博碩士論文 105323078 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:18.119.166.49
姓名 林敬桓(LIN,JING-HUAN)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 磁電發電機之設計與研製
相關論文
★ 雙頻帶微型電磁式發電機之研製★ 經驗模態分解法之清醒與麻醉情形下的腦波特徵判別
★ CMOS-MEMS電容式加速度計之設計與製作★ 銅電鍍製程於微小結構製作之應用
★ 平面雙軸式磁通閘之分析與應用★ 低頻振動能量擷取器之設計
★ 聲波聚焦噴墨搭配菲涅爾透鏡之設計★ 微粒子於溶液中操控之模擬
★ 應用希爾伯特黃轉換以C語言環境開發腦機介面訊號處理★ 平面雙軸式磁通閘之製作與改良
★ 單一自由度微型電熱鑷子之設計與分析★ 加工液濁度檢測器之設計
★ Underwater Position Control of Particles★ 立體微型振動發電機之研製
★ 三維導電微成型技術開發應用於微機電系統之研究★ 用於電火花加工的油質感測器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 磁電發電機透過壓電效應與磁致伸縮效應產生的磁電效應,搭配振動結構作為材料相對位移之媒介,使其成為一磁電發電機,其發電機制為可同時利用振動與磁場兩不同環境源來產生換能作用,相較於傳統上利用單一發電機制,磁電發電機可進一步增強發電機之電壓輸出和轉換效率。本論文並分析比較多層磁電元件在不同磁鐵位置下的發電情形,藉以優化輸出的發電量。
摘要(英) In this paper, a vibration energy harvester using magnetoelectric (ME) transducer is proposed. The ME energy harvester is a multilayer structure which is composed of piezoelectric material and magnetostrictive material. The working principle of the ME harvester is scavenging two different forms of energy, including vibration and magnetic field. Compared to conventional energy harvester using single mechanism, the dual-mode energy harvesting can further enhance the voltage output and conversion efficiency.
關鍵字(中) ★ 磁電效應
★ 振動式發電機
關鍵字(英) ★ Magnetoelectric
★ Vibration generator
論文目次 摘要 i
Abstract ii
致謝 iii
圖目錄 vi
表目錄 x
第一章、緒論 1
1.1 前言 1
1.2 研究動機與目的 1
1.3 壓電效應 4
1.4 磁致伸縮效應 5
1.5 文獻回顧 6
1.6 論文架構 9
第二章、磁電理論 10
第三章、模擬分析 16
3.1 模擬環境與流程介紹 16
3.2 三層元件模擬 17
3.2.1 材料選擇 17
3.2.2 製程步驟 18
3.2.3 光罩設計 18
3.2.4 分割網格與設定固定端 19
3.2.5 分析設定 19
3.3 分析結果 20
第四章、研究方法 25
4.1 多層元件製程 25
4.2 發電量量測架構 27
第五章、實驗結果與討論 28
5.1 多層元件與磁鐵相對位置發電量比較 28
5.1.1 單層、雙層與三層元件在無磁鐵時之發電量量測 30
5.1.2 雙層元件於磁鐵不同位置之發電量量測 32
5.1.3 三層元件於磁鐵不同位置之發電量量測 36
5.1.4 雙層元件對於固定元件、固定磁鐵之發電量量測 38
5.2 三層螺旋結構量測 39
第六章結論與未來展望 48
6.1 結論 48
6.2 未來展望 48
參考文獻 49
參考文獻 [1] G. De Pasquale and A. Somà, "Investigations on energy scavenging methods using MEMS devices," in Semiconductor Conference, 2008. CAS 2008. International, 2008, pp. 163-166.
[2] Z. Deng and M. J. Dapino, "Review of magnetostrictive vibration energy harvesters," Smart Materials and Structures, vol. 26, p. 103001, 2017.
[3] Z. Chu, V. Annapureddy, M. PourhosseiniAsl, H. Palneedi, J. Ryu, and S. Dong, "Dual-stimulus magnetoelectric energy harvesting," MRS Bulletin, vol. 43, pp. 199-205, 2018.
[4] G. Srinivasan, S. Priya, and N. Sun, Composite magnetoelectrics: materials, structures, and applications: Elsevier, 2015.
[5] 邱碧秀, 電子陶瓷材料: 徐氏基金會, 1997.
[6] T. Li, "Study of magnetoelectric composites for sensor and transducer applications," The Hong Kong Polytechnic University, 2005.
[7] B. D. Cullity and C. D. Graham, Introduction to magnetic materials: John Wiley & Sons, 2011.
[8] X. Dai, Y. Wen, P. Li, J. Yang, and G. Zhang, "Modeling, characterization and fabrication of vibration energy harvester using Terfenol-D/PZT/Terfenol-D composite transducer," Sensors and Actuators A: Physical, vol. 156, pp. 350-358, 2009.
[9] Y. Zhu, J. W. Zu, and L. Guo, "A magnetoelectric generator for energy harvesting from the vibration of magnetic levitation," IEEE Transactions on Magnetics, vol. 48, pp. 3344-3347, 2012.
[10] S. D. Moss, J. E. McLeod, and S. C. Galea, "Wideband vibro-impacting vibration energy harvesting using magnetoelectric transduction," Journal of Intelligent Material Systems and Structures, vol. 24, pp. 1313-1323, 2013.
[11] S. Priya, R. Islam, S. Dong, and D. Viehland, "Recent advancements in magnetoelectric particulate and laminate composites," Journal of Electroceramics, vol. 19, pp. 149-166, 2007.
[12] S. Dong, J. Li, and D. Viehland, "Theory Analysis on Magnetoelectric Voltage Coefficients of the Terfoneol-D/PZT Composite Transducer," VIRGINIA POLYTECHNIC INST AND STATE UNIV BLACKSBURG2003.
[13] S. Dong, J.-F. Li, and D. Viehland, "Longitudinal and transverse magnetoelectric voltage coefficients of magnetostrictive/piezoelectric laminate composite: Theory," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 50, pp. 1253-1261, 2003.
[14] G. Liu, C.-W. Nan, N. Cai, and Y. Lin, "Dependence of giant magnetoelectric effect on interfacial bonding for multiferroic laminated composites of rare-earth-iron alloys and lead–zirconate–titanate," Journal of applied physics, vol. 95, pp. 2660-2664, 2004.
[15] C.-W. Nan, G. Liu, and Y. Lin, "Influence of interfacial bonding on giant magnetoelectric response of multiferroic laminated composites of Tb 1− x Dy x Fe 2 and PbZr x Ti 1− x O 3," Applied Physics Letters, vol. 83, pp. 4366-4368, 2003.
[16] M. Silva, S. Reis, C. Lehmann, P. Martins, S. Lanceros-Mendez, A. Lasheras, et al., "Optimization of the magnetoelectric response of poly (vinylidene fluoride)/epoxy/vitrovac laminates," ACS applied materials & interfaces, vol. 5, pp. 10912-10919, 2013.
指導教授 陳世叡(Chen, Shih-Jui) 審核日期 2018-11-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明