參考文獻 |
[1] P. J. Duke and A. G. Michette, “Modern Microscopies,” Ch. 2, 10, 12, 1990.
[2] A. Barty, K. A. Nugent, D. Paganin and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett., 23(11), 817-819, 1998.
[3] W. H. Yeh, J. Carriere and M. Mansuripur, “Polarization microscopy of magnetic domains for magneto-optical disks,” Appl. Optics, 38(17), 3749-3758, 1999.
[4] Y. C. Hsieh and M. Mansuripur, “Image contrast in polarization microscopy of magneto-optical disk data-storage media through birefringent plastic substrates,” Appl. Optics, 36(20), 4839-4852, 1997.
[5] G. M. Holzwarth, D. B. Hill and E. B. McLaughlin, “Polarization-modulated differential-interference contrast microscopy with a variable retarder,” Appl. Optics, 39(34), 6288-6294, 2000.
[6] D. B. Murphy and M. W. Davidson, “Fundamentals of Light Microscopy and Electronic Imaging,” Ch. 10, 153-175, 2001.
[7] V. Daria, C. M. Blanca, O. Nakamura, S. Kawata and C. Saloma, “Image contrast enhancement for two-photon fluorescence microscopy in a turbid medium,” Appl. Optics, 37(34), 7960-7967, 1998.
[8] C. M. Blanca and C. Saloma, “Two-color excitation fluorescence microscopy through highly scattering media,” Appl. Optics, 40(16), 2722-2729, 2001.
[9] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito and J. G. Fujimoto, “Optical Coherence Tomography,” Science, 254(5035), 1178-1181, 1991.
[10] M. Marvin, “Microscopy apparatus,” U.S. Patent US3013467A, 1961.
[11] J. Pawley, “Handbook of Biological Confocal Microscopy,” Ch. 1, 2, 1-37, 2012.
[12] P. Davidovits and M. D. Egger, “Scanning Laser Microscope,” Nature, 223, 831, 1969.
[13] C. H. Lee, C. L. Guo and J. Wang, “Optical measurement of the viscoelastic and biochemical responses of living cells to mechanical perturbation,” Opt. Lett., 23(4), 307-309, 1998.
[14] S. Hell and E. H. K. Stelzer, “Properties of a 4Pi confocal fluorescence microscope,” J. Opt. Soc. Am., 9(12), 2159-2166, 1992.
[15] S. Hell and E. H. K. Stelzer, “Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation,” Opt. Commun., 93(5-6), 277-282, 1992.
[16] S. W. Hell, S. Lindek, C. Cremer and E. H. K. Stelzer, “Measurement of the 4Pi‐confocal point spread function proves 75 nm axial resolution,” Appl. Phys. Lett., 64, 1335-1337, 1998.
[17] C. Sheppard and D. Shotton, “Confocal Laser Scanning Microscopy,” Ch. 5, 1997.
[18] E. H. K. Stelzer and S. Lindek, “Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis: confocal theta microscopy,” Opt. Commun., 111(5-6), 536-547, 1994.
[19] T. Tanaami, S. Otsuki, N. Tomosada, Y. Kosugi, M. Shimizu and H. Ishida, “High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks,” Appl. Optics, 41(22), 4704-4708, 2002.
[20] A. R. Rouse, H. Makhlouf, A. A. Tanbakuchi and A. F. Gmitro, “A multipoint scanner for high frame rate confocal microendoscopy,” Proc. SPIE, 7558, 755809-1, 2010.
[21] M. Ishihara and H. Sasaki, “High-speed surface measurement using a non-scanning multiple-beam confocal microscope,” Opt. Eng., 38(6), 1035-1040, 1999.
[22] C. H. Lee, H. Y. Mong and W. C. Lin, “Noninterferometric wide-field optical profilometry with nanometer depth resolution,” Opt. Lett., 27(20), 1773-1775, 2002.
[23] C. H. Lee and J. Wang, “Noninterferometric differential confocal microscopy with 2-nm depth resolution,” Opt. Commun., 135(4-6), 233-237, 1997.
[24] C. H. Lee and W. C. Lin, “Using differential confocal microscopy to detect the phase transition of lipid vesicle membranes,” Opt. Eng., 40(10), 2077-2083, 2001.
[25] A. Miks, J. Novak and P. Novak, “Analysis of method for measuring thickness of plane-parallel plates and lenses using chromatic confocal sensor,” Appl. Optics, 49(17), 3259-3264, 2010.
[26] Y. Tan, K. Zhu and S. Zhang, “New method for lens thickness measurement by the frequency-shifted confocal feedback,” Opt. Commun., 380, 91-94, 2016.
[27] 耿繼業、何建娃,幾何光學 第三版,全華圖書,2012。
[28] M. Born and E. Wolf, “Principles of Optics,” Ch. 7, 8, 2011.
[29] 氦氖雷射的圓孔繞射圖樣,
取自 https://commons.wikimedia.org/wiki/File:Laser_Interference.JPG
[30] 朱士維,「光學顯微技術的新進展」,台大物理系系刊,76-81,2008。
[31] T. Wilson1 and A. R. Carlini, “Size of the detector in confocal imaging systems,” Opt. Lett., 12(4), 227-229, 1987.
[32] Rayleigh criterion,
取自 http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/Raylei.html。
[33] 傳統光學顯微鏡與共焦顯微鏡所觀察的影像圖,
取自 http://abrc.sinica.edu.tw/icm/app_out/main/theorem.php
[34] Z Stack,
取自 https://cam.facilities.northwestern.edu/588-2/z-stack/
[35] 陳柏菁,「共焦顯微術系統之設計與裝置」,國立台灣大學,碩士論文,民國91年。
[36] Scanning and resolution,
取自 https://myscope.training/legacy/confocal/confocal/image/resolution.php
[37] 雷射二極體尺寸圖,
取自 https://www.thorlabs.com/drawings/e69f54a87f5e4ab6-B75C529A-F263-4939-C02B036CA0407337/CPS635R-SpecSheet.pdf
[38] 線性移動平台規格,http://www.micronixusa.com/motion/assets/docs/datasheets/PZS-90_Datasheet_v1.0_lowres.pdf |