博碩士論文 105554005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:18.117.107.90
姓名 陳守鋒(Shou-Fong Chen)  查詢紙本館藏   畢業系所 網路學習科技研究所
論文名稱 高中生線上合作科學問題解決歷程分析
(The exploration of high school students′ online collaborative science problem solving)
相關論文
★ 支援國小科展探究教與學之網路科展探究系統的開發與評估★ 教師科展專業知識分享社群平台系統開發與評估
★ 科學小論文寫作平台的建置與評估★ 「探究教學線上教師社群平台」之建置與評估:以知識管理理論為基礎
★ 科學閱讀平台之發展與評估★ 以鷹架為基礎之科展探究系統平台之開發與評估
★ Improving Novice Teachers’ Instructional Practice Through Online Multilevel Reflection: The Role of Novice Teachers’ Beliefs★ The Effect s of Video-based Reflection on Preservice Teachers′ Micro Teaching Focusing on Meaningful Learning with ICT
★ Examining Teachers’ Online Video-Based Reflective Practice for Professional Development Regarding Guided-Discovery Learning Instruction★ 數位教育遊戲之開發與評估:以「Mr.道耳頓的奇幻歷險」為例
★ 應用自然語言處理技術開發基於知識翻新理論之線上非同步合作論證平台與平台初步評估★ 同步討論與反思系統(SDRS)對小學生知識建構學習環境感知和學習成果的影響
★ 具有集成設計框架的同步在線論證系統用戶界面:重新設計和評估★ 科學探究學習系統之開發與評估
★ 支援科學專題學習 之線上學習平台開發與評估★ 線上合作共同備課平台:開發與評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 與他人共同合作解決問題,是21世紀的關鍵能力,而科學更是各國強盛的關鍵,然而科學相關問題必然涉及諸多變項之交互影響與複雜的科學概念,學習者可以透過合作調整變數進行電腦模擬,觀察過程幫提升解決問題的能力。
本研究目的在了解學習者在合作問題解決中所表現的歷程,進一步探討學習者不同合作品質與不同學習方法的學習者歷程差異,協助教師能培養學習者合作問題解決能力。
本研究受試者為高中學生共24名,用簡報教學線上合作科學問題解決系統操作,時間為一小時,對所有學習者施以一小時的「合作問題解決概念教學」,授課內容著重於引導學習者成員嘗試透過對於意義的共同建構、反思、溝通、修正來解決問題。後以一活動請學習者實際操作,時間亦為一小時,之後正式給予受試者一簡單難度活動與一困難活動,其活動時間各為一小時,應用電腦模擬協助學生進行合作科學問題解決活動,透過蒐集受試者在電腦內的歷程資料,探討學習者合作科學問題解決的行為模式,使用PISA2015 合作問題解決評量架構做為分析標準,透過運用滯後序列分析對話串內容,討論其行為模式之間的差異,本研究亦將學習者分別依其學習方法與在合作問題解決活動中所感受的合作品質進行分組,進一步比較不同組別學習者的合作問題解決歷程之差異。
研究結果顯示學習者經歷合作問題解決之概念教學後,在簡單的問題解決動中,其較容易形成假設。而在低合作品質小組之學習者在問題解決歷程中需要較多的溝通建立共同的理解。而深層學習方法組之學習者在問題解決歷程中著重假設進而解決問題,而淺層學習方法組之學習者透過討論套用公式與建構共同理解方式去解決問題。最後亦對未來之研究方向提供建議。
摘要(英) Knowing how to solve problems with peers collaboratively has become one of the most important skills in the 21st century. Obviously, science-related problems-solving concerns the interaction of many variables and complex scientific concepts. To enable the learners to have the ability of problems-solving, learners need to learn to adjust variables and observe the process in the context of computer simulations. The purpose of the study was to explore the learners’ differences in their behavioral patterns of problem solving and different learning methods. The results might be used to help teachers acquire the ability to help learners the ability to solve problems collaboratively.
The participants of this study were 24 senior high school students who were in the context of computer simulations to solve assigned problems. First, they went through one-hour collaborative scientific problem-solving activities. The activities focused on guiding the participants to solve problems by constructing, reflecting, communicating, and modifying. Then the students used the theory they learned from the aforementioned activities to finish a one-hour practice activity. At the end, they were given a simple and a hard activity to do in an hour respectively. This study adopted the conceptual framework of Collaborative Problem solving skills for PISA 2015 to conduct data analysis through the use of Lag Sequence Analysis(LSA)of the conversation cluster.
This study also categorized the student into different groups based on approaches learning, as well as their perceined collaboration quality doing Collaborative Problem solving activity. The results showed that learners were more likely to construct hypotheses after they experienced the instruction of collaborative problems-solving. In the problem-solving process, the low-quality of collaboration group tented to spend more time on communication to build a common understanding than the high-quality of collaboration group. The group of deep learning approaches focused on the hypotheses and solved the problems in the course of problems-solving, while the group of superficial learning approaches tried to solve the problems by discussing the formulas and constructing the common understanding. Finally, suggestions for the future research are provided.
關鍵字(中) ★ 合作問題解決
★ 科學模擬
★ 行為模式分析
關鍵字(英) ★ collaborative problem solving
★ science simulation
★ behavioral analysis
論文目次 中文摘要 i
英文摘要 ii
誌 謝 iv
第一章 緒論 1
第一節 、研究背景與動機 1
第二節 、研究目的 4
第三節 、研究問題 5
第四節 、名詞解釋 7
第五節 、研究範圍與限制 9
第二章 文獻探討 10
第一節 、合作問題解決 10
第二節 、電腦模擬與合作科學問題解決 19
第三節 、合作科學問題解決能力的培養 26
第四節 、總結 29
第三章 研究方法 30
第一節 、研究對象 30
第二節 、研究流程 31
第三節 、研究工具 35
第四節 、資料蒐集 40
第五節 、資料處理與分析 41
第四章 研究結果與討論 46
第一節 、高中生線上合作科學問題解決歷程行為 46
第二節 、參與合作問題解決之小組面對不同難易度難度之問題,其歷程與表現是否有差異存在 48
第三節 、將面對簡單活動之合作問題解決小組,依「合作品質」將學習者分成高合作品質組與低合作品質組,其合作問題解決歷程與表現影響 59
第四節 、將面對簡單活動之合作問題解決小組,依「學習方法」將學習者分成深層學習方法組與淺層學習方法組,其合作問題解決歷程與表現影響 71
第五節 、討論 84
第五章 結論與建議 86
第一節 、結論 86
第二節 、建議 88
參考文獻 90
附錄 96
附錄一 合作品質問卷 96
附錄二 物理學習觀點問卷 97
參考文獻 中文部分
王孟茹 (2015)。一對一人機互動國小中年級學童合作問題解決能力電腦化評量。國立臺中教育大學教育資訊與測驗統計研究所碩士在職專班碩士論文,台中市。
邱秉誠(2016)。個人電腦模擬及合作電腦模擬對於合作科學問題解決之影響。國立中央大學網路學習科技研究所碩士論文,桃園縣。
呂瑄瑄 (2015)。一對二人機互動國小中年級學童合作問題解決能力電腦化評量。國立臺中教育大學教育資訊與測驗統計研究所碩士在職專班碩士論文,台中市。
林侑萱(2017)。探索學生在科學情境真人線上合作問題解決之行為轉移模式 ──以臺中市八年級某班學生為例。國立臺中教育大學教育資訊與測驗統計研究所碩士論文,台中市。
林宜儂(2016)。探索科學情境合作問題解決行為模式。國立臺中教育大學教育資訊與測驗統計研究所碩士論文,台中市。
科技部(2016)。科技部與教育部聯合記者會新聞資料--PISA 2015臺灣學生的表現。資料來源:科技部新聞稿 2016 年。
張春興(1996)。教育心理學-三化取向的理論與實踐。台北:東華書局。
張春興(1997)。現代心理學。台北市:東華書局。
教育部(2003)。科學教育白皮書。臺北:教育部。
教育部(2008a)。國民中小學九年一貫課程綱要總綱。臺北市:教育部。
教育部(2008b)。國民中小學九年一貫課程綱要自然與生活科技學習領域。臺北市:教育部。
教育部(2014)。十二年國民基本教育課程綱要總綱。臺北市:教育部。
黃玟捷(2017)。探索臺灣15歲學生在科學情境人機選擇對話模式下合作問題解決之行為。國立臺中教育大學教育資訊與測驗統計研究所碩士論文,台中市。
黃茂在、陳文典(2004)。「問題解決」的能力。教育科學月刊,273,21-41。
吳惠琴(2016)。多代理人互動之合作問題解決 開放式對話電腦化評量。亞洲大學資訊工程學系碩士在職專班碩士論文,台中市。
吳穎沺 (2003)。建構主義式的科學學習活動對國小高年級學生認知結構之影響。國立交通大學教育研究所碩士論文。
彭郁翔(2018)。不同電腦模擬模式對於合作科學問題解決之影響:以眼動進行分析。國立中央大學網路學習科技研究所碩士論文,桃園縣。
溫采婷(2017)。科學模擬遊戲學習歷程之學習分析。國立中央大學網路學習科技研究所碩士論文,桃園縣。
劉晨鐘、吳穎沺、張銘華、張家榮、范姜士燻、邱秉誠、黃福坤、趙伯堯、張志康、賴佳禧、吳素妏 (2015)。電腦模擬支援合作科學問題解決。第十一屆台灣數位學習發展研討會(TWELF 2015)。台灣。
劉湘瑤 (2016)。科學探究的教學與評量。科學研習,55(2),19-27。

英文部分
Ananiadou, K., & Claro, M. (2009). 21st century skills and competences for new millennium learners in OECD countries.
Bandura, A. (2002). Social cognitive theory in cultural context. Applied Psychology: An International Review, 51(2), 269–290.
Bakeman, R., & Gottman, J. M. (1997). Observing interaction: An introduction to sequential analysis: Cambridge university press.
Binkley, M., Erstad, O., Herman, J., Raizen, S., Ripley, M., Miller-Ricci, M., & Rumble, M. .(2012). Defining twenty-first century skills. In Assessment and teaching of 21st century skills.
Bransford, J., & Stein, B. (1984). The IDEAL problem solver. New York:W. H. Freeman.
Chiou, G.-L., Lee, M.-H., & Tsai, C.-C. (2013). High school students’ approaches to learning physics with relationship to epistemic views on physics and conceptions of learning physics. Research in Science and Technological Education, 31, 1-15.
Chen, P., & Zimmerman, B. (2007). A cross-national comparison study on the accuracy of self-efficacy beliefs of middle-school mathematics students. The Journal of Experimental Education, 75(3), 221-244.
Conley, A. M. M., Pintrich, P. R., Vekiri, I., & Harrison, D. (2004). Changes in epistemological beliefs in elementary science students. Contemporary Educational Psychology, 29(2), 186-204.
Chung C.-W., Lee C.-C. and Liu C.-C. (2013). Investigating face-to-face peer interaction patterns in a collaborative Web discovery task: the benefits of a shared display. Journal of Computer Assisted Learning,29, 188-206 .
D′zurilla, T. J., & Goldfried, M. R. (1971). Problem solving and behavior modification. Journal of abnormal psychology, 78(1), 107.
De Jong, T., & Van Joolingen, W. R. (1998). Scientific discovery learning with computer simulations of conceptual domains. Review of educational Research, 68(2), 179-201.
De Luca, V. W. (1992). Survey of technology education problem-solving activities. Technology Teacher, 51(5), 26-30.
Dewey, J. (1933). How we think: A restatement of the relation of reflective thinking to the educational process. Lexington, MA: Heath, 35(64), 690-698.
Dormido, S., & Esquembre, F. (2003). The quadruple-tank process: An interactive tool for control education. Paper presented at the European Control Conference (ECC), 2003.
Eckhardt, M., Urhahne, D., Conrad, O., & Harms, U. (2013). How effective is instructional support for learning with computer simulations? Instructional Science, 41(1), 105-124.
Entwistle, N. J., & Peterson, E. R. (2004). Conceptions of learning and knowledge in higher education: Relationships with study behaviour and influences of learning environments. International journal of educational research, 41(6), 407-428.
Gijlers, H., & de Jong, T. (2013). Using concept maps to facilitate collaborative simulation-based inquiry learning. Journal of the learning sciences, 22(3), 340-374.
Ho, I. T., & Hau, K.-T. (2004). Australian and Chinese teacher efficacy: Similarities and differences in personal instruction, discipline, guidance efficacy and beliefs in external determinants. Teaching and Teacher Education, 20(3), 313-323.
Hofer, B. K., & Pintrich, P. R. (1997). The development of epistemological theories: Beliefs about knowledge and knowing and their relation to learning. Review of educational Research, 67(1), 88-140.
Kim, M., & Tan, H. T. (2013). A collaborative problem-solving process through environmental field studies. International Journal of Science Education, 35(3), 357-387.
Kukkonen, J. E., Kärkkäinen, S., Dillon, P., & Keinonen, T. (2014). The effects of scaffolded simulation-based inquiry learning on fifth-graders′ representations of the greenhouse effect. International Journal of Science Education, 36(3), 406-424.
Labone, E. (2004). Teacher efficacy: Maturing the construct through research in alternative paradigms. Teaching and Teacher Education, 20(4), 341-359.
Lee, D., Huh, Y., & Reigeluth, C. M. (2015). Collaboration, intragroup conflict, and social skills in project-based learning. Instructional Science, 43(5), 561-590.
Lee, O., Buxton, C., Lewis, S., & LeRoy, K. (2006). Science inquiry and student diversity: Enhanced abilities and continuing difficulties after an instructional intervention. Journal of Research in Science Teaching, 43(7), 607-636.
Liang, J.-C., Min-Hsien, L., & Chin-Chung, T. (2010). The Relations Between Scientific Epistemological Beliefs and Approaches to Learning Science Among Science-Major Undergraduates in Taiwan. Asia-Pacific Education Researcher (De La Salle University Manila), 19(1).
Lin, T.-C., & Tsai, C.-C. (2016). Innovative technology-assisted science learning in Taiwan. In Science Education Research and Practices in Taiwan (pp. 189-209): Springer.
Liu, C.-C., Chung, C.-W., Chen, N.-S., & Liu, B.-J. (2009). Analysis of peer interaction in learning activities with personal handhelds and shared displays. Journal of Educational Technology & Society, 12(3).
Liu, C.-Y., Wu, C.-J., Wong, W.-K., Lien, Y.-W., & Chao, T.-K. (2017). Scientific modeling with mobile devices in high school physics labs. Computers & Education, 105, 44-56.
Marton, F. (1981). Phenomenography—describing conceptions of the world around us. Instructional Science, 10(2), 177-200.
Mayer, R. E. (1992). Thinking, problem solving, cognition: WH Freeman/Times Books/Henry Holt & Co.
Mühlpfordt, M. & Wessner, M (2009). The Integration of Dual-interaction Spaces, in Stahl, G. (Ed) Studying Virtual Math Teams. New York, NY: Springer.
National Research Council. (1996). National Science Education Standards. Washington, DC: National Academy Press.
National Research Council (2011). Assessing 21st century skills. Washington, DC: National Academies Press.
O’Neil, H. F., Chuang, S.-h. S., & Baker, E. L. (2010). Computer-based feedback for computer-based collaborative problem solving. In Computer-based diagnostics and systematic analysis of knowledge ,261-279: Springer.
OECD. (2010). PISA 2012 Field Trial Problem Solving Framework. OECD Publishing.
OECD. (2011). The OECD guide to measuring the information society: OECD Publishing.
OECD. (2013). PISA 2015 Collaborative Problem Solving Framework. OECD Publishing.
Owen, S., Dickson, D., Stanisstreet, M., & Boyes, E. (2008). Teaching physics: Students’ attitudes towards different learning activities. Research in Science and Technological Education, 26, 113-128.
Qian, G., & Alvermann, D. (1995). Role of epistemological beliefs and learned helplessness in secondary school students′ learning science concepts from text. Journal of educational psychology, 87(2), 282.
Qin, Z., Johnson, D. W., & Johnson, R. T. (1995). Cooperative versus competitive efforts and problem solving. Review of educational Research, 65(2), 129-143.
Roschelle, J., & Teasley, S. D. (1995). The construction of shared knowledge in collaborative problem solving. Paper presented at the Computer supported collaborative learning.
Rutten, N., Van Joolingen, W. R., & Van Der Veen, J. T. (2012). The learning effects of computer simulations in science education. Computers & Education, 58(1), 136-153.
Ryan, A. G., & Aikenhead, G. S. (1992). Students′ preconceptions about the epistemology of science. Science Education, 76(6), 559-580.
Smetana, L. K., & Bell, R. L. (2012). Computer simulations to support science instruction and learning: A critical review of the literature. International Journal of Science Education, 34(9), 1337-1370.
Stahl, G. (2009). Studying virtual math teams (Vol. 11): Springer Science & Business Media.
Tsai, C. C., & Liu, S. Y. (2005). Developing a multi‐dimensional instrument for assessing students’ epistemological views toward science. International Journal of Science Education, 27(13), 1621-1638.
van Joolingen, W. R., de Jong, T., Lazonder, A. W., Savelsbergh, E. R., & Manlove, S. (2005). Co-Lab: research and development of an online learning environment for collaborative scientific discovery learning. Computers in human behavior, 21(4), 671-688.
Wee, L. K., Goh, G. H., & Lim, E.-P. (2014). Easy Java Simulation, an innovative tool for teachers as designers of gravity-physics computer models. arXiv preprint arXiv:1401.3061.
White, B. Y., Shimoda, T. A., & Frederiksen, J. R. (1999). Enabling students to construct theories of collaborative inquiry and reflective learning: Computer support for metacognitive development. International Journal of Artificial Intelligence in Education (IJAIED), 10, 151-182.
Winsberg, E. (2013). Computer simulations in science. Retrieved from https://stanford.library.sydney.edu.au/entries/simulations-science/
指導教授 吳穎沺 審核日期 2018-12-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明