博碩士論文 105521016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:60 、訪客IP:3.147.69.132
姓名 陳泰霖(Tai-Lin Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 選擇性磊晶成長砷化銦鎵與砷化銦鋁於奈米圖案化鍺模板
(Selective Area Epitaxy of InGaAs and AlInAs on Nano-Patterned Ge Templates)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 互補式金氧半(CMOS)積體電路遵循著摩爾定律(Moore Law)持續微縮電晶體尺寸,在過去數十年的進步已微縮至七奈米技術節點,如何在一定的成本之下,持續提升積體電路的特性並降低其功耗一直是微電子界眾人所關心的議題。目前國際上提出了兩個大方向來尋求突破,一是使用創新的元件結構,另其則是導入新穎的通道材料。在眾多的新材料中,鍺的電洞遷移率較矽為高,被認為最適合取代矽來作為P型通道材料,而具有高電子遷移率的III-V族化合物半導體則可被應用在N型通道電晶體中。為此,將此二種異質材料整合在十二吋矽晶圓上是達成量產規模之選項之一,也成為國際各界積極研發之關鍵技術。
本研究採取的異質整合策略是以有機金屬化學蒸氣沉積法選擇性磊晶成長III-V族化合物半導體,即砷化銦鎵和砷化銦鋁,於具有奈米圖案之鍺模板上。此鍺模板上的鍺薄膜是以化學蒸氣沉積法磊晶於(100)的矽基板上。本論文研究探討模板圖案蝕刻形貌以及基板溫度、V/III族氣體流量比、磊晶速度等成長條件對磊晶形貌與材料品質之影響,並選擇適當磊晶參數成功整合砷化铟鎵與鍺之鰭狀奈米線(80 nm)於矽基板上。
摘要(英) Complementary Metal-Oxide-Semiconductor integrated circuit follow Moore′s Law by decreasing transistor size consistently. With progress in the past few decades,it reach 7nm technology node. How to improve the performace and reduce its power consumption under certain cost has always be a topic in the industry. At present, two major approaches have been proposed to seek breakthroughs internationally. One is to use innovative component structures, and the other is to introduce novel channel materials. Among the proposed materials, high hole mobility Ge and high electron mobility InGaAs has been considered to be the most promising channel materials for p-channel and n-channel MOSFETs, respectively. Therefore,one of the options is the integration of two heterogeneous materials on the 12-inch silicon wafer,and the technique can be the most critical method that industry highly keen to do more research and wider development.
The heterogeneous integration strategy in the study is to selective area epitaxy of InGaAs and AlInAs on nano-patterned Ge templates by metal-organic chemical vapor deposition (MOCVD). Ge film is epitaxially on a (100) silicon substrate by chemical vapor deposition. This dissertation aims to investigate the effect of different Ge templates profile and epitaxy growth parameter like growth temperature, V/III ratio and growth rate to epitaxy layer quality and morphology, and choose appropriate epitaxy parameter to integrate the InGaAs and Ge fin nanowire on the Si substrate successfully.
關鍵字(中) ★ 砷化銦鎵
★ 鍺
★ 選擇性磊晶
關鍵字(英) ★ InGaAs
★ Ge
★ Selective Area Epitaxy
論文目次 摘要 i
Abstract i
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.2.1 材料選擇 2
1.2.2 異質整合技術之文獻回顧 4
1.3 論文架構 7
第二章 選擇性成長三五族材料條件之探討 8
2.1 簡介 8
2.2 試片製備與實驗步驟 10
2.3 選擇性成長砷化銦鋁 14
2.3.1 溫度與五三比之影響 14
2.3.2 成長速率及鋁含量之影響 18
2.4 選擇性成長砷化銦鎵 20
2.4.1 銦含量之影響 20
2.4.2 溫度之影響 22
2.5 佈局設計對於選擇性磊晶之影響 24
2.6 本章總結 26

第三章 選擇性異質結構之成長 27
3.1 前言 27
3.2 砷化銦鎵/砷化銦鋁異質結構磊晶成長 28
3.3 砷化銦鎵/砷化銦鋁異質結構材料特性分析 32
3.4 本章總結 37
第四章 總結 38
參考文獻 39
參考文獻 [1] M. Levinshtein, S.Rumyantsev and M. Shur, ”Handbook Series on Semiconductor Parameters”, World Scientifi c, Singapore, 1996.
[2] N. Waldron, C. Merckling, W. Guo, P. Ong, L. Teugels, S. Ansar, D. Tsvetanova, F. Sebaai, D.H. van Dorp, A Milenin, D. Lin, L. Nyns, J. Mitard, A Pourghaderi, B. Douhard, O. Richard, H. Bender, G. Boccardi, M. Caymax, M. Heyns, W. Vandervorst, K. Barla, N. Collaert and A. Thean, "An InGaAs/InP quantum well finfet using the replacement fin process integrated in an RMG flow on 300mm Si substrates," in VLSI Technology (VLSI-Technology): Digest of Technical Papers, 2014 Symposium on, 2014.
[3] M. L. Huang, S. W. Chang, M. K. Chen, C. H. Fan, H. T. Lin, C. H. Lin, R. L. Chu, K. Y. Lee, M. A. Khaderbad, Z. C. Chen, C. H. Lin, C. H. Chen, L. T. Lin, H. J. Lin, H. C. Chang, C. L. Yang, Y. K. Leung, Y.-C. Yeo, S. M. Jang, H. Y. Hwang and Carlos H. Diaz, ”In0.53Ga0.47As MOSFETs with high channel mobility and gate stack quality fabricated on 300 mm Si substrate”, Symposium on VLSI Technology Digest of Technical Paper, 2015.
[4] V.K. Yang, M. Groenert, C.W. Leitz, A.J. Pitera, M.T. Currie and E.A. Fitzgerald, ”Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates,” J. Appl. Phys, 2003.
[5] M. Yamaguchi, T. Nishioka and M. Sugo, ”Analysis of strained layer superlattice effects on dislocation density reduction in GaAs on Si substrates”, Appl. Phys. Lett, 1989.
[6] L. Czornomaz, N. Daix, K. Cheng, D. Caimi1, C. Rossel, K. Lister, M Sousa and J. Fompeyrine, ”Co-integration of InGaAs n- and SiGe p-MOSFETs into digital CMOS circuits using hybrid dual-channel ETXOI substrates”, IEDM, 2013.
[7] N. Waldron, C. Merckling, L. Teugels, P. Ong, F. Sebaai, K. Barla, N. Collaert and A. Thean, ”Replacement fin processing for III–V on Si: From FinFets to nanowires”, Solid-State Electronics, 2016.
[8] J. G. Fiorenza, J.-S. Park, J. M. Hydrick, J.Li, J. Z. Li, M. Curtin, M. Carroll and A. Lochtefeld, ”Aspect Ratio Trapping: a Unique Technology for Integrating Ge and III-Vs with Silicon CMOS”, ECS Transactions, 2010.
[9] L. Czornomaz, E. Uccelli, M. Sousa, V. Deshpande, V. Djara, D. Caimi, M. D. Rossell, R. Erni and J. Fompeyrine, ”Confined Epitaxial Lateral Overgrowth (CELO): A Novel Concept for Scalable Integration of CMOS-compatible InGaAs-on-insulator MOSFETs on Large-Area Si Substrates”, Symposium on VLSI Technology Digest of Technical Papers, 2015.
[10] S. H. Jones, L. K. Seidel, K. M. Lau and M. Harold, ”Patterned substrate epitaxy surface shapes”, J. Cryst Growth, 1991.
[11] B. Kunert, W. Guo, Y. Mols, R. Langer and K. Barla, ”Integration of III/V Hetero-Structures by Selective Area Growth on Si for Nano- and Optoelectronics”, ECS Transactions, 2016.
[12] Y. Kawaguchi, S. Nambu, H. Sone, M. Yamaguchi, H. Miyake, K. Hiramatsu, N. Sawaki, Y. Iyechika and T. Maeda, ”Sective area growth (SAG) and epitaxial lateral overgrowth (ELO) of GaN using Tungsten mask”, Mat. Res. Soc. Symp. Proc, 1998.
[13] C. Merckling, N. Waldron, S. Jiang, W. Guo, N. Collaert, M. Caymax, E. Vancoille, K. Barla, A. Thean, M. Heyns and W. Vandervorst, ” Heteroepitaxy of InP on Si(001) by selective-area metal organic vapor-phase epitaxy in sub-50nm width trenches: The role of the nucleation layer and the recess engineering”, J. Appl. Phys, 2014.
[14] J. Faucher, T. Masuda and M.L. Lee, ”Initiation strategies for simultaneous control of antiphase domains and stacking faults in GaAs solar cells on Ge”, J. Vac. Sci. Technol. B Nanotechnol. Microelectr, 2016.
[15] M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster,
W. Vandervorst, M. Caymax and M. Heyns, ”Site selective integration of III–V materials on Si for nanoscale logic and photonic devices”, Cryst. Growth Des, 2012.
指導教授 綦振瀛(Jen-Inn Chyi) 審核日期 2019-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明