博碩士論文 105323023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.22.77.34
姓名 許嘉元(Jia-Yuan Syu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以單向度束制壓縮試驗與離散元素電腦模擬 探討摩擦係數與顆粒形狀對顆粒體力學行為的影響
相關論文
★ 以具阻尼顆粒機構實驗驗證多體動力學與離散元素法雙向耦合模擬技術
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究的目的在探討不同顆粒形狀的ABS顆粒體及AISI 1012碳鋼顆粒體在壓克力圓柱容器中受到束制壓力負載的力學行為。實驗中採用的ABS顆粒體包括: 球形、橢圓Ⅰ形、橢圓Ⅱ形、膠囊形、雙球形,此外,實驗中採用的碳鋼顆粒體包括:球形、飛碟形、圓柱形、漢堡形。利用不同形狀的顆粒體進行實驗得到的應變、頂部壓板的位移、負載、底部力,計算出容器壁上三個不同高度位置的力學性質,其中包括:正向壁面壓力、沿著壁面的垂直剪應力、平均垂直應力、側向壓力比、體壁摩擦啟動係數。透過比較不同顆粒形狀的顆粒體的實驗結果以探討顆粒形狀對顆粒體力學行為的影響,此外,建置離散元素電腦模擬,分析三種不同摩擦係數的AISI 1012碳鋼球形顆粒體,並比較其實驗結果。
實驗數據顯示,顆粒邊壁間摩擦係數增加導致邊壁的摩擦效應增加,造成碳鋼顆粒體的負載傳遞效率下降,此外,在不同負載情況下,正向壁面壓力、沿著壁面的垂直剪應力、平均垂直應力均沿顆粒體深度而減少,皆隨負載上升而增加。由不同形狀的ABS顆粒體及碳鋼顆粒體的實驗結果得知,顆粒體的勁度隨負載上升而增加,然而,孔隙率較大的顆粒體,其勁度增加率較小,這是由於較多的空隙增加顆粒重新排列的機率,導致負載下降的情況增加。顆粒形狀對ABS顆粒體的側向壓力比的影響較不明確,但側向壓力比隨深度增加而減少。比較四種形狀的碳鋼顆粒體的側向壓力比,得知球形及飛碟形顆粒體的側向壓力比圓柱形及漢堡形顆粒體的側向壓力比大,這意味著球形及飛碟形的粒體較其他兩種形狀的顆粒體容易側向擠壓容器壁。由ABS顆粒體的體壁摩擦啟動係數的實驗結果得知,體壁摩擦啟動係數越趨近顆粒邊壁間摩擦係數,顆粒體與容器壁接觸越傾向於發生滑動摩擦。
摘要(英) The purpose of this study is to investigate the mechanical behavior of granular materials under confined compression in an acrylic cylinder. The granular materials used in experiments include ABS particles with five kinds of particle shape (spherical, ellipsoidal I, ellipsoidal II, capsule and paired particle) and AISI 1012 steel particles with four kinds of particle shape (spherical, satellite, cylindrical and hamburg particle). In addition, the discrete element method (DEM) is used to model the mechanical behavior of AISI 1012 steel spherical particles with three kinds of friction coefficients under confined compression. The comparison between the DEM simulation and the corresponding experiment is made and discussed.
The study shows that an increase of the particle-wall friction coefficient leads to a decrease in the load transfer efficiency. The normal wall pressure, vertical shear wall traction and average vertical stress decrease with depth of granular assembly and increase with increase of top load. The loading stiffness increases with load. However, a granular assembly with a greater initial porosity leads to a smaller loading stiffness. Particle shape on the lateral pressure ratio of ABS particles has no noticeable effect. However, the lateral pressure ratios of spherical particles and satellite particles are larger than those of cylindrical particles and hamburg particles.
關鍵字(中) ★ 單向度束制壓力實驗
★ 非球形顆粒體
★ 離散元素法
★ 摩擦係數
★ 顆粒形狀
關鍵字(英)
論文目次 摘要 i
Abstract ii
目錄 iii
附表目錄 iv
附圖目錄 v
第一章 緒論 1
1-1顆粒體在容器內的壓縮行為 1
1-2文獻回顧 2
1-3研究動機與目的: 7
第二章 實驗設置、程序及數值模擬架構 8
2.1 實驗設置 8
2.2 實驗設備與儀器 9
2.3 實驗用顆粒體 10
2.4 實驗步驟 11
2.5 顆粒體的力學傳遞性質 13
2.6 不同摩擦係數球形顆粒體之束制壓力實驗的
數值模擬及參數設定 15
第三章 結果與討論 17
3.1 不同摩擦係數顆粒體的
單向度束制壓縮實驗與DEM模擬結果的比較 17
3.2不同顆粒形狀的ABS顆粒體在單向度束制壓縮作用下之力學性質 22
3.3不同顆粒形狀的碳鋼顆粒體在束制壓縮作用下之力學性質 27
第四章 結論32
第五章 參考文獻 34
參考文獻 [1] W. R. Ketterhagen, J. S. Curtis, C. R. Wassgren, A. Kong, P. J. Narayan, and B. C.   
Hancock, “Granular Segregation in Discharging Cylindrical Hoppers: A Discrete Element and Experimental Study,” Chemical Engineering Science, Vol. 62, pp. 6423-6439, 2007.
[2] J. Härtl, “A Study of Granular Solids in Silos with and Without an Insert,” Ph.D. Thesis, The University of Edinburgh, January, 2008.
[3] A. J. Sadowski and J. M. Rotter, “Study of Buckling in Steel Silos under Eccentric Discharge Flows of Stored Solids,” Journal of Engineering Mechanics, Vol. 136, pp. 769-776, 2010.
[4] F. Qin, L. H. Guo, J. P. Chen, and Z. J. Chen, “Pulverization, Expansion of La0.6Y0.4Ni4.8Mn0.2 During Hydrogen Absorption-Desorption Cycle and Their Influences in Thin-Wall Reactors,” International Journal of Hydrogen Energy, Vol. 33, pp. 709-717, 2008.
[5] X. Hu, Z. Qi, F. Qin, and J. Chen, “Mechanism Analysis on Stress Accumulation in Cylindrical Vertical-Placed Metal Hydride Reactor,” Energy and Power Engineering, Vol. 3, pp. 490-498, 2011.
[6] M. Okumura, K. Terui, A. Ikado, Y. Saito, M. Shoji, Y. Matsushita, H. Aoki, T. Miura, and Y. Kawakami, “Investigation of Wall Stress Development and Packing Ratio Distribution in the Metal Hydride Reactor,” International Journal of Hydrogen Energy, Vol. 37, pp. 6686-6693, 2012.
[7] P.A. Cundall and O.D. L.Strack, “A Discrete Numerical Model for Granular Assemblies”, Géotechnique, Vol. 29, pp. 47-65, 1979.
[8] S. A. Masroor, L. W. Zachary, and R. A. Lohnes, “A Test Apparatus for Determining Elastic Constants of Bulk Solids,” pp. 553-558 in Proceedings of the 1987 SEM Spring Conference on Experimental Mechanics, Houston, Texas, USA, June 14-19, 1987
[9] Y.C.Chung , C.K.Lin, P.H.Chou, and S.S.Hsiau, “Mechanical behavior of a granular solid and its contacting deformable Structure under uni-axial compression – Part I: Joint DEM–FEM modelling and experimental validation,” Chemical Engineering Science, Vol.144,pp. 404-420, 2016.
[10] K. Odagi, T. Tanaka, K. Yamane, “DEM simulation of compression test of particles,” Proceedings of World Congress on Particle Technology, Vol 4, Sydney, 2002.
[11] Joanna Wiącek, Marek Molenda, Józef Horabik, Jin Y. Ooi, “Influence of grain shape and intergranular friction on material behavior in uniaxial compression: Experimental and DEM modeling”, Powder Technology, Vol. 217,pp. 435-442,2012.
[12] Y. C. Chung and J. Y. Ooi, “Influence of Discrete Element Model Parameters on Bulk Behavior of a Granular Solid under Confined Compression”, Particulate Science and Technology, Vol. 26, pp. 83-96, 2008.
[13] 周柏先,「顆粒物質受束制壓力負載之力學分析」,國立中央大學,碩士論文,民國101。
[14] 彭瀚泓,「不同形狀及摩擦係數之顆粒物質受束制壓力負載之力學分析」,
國立中央大學,碩士論文,民國102。
[15] G. Dondi, A. Simone, V. Vignali, G. Manganelli, “Numerical and Experimental Study of Granular Mixes for Asphalts”, Powder Technology, Vol. 232, pp. 31-40, 2012.
[16] C.Y. Wu, O.M. Ruddy, A.C. Bentham, B.C. Hancock, S.M. Best, “Modelling the mechanical behaviour of pharmaceutical powders during compaction”, Powder Technology, 152, 107-117, 2005.
[17] Catherine O′Sullivan, Liang Cui “Micro mechanics of granular material response during load reversals: Combined DEM and experimental study”, Powder Technology, 193,289-302, 2009.
[18] Md. M. Sazzad, Md. S. Islam, “Macro and Micro Mechanical Responses of Granular Material under Varying Interparticle Friction”, Journal of Civil Engineering, Vol. 36, pp. 87-96, 2008.
[19] K. Szarf, G. Combe, P. Villard, “Polygons vs. Clumps of Discs: A Numerical Study of the Influence of Grain Shape on the Mechanical Behavior of Granular Materials,” Powder Technology, Vol. 208, pp. 279-288, 2011.
[20] Takao Ueda, Takashi Matsushima, Yasuo Yamada, “Micro structures of granular materials with various grain size distributions”, Powder Technology, 217, 533-539, 2012.
[21] J. Härtl and J. Y. Ooi, “Numerical Investigation of Particle Shape and Particle Friction on Limiting Bulk Friction in Direct Shear Tests and Comparison with Experiments”, Powder Technology, Vol. 212, pp. 231-239, 2011.
[22] 陳宇家,「顆粒物質受自由落體衝擊之力學分析」,國立中央大學,碩士論文,民國102。
[23] J.F. Peters, M. Muthuswamy, J. Wibowo, A. Tordesillas, “Characterization of force chains in granular material”, Physical Review E, 72, 041307, 2005.
[24] 喬歐科技, 中文鋼珠、萬向滾珠型錄下載, 2015年萬向滾珠、鋼珠、旋轉盤與組合架, http://www.holo-pack.com.tw/downloadDMholo.aspx, accessed on Aug 30, 2018。
[25] Biomaterials Properties Database, http://www.zubnistranky.cz/bio.htm#24, accessed on Aug 30, 2018.
[26] MatWeb, http://www.matweb.com/, accessed on Aug 30, 2018.
[27] Engineers Edge,https://www.engineersedge.com/plastic/materials_common_plastic.htm,
accessed on Aug 30, 2018.
[28] 陳彥澈,「一般顆粒體與可破裂顆粒體在單向度束制壓縮作用下之力學行為」,國立中央大學,碩士論文,民國106。
指導教授 鐘雲吉 審核日期 2018-11-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明