chemical vapor
deposition", APL Vol. 84, No. 3, 2004.
[41] Hareesh Chandrasekar, Manikant Singh, Srinivasan Raghavan and
Navakanta Bhat, "Estimation of background carrier concentration in
fully depleted GaN films", Semicond. Sci. Technol. 30 2015.
[42] Felix Schubert, Steffen Wirth, Friederike Zimmermann, Johannes Heitmann,Thomas Mikolajick & Stefan Schmult , "Growth condition dependence of unintentional oxygen incorporation in epitaxial GaN" , STAM , Vol. 17, No. 1, 2016.
[43] EAG LABORATORIES"PCOR-SIMS-analysis-of-GaN-HEMT
-epitaxial-layers-grown-on-silicon-substrates", 2015.
[44] S.R. Xu , Y. Hao a, J.C. Zhang , Y.R. Cao , X.W. Zhou , L.A. Yang ,
X.X. Ou , K. Chen , and W. Mao, "Polar dependence of impurity
incorporation and yellow luminescence in GaN films grown by
metal-organic chemical vapor deposition", J. Cryst. Growth 312
2010.
[45] Jianxun Liu, Hongwei Liang, Binghui Li, Yang Liu, Xiaochuan Xia,
Huolin Huang,Qasim Abbas Sandhu, Rensheng Shen, Yingmin Luo
and Guotong Du, "Unintentionally doped high resistivity GaN layers
with an InGaN interlayer grown by MOCVD", RSC Adv., 2016.
[46] F. Lee, T. R. Gow, and R. I. Masel, "Trimethylgallium
Decomposition on Si(l00)", J. Electrochem. Soc., Vol. 136, No. 9,
1989.
[47] R. Lin, T. R. Gow, A. L. Backman, L. A. Cadwell, F. Lee, and R. I. Masel, "The decomposition of triethylgallium on Si(100)", J. Vac. Sci. Technol. B 7 (4), 1989.
[48] P. Ruterana, Albrecht, M., Neugebauer, J., Nitride semiconductors:
Hand Book on Materials and Devices vol. 6. betz-druck gmbh Press,
2003
[49] D.D. Koleske, A.E. Wickenden, R.L. Henry, J.C. Culbertson, M.E.
Twigg, "GaN decomposition in H2 and N2 at MOVPE temperatures
and pressures", J. Cryst. Growth 223, 2001.
[50] Yen-Hsien Yeh, Kuei-Ming Chen, Yin-Hao Wu, Ying-Chia Hsu,
Tzu-Yi Yu, and Wei-I Lee, "Hydrogen etching of GaN and its
application to produce free-standing GaN thick films", J. Cryst.
Growth 333, 2011.
[51] Jr-Tai Chen, Urban Forsberg, and Erik Janzen, "Impact of residual
carbon on two-dimensional electron gas properties in AlxGa1-xN/GaN
heterostructure", APL 102, 193506 2013.
[52] Piero Gamarra, Cedric Lacam, Maurice Tordjman, Jörg Splettstösser
, Bernd Schauwecker, and Marie-Antoinette di Forte-Poisson,
"Optimisation of a carbon doped buffer layer for AlGaN/GaN HEMT
devices", J. Cryst. Growth 414 2015.
[53] A.E. Wickenden, D.D. Koleske, R.L. Henry, R.J. Gorman, M.E.
Twigg, M. Fatemi, J.A. Freatis, Jr., and W.J. MOORE, "The
Influence of OMVPE Growth Pressure on the Morphology,
Compensation, and Doping of GaN and Related Alloys", J. Electron.
Mater, Vol. 29, No. 1, 2000
[54] Qilong Bao, Tiankai Zhu, Ning Zhou, Shiping Guo, Jun Luo,
Chao Zhao, "Effect of hydrogen carrier gas on AlN and AlGaN
growth in AMEC Prismo D-BlueTM MOCVD Platform ", J. Cryst.
Growth, 2015.
[55] Shuxun Lin, Maojun Wang, Member, IEEE, Fei Sang, Ming Tao,
Cheng P. Wen, Bing Xie, Min Yu, Jinyan Wang, Yilong Hao,
Wengang Wu, Jun Xu, Kai Cheng, Bo Shen, "A GaN HEMT
structure allowing self terminated plasma free etching for
high uniformity high mobility enhancement mode devices", IEEE
EDL, Vol. 37, No. 4, 2016.
[56] Indranil Chatterjee, Michael J. Uren, Serge Karboyan, Alexander
Pooth, Peter Moens, Abhishek Banerjee, and Martin Kuball, "Lateral
Charge Transport in the Carbon-Doped Buffer in AlGaN/GaN on Si
HEMTs", IEEE TED, Vol. 64, No. 3, 2017.
[57] Chien-Fong Lo, Chen-Kai Kao, Oleg Laboutin, Hugues Marchand,
Rodney Pelzel, Wayne Johnsonc, "Thermal Effects between
Carbon-Doped GaN and AlGaN Back-Barrier in AlGaN/GaN
HEMTs on Si (111) Substrates", ECS JSS., 6 (11) S3048-S3051
2017.
[58] H.-P. Lee, J. Perozek, L. D. Rosario, C. Bayram, "Investigation of
AlGaN/GaN high electron mobility transistor structures on 200-mm
silicon (111) substrates employing different buffer layer
configurations", Sci. Rep. 6:37588 DOI:10.1038/srep37588
2016.
[59] Jianpeng Cheng, Xuelin Yang, Ling Sang, Lei Guo, Anqi Hu, Fujun
Xu, Ning Tang, Xinqiang Wang, and Bo Shen, "High mobility
AlGaN/GaN heterostructures grown on Si substrates using a large
lattice-mismatch induced stress control technology", APL 106,
142106, 2015.
[60] Jr-Tai Chen, Ingemar Persson, Daniel Nilsson, Chih-Wei Hsu,
Justinas Palisaitis, Urban Forsberg, Per O. A˚. Persson, and Erik
Janzen, "Room-temperature mobility above 2200 cm2/V-s of
two-dimensional electron gas in a sharp-interface AlGaN/GaN
heterostructure", APL 106, 251601 2015.
[61] Sameer Joglekar, Mohamed Azize, Eric J. Jones, Daniel Piedra,
Silvija Gradeˇcak, and Tomás Palacios, "Impact of Al2O3
Passivation on AlGaN/GaNNanoribbon High-Electron-Mobility
Transistors", IEEE TED, Vol. 63, No. 1, 2016.
[62] Yuehang Xu, Changsi Wang, Huan Sun, Zhang Wen, Yunqiu Wu,
Ruimin Xu, Xuming Yu, Chunjiang Ren, Zhensheng Wang,
Bin Zhang, Tangsheng Chen, Tao Gao, "A scalable large signal
multiharmonic model of AlGaN/GaN HEMTs and its application in
c-band high power amplifier MMIC", IEEE Transactions on
Microwave Theory and Techniques, Vol. 65, No. 8, 2017.
[63] Yunlong He, Chong Wang, Minhan Mi, Meng Zhang, Qing Zhu,
Peng Zhang, Ji Wu, Hengshuang Zhang, Xuefeng Zheng, Ling Yang,
Xiaoling Duan, Xiaohua Ma, and Yue Hao, "Investigation of
enhancement-mode AlGaN/GaN nanowire channel high-electron-
mobility transistor with oxygen-containing plasma treatment",
Applied Physics Express 10, 056502 2017.
[64] A. Fontser`e, A. P´erez-Tom´as, M. Placidi, N. Baron, S. Chenot, J. C. Moreno, and Y. Cordierc,"Bulk Temperature Impact on the
AlGaN/GaN HEMT Forward Current on Si, Sapphire and Free-Standing GaN", ECS Solid State Letters, 2 (1) P4-P7, 2013.
[65] S. Bouzid-Driad, H. Maher, M. Renvoise, P. Frijlink, M. Rocchi, N.
Defrance, V. Hoel, J.C. De Jaeger, "Optimization of AlGaN/GaN
HEMT Schottky contact for Microwave Applications ", Proceedings
of the 7th European Microwave Integrated Circuits Conference 2012.
[66] Po-Jung Lin, Shih-Yung Huang, Wei-Kai Wang, Che-Lin Chen,
Bu-Chin Chung, and Dong-Sing Wuu, "Controlling the stress of
growing GaN on 150-mm Si (111) in an AlN/GaN strained layer
superlattice", Appl. Surf. Sci. 362, 2016.
[67] Matthew Charles, Alexis Bavard, Renan Bouis, Yannick Baines,
Rene Escoffier, "Developments in understanding the nucleation of AlN on silicon by MOCVD and its effects on defects", Phys. Status Solidi A, 1–6, 2016.
[68] Kung-Liang Lin, Edward-Yi Chang, Yu-Lin Hsiao, Wei-Ching
Huang, Tien-Tung Luong, and Yuen-Yee Wong, "Effects of
AlxGa1−xN interlayer for GaN epilayer grown on Si substrate by
metal-organic chemical-vapor deposition", J. Vac. Sci. Technol. B
28, 3, 2010.
[69] Li Zhang, Kwang Hong Lee, I Made Riko, Chieh-Chih Huang,
Abdul Kadir, Kenneth E Lee, Soo Jin Chua, Eugene A Fitzgerald,
"MOCVD growth of GaN on SEMI-spec 200mm Si", Semicond. Sci.
Technol. 32, 2017.
[70] Wai Hoe Tham, Diing Shenp Ang, Lakshmi Kanta Bera, Surani Bin
Dolmanan, Thirumaleshwara N Bhat, Vivian K. X. Lin, Sudhiranjan
Tripathy, "Comparison of the AlxGa1−xN/GaN heterostructures
grown on silicon on insulator and bulk silicon substrates", IEEE
TED, Vol. 63, No. 1, 2016.
[71] Jie Su, Eric A. Armour, Balakrishnan Krishnan, Soo Min Lee, and
George D. Papasouliotis, "Stress engineering with AlN/GaN
superlattices for epitaxial GaN on 200 mm silicon substrates using a
single wafer rotating disk MOCVD reactor", J. Mater. Res., Vol. 30,
No. 19, 2015.
[72] Chieh-Chih Huang, Frank Ried, Tomas Palacios, Soo Jin
Chua, Eugene A Fitzgerald, "The Growth of Low Wafer Bow
AlGaN/GaN Structure on 200mm Si (111)", CS MANTECH
Conference, May 18th - 21st, 2015.
[73] DOWA Electronics Materials Co., Ltd., Semiconductor Business
Unit, http://www.dowa-electronics.co.jp/semicon/e/epi/index.html
[74] EpiGaN nv, https://www.epigan.com/
[75] AIR WATER INC. 〈Template wafer〉,
http://www.awi.co.jp/english/business/new/sic/gan.html
[76] S B Lisesivdin, S Acar1, M Kasap, S Ozcelik, S Gokden, E Ozbay,
"Scattering analysis of 2DEG carrier extracted by QMSA in undoped
Al0.25Ga0.75N/GaN heterostructures" Semicond. Sci. Technol. 22
2007.
[77] Hidekazu Umeda, Asamira Suzuki, Yoshiharu Anda, Masahiro
Ishida, Tetsuzo Ueda, Tsuyoshi Tanaka, and Daisuke Ueda,
"Blocking-Voltage Boosting Technology for GaN Transistors by
Widening Depletion Layer in Si Substrates", IEDM10-480, 2010.
[78] Matteo Borga, Matteo Meneghini, Isabella Rossetto, Steve Stoffels,
Niels Posthuma, Marleen Van Hove, Denis Marcon, Stefaan
Decoutere, Gaudenzio Meneghesso, and Enrico Zanoni, "Evidence of
Time-Dependent Vertical Breakdown in GaN on Si HEMTs", IEEE
TED, Vol. 64, No. 9, 2017.
[79] Shinichi Iwakami, Osamu Machida, Masataka
Yanagihara, Toshihiro Ehara, Nobuo Kaneko, Hirokazu
Goto, and Akio Iwabuchi, "20 mΩ, 750 V High-Power
AlGaN/GaN Heterostructure Field-Effect Transistors on Si
Substrate", The Japan Society of Applied Physics, 2007.
[80] Iruthayaraj Beaula Rowena, Susai Lawrence Selvaraj, and Takashi
Egawa, "Buffer Thickness Contribution to Suppress Vertical
Leakage Current with High Breakdown Field (2.3 MV/cm) for GaN
on Si", IEEE EDL, Vol. 32, No. 11, 2011.
[81] Chunhua Zhou, Qimeng Jiang, Sen Huang, and Kevin J. Chen,
"Vertical Leakage/Breakdown Mechanismsin AlGaN/GaN on Si
Devices", IEEE EDL, Vol. 33, No. 8, 2012.
[82] Susai Lawrence Selvaraj, Arata Watanabe, Akio Wakejima, and
Takashi Egawa, "1.4-kV Breakdown Voltage for AlGaN/GaN
High-Electron-Mobility Transistors on Silicon Substrate", IEEE
EDL, Vol. 33, No. 10, 2012.
[83] Zijun Chen, Liuan Li, Yue Zheng, Yiqiang Ni, Deqiu Zhou, Liang
He, Fan Yang, Lei He, Zhisheng Wu, Baijun Zhang, and Yang Liu,
"Influence of the Aln/Gan Superlattices Buffer Thickness on the
Electrical Properties of Algan/Gan HFET on Si Substrate ",
IEEE, 2016.
[84] Yuya Yamaoka, Ken Kakamu, Akinori Ubukata1, Yoshiki
Yano1, Toshiya Tabuchi, Koh Matsumoto, and Takashi Egawa,
"Impact of the AlN nucleation layer on the variation of the
vertical-direction breakdown voltage of AlGaN/GaN
high-electron-mobility transistor structures on a Si substrate",
Phys.Status Solidi A, 1600843, 2017.
[85] ALLOS Semiconductors, "Status of ALLOS’ GaN on Si
epiwafer product for 900 V and 1200 V high power electronics
applications"http://www.allos-semiconductors.com/wp-content/uploa
ds/2018/02/1802-ALLOS-1200-V-product-status.pdf
[86] Mingda Zhu, Meng Qi, Kazuki Nomoto, Zongyang Hu, Bo Song,
Ming Pan, Xiang Gao, Debdeep Jena, and Huili Grace Xing,
"Electron mobility in polarization-doped Al0-0.2GaN with a low
concentrationnear 1017 cm-3", APL 110, 182102, 2017.
[87] J. Jeschke, A. Knauer, M. Weyers, "Si impurity concentration in
nominally undoped Al0.7Ga0.3N grown in a planetary MOVPE
reactor", J. Cryst. Growth 483, 2018.
[88] Masataka Imura, Naoki Fujimoto, Narihito Okada, Krishnan
Balakrishnan, Motoaki Iwaya, Satoshi Kamiyama, Hiroshi Amano,
Isamu Akasaki, Tadashi Noro, Takashi Takagi and Akira Bandoh,
"Annihilation mechanism of threading dislocations in AlN grown
by growth form modification method using V/III ratio",
J. Cryst. Growth 300, 2007.
[89] Yuxia Feng, Hongyuan Wei, Shaoyan Yang, Zhen Chen,
Lianshan Wang, Susu Kong, Guijuan Zhao and Xianglin Liu,
"Competitive growth mechanisms of AlN on Si (111) by
MOVPE", Sci. rep. 2014.
[90] Yiqiang Ni, Zhiyuan He, Deqiu Zhou, Yao Yao, Fan Yang, Guilin
Zhou, Zhen Shen, Jian Zhong, Yue Zhen, Baijun Zhang, Yang Liu,
"The influences of AlN/GaN superlattices buffer on the
characteristics of AlGaN/GaN-on-Si (1 1 1) template", Elsevier
(2015)
指導教授 綦振瀛(Jen-Inn Chyi) 審核日期 2018-11-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明