博碩士論文 105624602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:18.188.44.223
姓名 哈帝斯(Hadis)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 利用台灣西南部二仁溪之階地分析探討全新世構造運動
(Holocene Tectonics Inferred from Fluvial Terrace Analysis in the Erhjen River (二仁溪), Southwestern Taiwan)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 菲律賓海板塊每年以約8cm/year的速率向歐亞板塊聚合,並且形成了台灣造山帶。板塊隱沒造成的縮短變形主要集中於台灣東部的花東縱谷、板塊縫合帶以及西部麓山帶前緣。此板塊聚合作用於西部麓山帶南側形成一系列的逆衝斷層,並藉由2000年至2010年的大地測量數據可觀察到每年6公分的速率向西移動以及每年2公分之速率抬升。本研究的目標為利用局部河流下切速率及水準測量資料來了解古亭坑斷層帶在全新世的變形行為。位於西部麓山帶南段的二仁溪流經數個地質構造,包含古亭坑斷層、龍船斷層及小滾水背斜,本研究將二仁溪河階區分為四個群集與四個子群集,在靠近古亭坑斷層處共有10處的地形面向西北傾斜1º至4º,誤差為0.02 º。根據河階沉積物中的碳十四定年結果得知最古老的河階(T1a)老於2200 B.P.、最年輕的河階(T4a)不超過800B.P.,上游至下游的地形剖面顯示河階坡度從T4至T1逐漸增加,T4a傾斜1.98°、T1a傾斜為4.28°。我們藉由一組與地形測繪符合之碳十四定年結果來計算二仁溪的河流局部下切速率,計算的結果顯示河流局部下切速率在2ka至1ka期間為2~6 mm/year,而1ka至今則劇增為25~27 mm/year。假設碳十四定年的結果能代表河階沉積物之真實年代,針對二仁溪在1 ka至今下切速率據增之現象,本研究提出了三個可能的假設: (1)河道坡度的改變、(2)存在向西傾斜的逆衝斷層以及(3)斷層活動性的改變。
摘要(英) The Taiwan orogenic belt is the result from the westward convergence of the Philippine Sea Plate towards the Eurasian Plate at a rate of ~8 cm/yr. Shortening is mostly consumed along the Longitudinal Valley in Eastern Taiwan, the plate suture, and across the Western Foothills, at the mountain piedmont. In the southern Western Foothills, this convergence caused a series of thrust systems and westward movement reaching up to 6 cm/yr and 2 cm/yr local uplift rate based on geodetic data during 2000 – 2010. The Erhjen River, which is located in the south part of the Western Foothills, flows across several geological structures which are the Gutingkeng fault, Lungchuan fault, and Hsiaokunshui anticline. We found that four groups and four sub-groups of terrace level were developed. By observing these terraces we aim at better understanding the Holocene deformation across the Gutingkeng fault zone. We observe that 10 geomorphic surfaces are tilted with slope values in the range 1º - 4º ± 0.02º and mostly tilted to the NW direction near the Gutingkeng fault zone. Based on radiocarbon dating from a previous study and from our work, we estimate the age of the oldest terrace (T1a) to more than 2200 Years BP, while the youngest terrace (T4a) is less than 800 Years BP. Euclidian topographic profile from upstream to downstream shows that the terrace slope increases from T4 to T1, with a slope of 1.98o for T4a and 4.28o for T1a. We obtain local incision rate of four geomorphic surface where the radiocarbon dates are consistent with the geomorphic mapping. The calculation results show that the local incision rate at three sites are similar, ranging from 25 – 27 mm/yr, while local incision rate is slower at the forth site, at 15.3 mm/yr. Leveling data during 2004 - 2016 shows uplift rates of the same order in this area reaching 25.1 – 34.2 mm/yr, with the west side uplifted relative to the east side, while based on geology Gutingkeng fault is an east dipping thrust. We propose three working hypotheses that could explain the Erhjen River local incision rate in our study. These hypotheses include a change in river slope, the existence of a west-dipping thrust fault, and/or a change in the fault activity.
關鍵字(中) ★ 二仁溪
★ 全新世大地構造
★ 河流階地分析
關鍵字(英) ★ Erhjen River
★ Holocene Tectonics
★ Terrace Analysis
論文目次 題目 ii
Abstract iii
Acknowledgments iv
Table of Contents v
List of Figures vii
List of Tables xi
Chapter 1 : Introduction 1
1.1 Background of Study 1
1.2 Geological Setting of Taiwan 3
1.3 Geological Setting of Southwest Taiwan 5
1.3.1 Geological Deformation History of Southwest Taiwan 10
1.3.2 Rapid Tectonic Deformation in Southwest Taiwan 13
1.4 River Terrace study in Southwest Taiwan 16
1.5 Geomorphic Setting of the Erhjen River 22
1.6 Research Objectives 25
Chapter 2 : Methodology 27
2.1 Field Survey 27
2.2 Erhjen River Terrace Mapping 28
2.3 Tilted Terrace mapping 30
2.4 Radiocarbon Dating (14C) 32
Chapter 3 : Results and Discussions 34
3.1 Erhjen River Terrace Classification Map 34
3.2 Radiocarbon Dating Results 39
3.3 Tilted Terrace at the midstream of Erhjen River 45
3.4 Discussion 55
3.5 Limitation 62
Chapter 4 : Conclusions 64
References 66
Appendixes 72
Appendix A: Terrace Map (Attached) 73
Appendix B: Leveling Data Station Map (Attached) 74
參考文獻 Biete, C., Alvarez-Marron, J., Brown, D., & Kuo-Chen, H. (2018). The Structure of Southwest Taiwan: The Development of a Fold-and-Thrust Belt on a Margins Outer Shelf and Slope. Tectonics, 37(7), 1973–1993. https://doi.org/10.1029/2017TC004910

Bird, M. I. (2013). Charcoal. Encyclopedia of Quaternary Science: Second Edition, (December 2013), 353–360. https://doi.org/10.1016/B978-0-444-53643-3.00047-9

Burbank, D., Anderson, R. (2001). Tectonic Geomorphology.

Casciello E, Pappone G., Z. a. (2002). Structural features of a shear-zone developed in an argillaceous medium : the southern portion of the Scorciabuoi fault (Southern Apennines). Bollettino Società Geologica Italiana, Volume Spe, 659–667.

Chen, W., Ridgway, K. D., Chen, Y., & Shea, K. (2001). Systems of the Pliocene-Pleistocene collisional marine foreland basin of Taiwan, (10), 1249–1271.

Chen, Y. C., Sung, Q., & Cheng, K. Y. (2003). Along-strike variations of morphotectonic features in the Western Foothills of Taiwan: Tectonic implications based on stream-gradient and hypsometric analysis. Geomorphology, 56(1–2), 109–137. https://doi.org/10.1016/S0169-555X(03)00059-X

Chiang, C. S., & Yu, H. S. (2006). Morphotectonics and incision of the Kaoping submarine canyon, SW Taiwan orogenic wedge. Geomorphology, 80(3–4), 199–213.
https://doi.org/10.1016/j.geomorph.2006.02.008

Ching, K. E., Gourley, J. R., Lee, Y. H., Hsu, S. C., Chen, K. H., & Chen, C. L. (2016). Rapid deformation rates due to development of diapiric anticline in southwestern Taiwan from geodetic observations. Tectonophysics, 692, 241–251. https://doi.org/10.1016/j.tecto.2015.07.020

Church, J. A., & White, N. J. (2011). Sea-Level Rise from the Late 19th to the Early 21st Century. Surveys in Geophysics, 32(4–5), 585–602. https://doi.org/10.1007/s10712-011-9119-1

Church, M. (2013). Refocusing geomorphology: Fieldwork in four acts. Geomorphology, 200, 184–192.
https://doi.org/10.1016/j.geomorph.2013.01.014

Delcaillau, B., Deffontaines, B., Floissac, L., Angelier, J., Deramond, J., Souquet, P., Lee, J. F. (1998). Morphotectonic evidence from the lateral propagation of an active frontal fold; Pakuashan anticline, foothills of Taiwan. Geomorphology, 24(4), 263–290. https://doi.org/10.1016/S0169-555X(98)00020-8

Diao, H., Kobayashi, H., & Koketsu, K. (2018). Rupture process of the 2016 Meinong, Taiwan, earthquake and its effects on strong ground motions. Bulletin of the Seismological Society of America, 108(1), 163–174. https://doi.org/10.1785/0120170193

Hopkins, A. J., & Snyder, N. P. (2016). Performance evaluation of three DEM-based fluvial terrace mapping methods. Earth Surface Processes and Landforms, 41(8), 1144–1152. https://doi.org/10.1002/esp.3922

Hsieh, M. L., Ching, K. E., Chyi, S. J., Kang, S. C., & Chou, C. Y. (2014). Late Quaternary mass-wasting records in the actively uplifting Pa-chang catchment, southwestern Taiwan. Geomorphology, 216, 125–140. https://doi.org/10.1016/j.geomorph.2014.03.040

Hsieh, M.-L., & Knuepfer, P. L. K. (2001). Late Holocene river terraces in the Erhjen River basin, southwestern Taiwan; an example of river response to active uplift and climate change. Geological Society of America, 1997 Annual Meeting Abstracts with Programs - Geological Society of America, 29, 344. https://doi.org/10.1016/S0169-555X(00)00105-7

Hsieh, M.-L., & Knuepfer, P. L. K. (2002). Synchronicity and morphology of Holocene river terraces in the southern Western Foothills, Taiwan: A guide to interpreting and correlating erosional river terraces across growing anticlines. Geological Society of America, 2002 Annual Meeting Abstracts with Programs - Geological Society of America

Hsu, Y. J., Lai, Y. R., You, R. J., Chen, H. Y., Teng, L. S., Tsai, Y. C., … Su, H. H. (2018). Detecting rock uplift across southern Taiwan mountain belt by integrated GPS and leveling data. Tectonophysics, 744(February), 275–284. https://doi.org/10.1016/j.tecto.2018.07.012

Hsu, Y. J., Yu, S. B., Kuo, L. C., Tsai, Y. C., & Chen, H. Y. (2011). Coseismic deformation of the 2010 Jiashian, Taiwan earthquake and implications for fault activities in southwestern Taiwan. Tectonophysics, 502(3–4), 328–335. https://doi.org/10.1016/j.tecto.2011.02.005

Hsu, Y. J., Yu, S. B., Simons, M., Kuo, L. C., & Chen, H. Y. (2009). Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and earthquake focal mechanisms. Tectonophysics, 479(1–2), 4–18. https://doi.org/10.1016/j.tecto.2008.11.016

Huang, S. T., Yang, K. M., Hung, J. H., Wu, J. C., Ting, H. H., Mei, W. W., … Lee, M. (2004). Deformation front development at the northeast margin of the Tainan basin, Tainan-Kaohsiung area, Taiwan. Marine Geophysical Researches, 25(1–2), 139–156. https://doi.org/10.1007/s11001-005-0739-z

Huang, M. H., Dreger, D., Bürgmann, R., Yoo, S. H., & Hashimoto, M. (2013). Joint inversion of seismic and geodetic data for the source of the 2010 march 4,Mw6.3 Jia-Shian, SW Taiwan, earthquake. Geophysical Journal International, 193(3), 1608–1626. https://doi.org/10.1093/gji/ggt058

Jia, L., Zhang, X., He, Z., He, X., Wu, F., Zhou, Y., Zhao, J. (2015). Late Quaternary climatic and tectonic mechanisms driving river terrace development in an area of mountain uplift: A case study in the Langshan area, Inner Mongolia, northern China. Geomorphology, 234, 109–121. https://doi.org/10.1016/j.geomorph.2014.12.043

Kumar, Satish. (2005). Quaternary geomorphic events and river terraces in Northwest Himalaya: a case study of the Beas basin India. Unpublished master thesis

Lacombe, O., Angelier, J., Chen, H. W., Deffontaines, B., Chu, H. T., & Rocher, M. (1997). Syndepositional tectonics and extension-compression relationships at the front of the Taiwan collision belt: A case study in the Pleistocene reefal limestones near Kaohsiung, SW Taiwan. Tectonophysics, 274(1–3), 83–96. https://doi.org/10.1016/S0040-1951(96)00299-5

Le Béon, M., Huang, M.-H., Suppe, J., Huang, S.-T., Pathier, E., Huang, W.-J., Hu, J.-C. (2017). Shallow geological structures triggered during the Mw 6.4 Meinong earthquake, southwestern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 28(5), 663–681. https://doi.org/10.3319/TAO.2017.03.20.02

Li, T., Chen, J., Thompson, J. A., Burbank, D. W., & Yang, X. (2013). Quantification of three-dimensional folding using fluvial terraces: A case study from the Mushi anticline, northern margin of the Chinese Pamir. Journal of Geophysical Research: Solid Earth, 118(8), 4628–4647. https://doi.org/10.1002/jgrb.50316

Miller, K. G. (2008). Sea level change, last 250 million years. Encyclopedia of Paleoclimatology and Ancient Environments, (Ed V. Gornitz, Ed. (Springer, Berlin, 2008)), 879–887.

Monforte, P. M., Oliveira, U. R., & Rocha, H. M. (2015). Failure Mapping Process: an Applied Study in a Shipyard Facility. Brazilian Journal of Operations & Production Management, 12(1), 124. https://doi.org/10.14488/BJOPM.2015.v12.n1.a12

Mouthereau, F., Lacombe, O., Deffontaines, B., Angelier, J., & Brusset, S. (2001). Deformation history of the southwestern Taiwan foreland thrust belt: Insights from tectono-sedimentary analyses and balanced cross-sections. Tectonophysics, 333(1–2), 293–322. https://doi.org/10.1016/S0040-1951(00)00280-8

Necea, D., Fielitz, W., Kadereit, A., Andriessen, P. A. M., & Dinu, C. (2013). Middle Pleistocene to Holocene fluvial terrace development and uplift-driven valley incision in the SE Carpathians, Romania. Tectonophysics, 602, 332–354. https://doi.org/10.1016/j.tecto.2013.02.039

Oldknow, C. J., & Hooke, J. M. (2017). Alluvial terrace development and changing landscape connectivity in the Great Karoo, South Africa. Insights from the Wilgerbosch River catchment, Sneeuberg. Geomorphology, 288, 12–38. https://doi.org/10.1016/j.geomorph.2017.03.009

Sandmann, S., Nagel, T. J., Froitzheim, N., Ustaszewski, K., & Münker, C. (2015). Late Miocene to Early Pliocene blueschist from Taiwan and its exhumation via forearc extraction. Terra Nova, 27(4), 285–291. https://doi.org/10.1111/ter.12158

Sequences, C. (1984). © 1984 The International Association of Sedimentologists. ISBN : 978-0-632-01286-2. https://doi.org/10.1002/9781444303810

Shalaby, A., & Shawky, M. (2014). Morphotectonics of Kid drainage basin, Southeastern Sinai: A landscape evolution coeval to Gulf of Aqaba - the Dead Sea rift. Journal of African Earth Sciences, 100, 289–302. https://doi.org/10.1016/j.jafrearsci.2014.06.025

Shyu, J. B. H., Sieh, K., Avouac, J. P., Chen, W. S., & Chen, Y. G. (2006). Millennial slip rate of the Longitudinal Valley fault from river terraces: Implications for convergence across the active suture of eastern Taiwan. Journal of Geophysical Research: Solid Earth, 111(8). https://doi.org/10.1029/2005JB003971

Sibuet, J. C., & Hsu, S. K. (2004). How was Taiwan created? Tectonophysics, 379(1–4), 159–181. https://doi.org/10.1016/j.tecto.2003.10.022

Strick, R. J. P., Ashworth, P. J., Awcock, G., & Lewin, J. (2018). Morphology and spacing of river meander scrolls. Geomorphology, 310, 57–68. https://doi.org/10.1016/j.geomorph.2018.03.005

Tsai, M.-C., Shin, T.-C., & Kuo, K.-W. (2017). Pre-seismic strain anomalies and coseismic deformation of Meinong earthquake from continuous GPS. Terrestrial, Atmospheric and Oceanic Sciences, 28(5), 763–785.
https://doi.org/10.3319/TAO.2017.04.19.01

Tziavou, O., Pytharouli, S., & Souter, J. (2018). Unmanned Aerial Vehicle (UAV) based mapping in engineering geological surveys: Considerations for optimum results. Engineering Geology, 232(November 2017), 12–21. https://doi.org/10.1016/j.enggeo.2017.11.004

Vandenberghe, J. (2015). River terraces as a response to climatic forcing: Formation processes, sedimentary characteristics, and sites for human occupation. Quaternary International, 370, 3–11. https://doi.org/10.1016/j.quaint.2014.05.046

Yang, K.-M., Huang, S.-T., Wu, J.-C., Ting, H.-H., & Mei, W.-W. (2006). Review and New Insights on Foreland Tectonics in Western Taiwan. International Geology Review, 48(10), 910–941. https://doi.org/10.2747/0020-6814.48.10.910

Yu, H. S. (2004). Nature and distribution of the deformation front in the Luzon Arc-Chinese continental margin collision zone at Taiwan. Marine Geophysical Researches, 25(1–2), 109–122. https://doi.org/10.1007/s11001-005-0737-1
指導教授 黃 文 正 波玫琳(Wen-Jeng Huang Maryline Le Béon) 審核日期 2019-1-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明