博碩士論文 104323036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.15.156.140
姓名 林慕汶(Mu-Wen Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 太陽選擇性塗層與熱平行堆疊運用於太陽熱電發電系統之實時模擬研究
相關論文
★ 利用銦錫氧化物設計太陽能電池之電極對轉換效率之效益★ 側聚光型太陽能電池系統之聚光元件設計與製作
★ 結合繞射光柵與平凸透鏡之光束分頻元件於聚 光型太陽光電 / 太陽熱混合系統之應用★ 波前檢測應用於氣體折射率量測
★ 多重曲率之聚光元件應用於聚光型太陽能電池系統★ 太陽光模擬系統之設計與製作
★ 有機發光二極體熱特性模擬研究★ 有機發光二極體激子光電特性模擬研究
★ 太陽光與固態照明自動化混光技術研究★ 高分子光柵應用於太陽光分光元件
★ 利用色差分光之太陽能分光系統★ 有機發光二極體光熱電特性整合模擬之研究
★ 隨機奈米粒子模型應用於OLED 出光增益之研究★ 陰影疊紋式力-位移量測技術之研究
★ 繞射分波元件於混合型太陽能系統之應用★ 可撓式白光有機發光二極體光雪與色彩分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究針對太陽熱電發電系統,建構3D熱電模組模擬模型,除了探討在實時模擬中熱電模組的性能變化,並探討應用太陽選擇性塗層及熱平行堆疊時之系統之熱分析、發電情形及熱電轉換效率,並以使用軟體中之太陽表面與表面的輻射來模擬實時的熱電發電。在本研究之模擬中,除了探討太陽輻照度對於熱電模組的影響,亦探討太陽選擇性塗層對於系統接收面的吸熱影響,最後使用熱電晶片與晶片之間的熱平行堆疊提升整個系統的轉換效率。根據模擬結果,發現使用高吸收率、低發射率的太陽選擇性塗層可有效提升熱電發電系統的性能;而在邊界參數不變下,使用熱平行堆疊亦可有效提升系統之轉換效率,模擬中當使用11片熱電晶片的堆疊,可以達到8.3%的轉換效率。於實驗,本研究成功建構一個太陽熱電發電裝置,使用Fresnel lens聚光於有太陽選擇性塗層之熱電模組上,以量測系統效能。其實驗結果與模擬結果吻合,並驗證了熱平行堆疊法可有效提高系統之輸出電壓及轉換效率值。
摘要(英) The purpose of this research is to analyze the performance thermoelectric power generation systems, and to use solar-selective coating and thermally parallel stacking arrangement to improve the efficiency of power generation. In simulation, we built a model of a commercial thermoelectric module, TGM-199-1.4-1.5, simulated real-time power generation, and analyzed thermal effect of a solar thermoelectric generator (STEG). By using solar-selective coating materials with different absorptance and emittance, the thermal energy was varied absorbed by the system. Besides, by means of thermally parallel stacking arrangement, thermal energy can be transferred vertically downwards, making more efficient use of solar thermal energy. In the experiment, we successfully constructed a solar thermoelectric power generation system, with the treatments of solar-selective coating and thermally parallel stacking arrangement. The measured results agreed with the simulated ones.
According to the simulation results, it can be known that when a coating material with high absorptance and low emittance is used, the effective heat flux absorbed by the system can be increased, thereby increasing the open circuit voltage. According to the simulated and experimental results of the thermally parallel stacking arrangement, the more the number of stacked modules are, the higher the open circuit voltage is. Then, the conversion efficiency is also increased. The simulated results show that when 11 pieces of thermoelectric modules are stacked, the maximum output power is 0.71 W, and the conversion efficiency reaches 8.3%.
關鍵字(中) ★ 熱電模擬
★ 熱電發電系統
★ 太陽能選擇性塗層
★ 實時模擬
關鍵字(英)
論文目次 摘要 I
ABSTRACT III
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XII
第1章 緒論 1
1.1 前言 1
1.2 研究背景與動機 1
1.3 文獻探討 4
1.3.1 熱電材料發展歷史 4
1.3.2 熱電發電系統之設計 6
1.3.3 太陽能熱電發電系統之模擬與量測 11
1.4 論文架構 14
第2章 基礎理論與原理 15
2.1 熱電效應 15
2.1.1 Seebeck effect 15
2.1.2 Peltier effect 16
2.1.3 Thomson effect 17
2.1.4 Thomson relationships 18
2.2 熱電材料性質 19
2.2.1 熱電優值 19
2.2.2 碲化鉍(Bi2Te3)材料 20
2.2.3 碲化鉛(PbTe)材料 20
2.2.4 矽鍺合金(SiGe)材料 21
2.3 熱電物理性質 21
2.3.1 晶格振動之量子化與聲子 21
2.3.2 電傳導理論 22
2.3.3 熱傳導理論 23
2.4 太陽能熱電發電系統運作原理 24
2.4.1 熱傳遞的機制 24
2.4.2 太陽選擇性塗層的傳熱和效率 29
2.4.3 STEG的性能表徵 29
第3章 模擬設計架構與結果 31
3.1 熱電發電模擬方法 31
3.1.1 熱電晶片之命名與設計 31
3.1.2 溫度對熱電模組發電的影響 33
3.2 太陽熱電發電模擬 34
3.2.1 太陽輻照度對溫度的影響 34
3.2.2 太陽能熱電發電系統的實時模擬與結果 37
3.2.3 太陽選擇性塗層結合的影響 40
3.2.4 熱平行堆疊的熱電模組 44
3.3 小結 48
第4章 量測系統與實驗方法 49
4.1 熱電晶片之發電特性量測 50
4.2 太陽光模擬光源之量測 51
4.3 實時的STEG系統的量測 53
4.4 小結 55
第5章 實驗結果與模擬修正 56
5.1 熱電晶片之特性量測 56
5.2 太陽光下之實驗量測 57
5.2.1 太陽能選擇性塗層(SSC)與聚焦透鏡對熱電模組的影響 57
5.2.2 熱電晶片的熱平行堆疊 60
5.3 實時STEG的量測結果與分析 62
5.4 小結 65
第6章 結論與未來展望 67
6.1 結論 67
6.2 未來展望 68
參考文獻 70
參考文獻 [1] Web page from: https://blog.xuite.net/bigbearpan/twblog/157053951-奈米熱電材料研發
[2] Web page from: TechNews: https://technews.tw/2017/07/20/this-solar-cell-can-capture-all-wavelengths-of-solar-spectrum.
[3] Web page from: https://www.itri.org.tw/chi/Content/MsgPic01/Contents.aspx?SiteID=1&MmmID=620624053553646440&MSid=707041613241616517.
[4] J.P. Heremans, C. M. Thrush, D. T. Morelli and M.C. Wu, PRL 88, pp.216801-1, 2002.
[5] Rama Venkatasubramanian, E. Siivola, T. Golpitts,B. O′Qinn, Nature 413, pp. 597-601, 2001.
[6] T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge, Science, 297, pp.2229-2231, 2002.
[7] Richman.R, “Prospects for efficient thermoelectric materials in the near term”, In DARPA/DOE High Efficient Thermoelectric Workshop, San Diego, CA., pp. 1047-1051, 2002.
[8] Mildred S. Dresselhaus,Gang Chen, Ming Y.Tang, Ronggui Yang, Hohyun Lee, Dezhi Wang,Zhifeng Ren, Jean-Pierre Fleurial,and Pawan Gogna, “New Directions for Low-Dimensional Thermoelectric Materials”, ADVANCED MATERIALS Vol.19, pp. 1043-1053, 2007.
[9] X. Zhang, L. Zhao,"Thermoelectric materials: Energy conversion between heat and electricity,"Journal of Materiomics, vol. 1, no. 1, pp. 92-105, 2015.
[10] L.D. Zhao, V.P. Dravid, M.G. Kanatzidis, “The panoscopic approach to high performance thermoelectrics”, Energy Environ Sci, pp. 251-268, 2014.
[11] J.P. Heremans, M.S. Dresselhaus, L.E. Bell, D.T. Morelli, “When thermoelectrics reached the nanoscale”, Nat Nanotechnol, pp. 471-473, 2013.
[12] L.D. Hicks, M.S. Dresselhaus, “Effect of quantum-well structures on the thermoelectric figure of merit”, Phys Rev B, pp. 12727-12731, 1993.
[13] L.D. Hicks, M.S. Dresselhaus, “Thermoelectric figure of merit of a one-dimensional conductor”, Phys Rev B, pp. 16631-16634, 1993.
[14] K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, “Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit”, Science, pp. 818-821, 2004.
[15] Y.Z. Pei, X.Y. Shi, A. LaLonde, H. Wang, L.D. Chen, G.J. Snyder, “Convergence of electronic bands for high performance bulk thermoelectrics”, Nature, pp. 66-69, 2011.
[16] Lertsatitthanakorn C, Jamradloedluk J, Rungsiyopas M, “Electricity generation from a solar parabolic concentrator coupled to a thermoelectric module”, Energy Procedia, 2014.
[17] Kraemer D, Jie Q, McEnaney K, Cao F, Liu W, Weinstein LA, Loomis J, Ren Z, Chen G, “Concentrating solar thermoelectric generators with a peak efficiency of 7.4%”, Nat Energy, pp. 1-4, 2016.
[18] Aaditya A.Candadai, V. PraveenKumar, Harish C. Barshilia , “Performance evaluation of a natural convective-cooled concentration solar thermoelectric generator coupled with a spectrally selective high temperature absorber coating”, pp. 2016.
[19] Nia MH, Nejad AA, Goudarzi AM, Valizadeh M, Samadian P, “Cogeneration solar system using thermoelectric module and fresnel lens”, Energy Convers Manag, (2014).
[20] Date A, Date A, Dixon C, Akbarzadeh A, “Theoretical and experimental study on heat pipe cooled thermoelectric generators with water heating using concentrated solar thermal energy”, Sol Energy, (2014).
[21] Manikandan S, Kaushik SC, “Energy and exergy analysis of solar heat pipe based annular thermoelectric generator system”, Sol Energy, (2016).
[22] Li G, Zhang G, He W, Ji J, Lv S, Chen X, Chen H, “Performance analysis on a solar concentrating thermoelectric generator using the micro-channel heat pipe array”, Energy Convers Manag, (2016).
[23] Shifa Fan, Yuanwen Gao, “Numerical simulation on thermoelectric and mechanical performance of annular thermoelectric generator”, (2018).
[24] Dongfang Sun, “The real-time study of solar thermoelectric generator”, (2017).
[25] Kraemer, D., et al., “High-performance flat-panel solar thermoelectric generators with high thermal concentration”, Nature Materials, (2011).
[26] Liu LN, “Evaluation of uncertainty in determination of thermal conductivity of alumina ceramic by flash method”, Industrial measurement, pp. 50-51, (2013).
[27] Xiao, J., et al., “Thermal design and management for performance optimization of solar thermoelectric generator”, Applied Energy, pp. 33-38, (2012).
[28] Chen, W., et al., “Modeling and simulation for the design of thermal-concentrated solar thermoelectric generator”, Energy, pp. 287-297, (2014).
[29] D.M.Rowe, “CRC Handbook of Thermoelectrics”, (1994).
[30] Hawkins and Staff Hawkins Electrical Guide Number One (New York:Theo.Audel and Company,1917), Florida Center for Instructional Technology(2009)
[31] 吳毓恆, “BixSb2-xTe3塊材及摻雜Ce3Al之熱電物性的研究”,國立台北教育大學應用物理暨化學研究所,碩士論文,(2012)。
[32] E.Altenkirch, “Physikalische Zeitschrift”, Vol.12, pp. 920-924, (1911).
[33] 朱旭山, “熱電材料與元件之發展與應用”. 熱管理技術專題,工業材料雜誌, 220期, pp. 93-103, (2004).
[34] Web page from SOLIDWORKS HELP: http://help.solidworks.com/HelpProducts.aspx
[35] Frank. P Incropera, “Fundamentals of Heat and Mass Transfer”, United States, 2006.
[36] G. Chen, “Theoretical efficiency of solar thermoelectric energy generators”, J. Appl. Phys., pp. 1-8, 2011.
[37] L. Baranowski, G. Snyder, S. Toberer, “Concentrated solar thermoelectric generators”, Energy Environ. Sci., pp. 9055-9067, 2012.
[38] N. Selvakumar, HarishC.Barshilia, “Review of physical vapor deposited(PVD) spectrally selective coatings for mid- and high-temperature solar thermal applications”, 2012.
[39] 美商國家儀器產品介紹,取自:美商國家儀器股份有限公司台灣分公司:http://sine.ni.com/nips/cds/view/p/lang/zht/nid/208787.
[40] 美商國家儀器技術支援,取自:美商國家儀器股份有限公司台灣分公司:http://digital.ni.com/public.nsf/allkb/E50E98419639D0F9862574440010D25B.
指導教授 韋安琪 審核日期 2019-1-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明