博碩士論文 103386003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.134.104.173
姓名 鍾瑋杰(Wei-Chieh Chung)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以電漿光觸媒系統重組沼氣為合成氣之效率評估
(Evaluation on the efficiency of syngas generation from biogas via a hybrid plasma photocatalysis system)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 沼氣為有機物質經微生物厭氧消化之產物,其主成分為甲烷、二氧化碳、水氣及微量之硫化氫及氨,可做為燃料產生能量。然而其含有二氧化碳降低發熱值,且硫化氫為腐蝕性氣體可造成管線及鍋爐損壞。轉化沼氣為合成氣同時去除硫化氫可提升其發熱值及燃燒系統之穩定性。目前可行之沼氣轉化技術包括觸媒重組、光觸媒重組及非熱電漿重組,但是這些技術皆有其發展限制。結合光觸媒與非熱電漿為一複合反應器可引致電漿與光觸媒間之交互作用,進而改善兩技術之缺點,提升沼氣重組效率。本研究開發非熱電漿反應器進行沼氣重組產生合成氣,並製備LaFeO3 (LFO)、Ag-LaFeO3 (ALFO)及Ag-LaFeO3/TiO2 (ALFTO)光觸媒分別填入電漿反應器以探討對合成氣生成效率之影響。實驗結果顯示未填入光觸媒之電漿反應器在不含硫化氫之沼氣流率為350 mL/min時有較高之合成氣能量效率(14.5 mol/kWh),填入ALFTO光觸媒可進一步提升至20.2 mol/kWh。通入硫化氫後合成氣之能量效率分別下降至13.4及17.4 mol/kWh,含硫副產物之生成也降低電漿光觸媒系統可穩定操作之時間。加入BaTa0.3Nb0.7O3 (BTaNO)光觸媒雖降低合成氣之產率,但可轉化含硫副產物進而提升重組系統對硫化氫之抵抗性。協同測試結果指出光觸媒具有熱催化及光催化特性,且複合反應器之合成氣能量效率高於電漿、熱催化及光催化之能量效率總和,顯示複合反應氣存在協同作用。光觸媒之物化特性分析指出電漿及光觸媒之間存在良好之交互作用,電漿可改變光觸媒之表面結構,光觸媒亦可增加反應速率及提供多反應途徑。最後,TGA分析結果指出添加BTaNO可減少含硫副產物之生成進而增加反應系統穩定操作時間。
摘要(英) Biogas comes from the anaerobic digestion of organics and is composed of methane, carbon dioxide, water vapor and trace amount of hydrogen sulfide and ammonia. Biogas can serve as a fuel to generate energy, nevertheless, carbon dioxide reduces its heating value while H2S is corrosive to pipeline and boiler. Converting biogas into syngas and removing H2S can increase its heating value and the stability of combustion system. So far, available biogas reforming technologies include catalysis, photocatalysis and nonthermal plasma, but all of these methodologies have shortcomings for field application. Further combination of photocatalyst with nonthermal plasma into a hybrid reactor can induce interactions between plasma and photocatalyst to solve the bottlenecks and to enhance biogas reforming efficiency. In this study we developed a nonthermal plasma reactor to reform biogas into syngas, and prepared LaFeO3 (LFO), Ag-LaFeO3 (ALFO) and Ag-LaFeO3/TiO2 (ALFTO) to pack into plasma reactor individually to explore their influence on syngas generation rate. Results show that energy efficiency achieved with plasma reactor without photocatalyst and H2S is 14.5 mol/kWh, which is further increased to 20.2 mol/kWh as ALFTO photocatalyst is integrated to form the hybrid system. Introducing H2S reduces energy efficiency to 13.4 and 17.4 mol/kWh, respectively, and shorten the stable operation period of photocatalysis reactor. The effect of H2S can be reduced by adding BaTa0.3Nb0.7O3 (BTaNO) photocatalyst even though the energy efficiency is reduced. Synergy test results indicate that photocatalysts applied have catalytic and photocatalytic activities. In addition, the energy efficiency achieved with the hybrid reactor is higher than the summation of plasma-alone, catalysis and photocatalysis reactors, implying the existence of synergistic effects. Characterization of photocatalysts reveals good interactions between plasma and photocatalyst including plasma improves surface structure and photocatalyst enhances reaction rate and provides multi-reaction routes. Finally, TGA analysis result pointed out that addition of BTaNO reduces generation rate of sulfur-containing byproducts and further stabilize reforming system operation.
關鍵字(中) ★ 沼氣重組
★ 合成氣
★ 電漿光觸媒
★ 協同效應
★ 硫化氫
關鍵字(英) ★ biogas reforming
★ syngas
★ plasma photocatalysis
★ synergistic effects
★ hydrogen sulfide
論文目次 Abstract ii
Table of Contents I
Table captions IV
Figure captions V
Chapter 1 Introduction 1
1.1 Background 1
1.2 Research objectives 10
Chapter 2 Literature review 12
2.1 Greenhouse gases 12
2.2 Carbon capture, utilization and storage 14
2.2.1 Carbon capture 15
2.2.2 Carbon storage 18
2.2.3 Carbon utilization 20
2.3 Fischer–Tropsch process 22
2.4 Basic concepts of biogas 23
2.5 Photocatalysis 25
2.5.1 General concepts 27
2.5.2 Z-scheme photocatalysis 30
2.5.3 Photocatalytic reduction of CO2 33
2.6 Nonthermal plasma 35
2.7 Hybrid plasma catalysis reactor 42
2.7.1 Plasma influencing catalyst 43
2.7.2 Catalyst affecting plasma 47
2.8 Reaction mechanisms of biogas reforming 51
2.8.1 Catalytic reforming 51
2.8.2 Photocatalytic reforming 53
2.8.3 Nonthermal plasma reforming 54
Chapter 3 Experimental setup 57
3.1 Experimental processes 57
3.2 Materials and instruments 59
3.2.1 Materials 60
3.2.2 Instruments 61
3.3 Photocatalyst preparation 63
3.4 Photocatalyst characterizations 66
3.4.1 XRD 66
3.4.2 N2-ASAP 66
3.4.3 FE-SEM/EDS 67
3.4.4 TEM 68
3.4.5 XPS 68
3.4.6 EPR 68
3.4.7 Raman spectroscopy 69
3.4.8 TGA 70
3.4.9 UV/Vis spectrophotometer 70
3.4.10 PL 71
3.5 Reforming system 71
3.5.1 Plasma photocatalysis setup 71
3.5.2 Catalytic activity test 74
3.5.3 Test of photon-induced photocatalysis 74
3.5.4 Calculations 76
Chapter 4 Results and discussion 78
4.1 Biogas reforming without H2S 79
4.1.1 Conversion and selectivity 79
4.1.2 Syngas and H2 generation rate 84
4.1.3 Stability test 86
4.2 Biogas reforming with H2S 90
4.2.1 Conversion and selectivity 91
4.2.2 Syngas and H2 generation rate 95
4.2.3 Stability test 96
4.3 Synergy tests 99
4.3.1 Catalytic activity tests 99
4.3.2 Photocatalytic activity tests 101
4.3.3 Test of irradiation-aided plasma photocatalysis 102
4.4 Characterizations of photocatalysts 104
4.5 Reaction mechanisms induced by plasma photocatalysis 124
Chapter 5 Conclusions and suggestions 130
5.1 Conclusions 130
5.2 Suggestions 131
References 132
Curriculum Vitae I
參考文獻 [1] United Nations Framework Convention on Climate Change, "Glossary of GHG Inventories".
[2] Intergovernmental Panel on Climate Change, "Climate Change 2007: Working Group I: The Physical Science Basis", Cambridge University Press, New York, 2007.
[3] J.J. Fourier, "MEMOIRE sur les Temperatures du Globe Terrestre et des Espaces Planetaires", Mémoires de l′Académie royale des sciences de l′Institut de France, 1827, 97–125.
[4] J.J. Fourier, "Remarques Générales sur les Températures du Globe Terrestre et des Espaces Planétaires", Annales de Chimie et de Physique, 1824, 27, 136–167.
[5] J.J. Fourier, "Mémoire sur les Températures du Globe Terrestre et des Espaces Planétaires", Mémoires de l′Académie Royale des Sciences, 1827, 7, 569–604.
[6] J. Tyndall, "Contributions to Molecular Physics in the Domain of Radiant Heat", Longmans, Green and Co, 1872.
[7] S.A. Arrhenius, "On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground", Philosophical Magazine and Journal of Science, 1896, 41(5), 237–276.
[8] S.A. Arrhenius, "On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground", Astronomical Society of the Pacific, 1897, 9(54), 14–24.
[9] N.G. Ekholm, "On the Variations of the Climate of the Geological and Historical Past and Their Causes". Quarterly Journal of the Royal Meteorological Society, 1901, 27 (117), 1–62.
[10] R.R.D. Revelle, H.E. Suess, "Carbon Dioxide Exchange between Atmosphere and Ocean and the Question of an Increase of Atmospheric CO2 during the Past Decades", Tellus, 1957, 9, 18-27.
[11] C.D. Keeling, "Atmospheric Carbon Dioxide in the 19th Century", Science, 1978, 202(4372), 1109.
[12] S. Manabe, R.T. Wetherald, "Thermal Equilibrium of the Atmosphere with a Given Distribution of Relative Humidity", Journal of the Atmospheric Sciences, 1967, 24(3), 241–259.
[13] K.F. Hünemörder, "Die Frühgeschichte der globalen Umweltkrise und die Formierung der deutschen Umweltpolitik (1950-1973)", Franz Steiner Verlag, München, Germany, 2004.
[14] World Meteorological Organization, "Declaration of the World Climate Conference", Environmental Conservation, 1979, 6(2), 137–138.
[15] National Research Council, Assembly of Mathematical and Physical Sciences, Climate Research Board, Ad Hoc Study Group on Carbon Dioxide and Climate, "Carbon Dioxide and Climate:A Scientific Assessment", The National Academies Press, Washington, D.C., 1979.
[16] UNFCCC, "Kyoto Protocol to the United Nations Framework Convention on Climate Change", Kyoto, Japan, 1997.
[17] UNFCCC, "Copenhagen Accord", Copenhagen, Denmark, 2009.
[18] UNFCCC, "Cancun Agreements", Cancun, Mexico, 2010.
[19] UNFCCC, "Ad Hoc Working Group on the Durban Platform for Enhanced Action", Durban, South Africa, 2011.
[20] UNFCCC, "Paris Agreement", Paris, France, 2015.
[21] IPCC, "Climate Change 2014: Mitigation of Climate Change", Cambridge Univeristy Press, Cambridge, New York, 2014.
[22] R.M. Cuéllar-Franca, A. Azapagic, "Carbon Capture, Storage and Utilisation Technologies: A Critical Analysis and Comparison of Their Life Cycle Environmental Impacts", Journal of CO2 Utilization, 2015, 9, 82–102.
[23] H. Kameyama, K. Yoshizaki, I. Yasuda, "Carbon Capture and Recycle by Integration of CCS and Green Hydrogen", Energy Procedia, 2011, 4, 2669–2676.
[24] C.F. Heuberger, I. Staffel, N. Shah, N.M. Dowell, "Quantifying the Value of CCS for the Future Electricity System", Energy & Environmental Science, 2016, 8, 2497–2510.
[25] N. von der Assen, J. Jung, A. Bardow, "Life-cycle Assessment of Carbon Dioxide Capture and Utilization: Avoiding the Pitfalls", Energy & Environmental Science, 2013, 6, 2721–2734.
[26] J.A. Dopazo, J. Fernández-Seara, "Experimental Evaluation of Freezing Processes in Horizontal Plate Freezers Using CO2 as Refrigerant", International Journal of Refrigeration, 2012, 35, 2093–2101.
[27] M.A.M. Hassan, M.H. Shedid, "Experimental Investigation of Two Phases Evaporative Heat Transfer Coefficient of Carbon Dioxide as a Pure Refrigerant and Oil Contaminated under Forced Flow Conditions in Small and Large Tube", International Journal of Refrigeration, 2015, 56, 28–36.
[28] P. Jaramillo, P., Griffin, W.M., McCoy, S.T., "Life Cycle Inventory of CO2 in an Enhanced Oil Recovery System", Environmental Science & Technology, 2009, 43, 8027–8032.
[29] D.J. Darensbourg, N.W. Stafford, T. Katurao, "Supercritical Carbon Dioxide as Solvent for the Copolymerization of Carbon Dioxide and Propylene Oxide Using a Heterogeneous Zinc Carboxylate Catalyst", Journal of Molecular Catalysis A: Chemical, 1995, 104, L1–L4.
[30] M. Aresta, A. Dibenedetto, "Utilisation of CO2 as a Chemical Feedstock: Opportunities and Challenges", Dalton Transactions, 2007, 0, 2975–2992.
[31] V. Havran, M.P. Dudukovic, C.S. Lo, "Conversion of Methane and Carbon Dioxide to Higher Value Products", Industrial & Engineering Chemistry Research, 2011, 50, 7089–7100.
[32] I. Kim, M.J. Yi, K.J. Lee, D.W. Park, B.U. Kim, C.S. Ha, "Aliphatic Polycarbonate Synthesis by Copolymerization of Carbon Dioxide with Epoxides over Double Metal Cyanide Catalysts Prepared by Using ZnX2 (X = F, Cl, Br, I)", Catalysis Today, 2006, 111, 292–96.
[33] R. Srivastava, D. Srinivas, P. Ratnasamy, "Syntheses of Polycarbonate and Polyurethane Precursors Utilizing CO2 over Highly Efficient, Solid as-synthesized MCM-41 Catalyst", Tetrahedron Letter, 2006, 47, 4213–4217.
[34] C. Federsel, R. Jackstell, M. Beller, "State-of-the-art Catalysts for Hydrogenation of Carbon Dioxide", Angewandte Chemie International, 2010, 49, 6254–6257.
[35] S.Y. Huang, S.G. Liu, J.P. Li, N. Zhao, W. Wei, Y.H. Sun, "Synthesis of Cyclic Carbonate from Carbon Dioxide and Diols over Metal Acetates", Journal of Fuel Chemistry Technology, 2007, 35, 701–705.
[36] F.S. Alenazey, "Utilizing Carbon Dioxide as a Regenerative Agent in Methane Dry Reforming to Improve Hydrogen Production and Catalyst Activity and Longevity", International Journal of Hydrogen Energy, 2014, 39(32), 18632–18641.
[37] Z. Alipour, M. Razaei, F. Meshkani, "Effect of Alkaline Earth Promoters (MgO, CaO, and BaO) on the Activity and Coke Formation of Ni Catalysts Supported on Nanocrystalline Al2O3 in Dry Reforming of Methane", Journal of Industrial and Engineering Chemistry, 2014, 20(5), 2858–2863.
[38] K.K.J.R. Dinesh, H. Shalaby, K.H. Luo, J.A. van Oijen, D. Thévenin, "High Hydrogen Content Syngas Fuel Burning in Lean Premixed Spherical Flames at Elevated Pressures: Effects of Preferential Diffusion", International Journal of Hydrogen Energy, 2016, 41(40), 18231–18249.
[39] V.L. Dagle, C. Smith, M. Flake, K.O. Albrecht, M.J. Gray, K.K. Ramasamy, R.A. Dagle, "Integrated Process for the Catalytic Conversion of Biomass-derived Syngas into Transportation Fuels", Green Chemistry, 2016, 18, 1880–1891.
[40] H. Jahangiri, J. Bennett, P. Mahjoubi, K. Wilson, S. Gu, "A Review of Advanced Catalyst Development for Fischer–Tropsch Synthesis of Hydrocarbons from Biomass Derived Syngas", Catalysis Science & Technology, 2014, 4, 2210–2229.
[41] D.A. Wood, C. Nwaoha, B.F. Towler, "Gas-to-liquids (GTL): A Review of an Industry Offering Several Routes for Monetizing Natural Gas", Journal of Natural Gas Science and Engineering, 2012, 9, 196–208.
[42] P. Gangadharan, K.C. Kanchi, H.H. Lou, "Evaluation of the Economic and Environmental Impact of Combining Dry Reforming with Steam Reforming of Methane", Chemical Engineering Research and Design, 2012, 90, 1956–1968.
[43] Y.X. Pan, C.J. Liu, P. Shi, "Preparation and Characterization of Coke Resistant Ni/SiO2 Catalyst for Carbon Dioxide Reforming of Methane", Journal of Power Sources, 2008, 176, 46–53.
[44] J. Gallego, C. Batiot-Dupeyrat, J. Barrault, F. Mondragón, "Severe Deactivation of a LaNiO3 Perovskite-type Catalyst Precursor with H2S during Methane Dry Reforming", Energy & Fuels, 2009, 23, 4883–4886.
[45] M. Usman, W.M.A.W Daud, H.F. Abbas, "Dry Reforming of Methane: Influence of Process Parameters – A Review", Renewable and Sustainable Energy Reviews, 2015, 45, 710–744.
[46] D. Pakhare, J. Spivey, "A Review of Dry (CO2) Reforming of Methane over Noble Metal Catalysts", Chemical Society Reviews, 2014, 43, 7813–7837.
[47] M. Tahir, N.S. Amin, "Recycling of Carbon Dioxide to Renewable Fuels by Photocatalysis: Prospects and Challenges", Renewable and Sustainable Energy Reviews, 2013, 25, 560–579.
[48] K. Shimura, H. Yoshida, "Semiconductor Photocatalysts for Non-oxidative Coupling, Dry Reforming and Steam Reforming of Methane", Catalysis Surveys from Asia, 2014, 18(1), 24–33.
[49] B. Han, W. Wei, L. Chang, P.F. Cheng, Y.H. Hu, "Efficient Visible Light Photocatalytic CO2 Reforming of CH4", ACS Catalysis, 2016, 6, 494–497.
[50] H.H. Kim, "Nonthermal Plasma Processing for Air-Pollution Control: A Historical Review, Current Issues, and Future Prospects", Plasma Processes and Polymers, 2004, 1, 91–110.
[51] H.L. Chen, H.M. Lee, S.H. Chen, Y. Chao, M.B. Chang, "Review of Plasma Catalysis on Hydrocarbon Reforming for Hydrogen Production—Interaction, Integration, and Prospects", Applied Catalysis B: Environment, 2008, 85, 1–9.
[52] H.L. Chen, H.M. Lee, S.H. Chen, M.B. Chang, S.J. Yu, S.N. Li, "Removal of Volatile Organic Compounds by Single-stage and Two-stage Plasma Catalysis Systems: A Review of the Performance Enhancement, Mechanisms, Current Status, and Suitable Applications", Environmental Science and Technology, 2009, 43, 2216–2227.
[53] E.C. Neyts, "Plasma-surface Interactions in Plasma Catalysis", Plasma Chemistry Plasma Processing, 2016, 36, 185–212.
[54] J.C. Whitehead, "Plasma–catalysis: The Known Knowns, the Known Unknowns and the Unknown Unknown", Journal of Physics D: Applied Physics, 2016, 49, 243001.
[55] E.C. Neyts, K.K. Ostrikov, M.K. Sunkara, A. Bogaerts, "Plasma Catalysis: Synergistic Effects at the Nanoscale", Chemical Reviews, 2015, 15, 13408–13446.
[56] Y. Qian, S.Z. Sun, D.H. Ju, X.X. Shan, X.C. Lu, "Review of the State-of-the-art of Biogas Combustion Mechanisms and Applications in Internal Combustion Engines", Renewable and Sustainable Energy Reviews, 2017, 69, 50–58.
[57] R. Kadam, N.L. Panwar, "Recent Advancement in Biogas Enrichment and its Applications", Renewable and Sustainable Energy Reviews, 2017, 73, 892–903.
[58] S. Basu, A.L. Khan, A. Cano-Odana, C.Q. Liu, I.F.J. Vankelecom, "Membrane-based Technologies for Biogas Separations", Chemical Society Reviews, 2010, 39, 750–768.
[59] T. Remy, E. Gobechiya, D. Danaci, S.A. Peter, P. Xiao, L. van Tendeloo, S. Couck, J. Shang, C.E.A. Kirschhock, R.K. Singh, J.A. Martens, G.V. Baron, P.A. Webley, J.F.M. Denayer, "Biogas Upgrading through Kinetic Separation of Carbon Dioxide and Methane over Rb- and Cs-ZK-5 Zeolites", RSC Advances, 2014, 4, 62511–62524.
[60] Y. Chen, W. Hu, P. Chen, R. Ruan, "Household Biogas CDM Project Development in Rural China", Renewable and Sustainable Energy Reviews, 2017, 67, 84–91
[61] L.W. Deng, Y. Liu, D. Zheng, L. Wang, X.D. Pu, L. Song, Z.Y. Wang, Y.H. Lei, Z. Chen, Y. Long, "Application and Development of Biogas Technology for the Treatment of Waste in China", Renewable and Sustainable Energy Reviews, 2017, 70, 845–851.
[62] Y. Shiratori, M. Sakamoto, "Performance Improvement of Direct Internal Reforming Solid Oxide Fuel Cell Fuelled by H2S-contaminated Biogas with Paper-structured Catalyst Technology", Journal of Power Sources, 2016, 332, 170–179.
[63] C.G. Liu, R. Zhang, S. Wei, J. Wang, Y. Liu, M. Li, R.T. Liu, "Selective Removal of H2S from Biogas Using a Regenerable Hybrid TiO2/zeolite Composite", Fuel, 2015, 157, 183–190.
[64] P.V. Rathod, P.V. Bhale, "Experimental Investigation on Biogas Reforming for Syngas Production over an Alumina Based Nickel Catalyst", Energy Procedia, 2014, 54, 236–245.
[65] P.V. Rathod, P. Bansal, P.V. Bhale, "Analytical and Experimental Investigations for Hydrogen Rich Syngas Production by Biogas Reforming Processes", Energy Procedia, 2015, 75, 728–733.
[66] T. Hisatomi, C. Katayama, Y. Moriya, T. Minegishi, M. Katayama, H. Nishiyama, T. Yamada, K. Domen, "Photocatalytic Oxygen Evolution Using BaNbO2N Modified with Cobalt Oxide under Photoexcitation Up to 740 nm", Energy & Environmental Sciences, 2013, 6, 3595–3599.
[67] M.E. Walter, "Earthquakes and Weatherquakes: Mathematics and Climate Change", Notices of the American Mathematical Society, 57(10), 1278–1284.
[68] IPCC, "Climate Change 2013: The Physical Science Basis", Cambridge University Press, New York, U.S., 2013.
[69] J.H. Butler, S.A. Montzka, "The NOAA Annual Greenhouse Gas Index (AGGI)", NOAA, Washington DC, U.S., 2017
[70] Global CCS Institute, "CCS: Building a Climate Change Solution", Melbourne, Australia, 2015.
[71] Global CCS Institute, "The Global Status of CCS, Summery Report", Melbourne, Australia, 2016.
[72] E. Blomen, C. Hendriks. F. Neele. "Capture Technologies: Improvements and Promising Developments", Energy Procedia, 2009, 1, 1505–1512.
[73] A. Sood, S. Vyas. "Carbon Capture and Sequestration- A Review", IOP Conference Series: Earth and Environmental Science, 2017, 83, 012024.
[74] A.A. Olajire, "CO2 Capture and Separation Technologies for End-of-pipe Application – A Review", Energy, 2010, 35, 2610–2628.
[75] D.Y.C. Leung, G. Caramanna, M.M. Maroto-Valer, An Overview of Current Status of Carbon Dioxide Capture and Storage Technologies, Renewable and Sustainable Energy Reviews, 2014, 39, 426–443.
[76] International Energy Agency, "Technology Roadmap: Carbon Capture and Storage in Industrial Applications", 2011.
[77] H.C. Mantripragada, E.S. Rubin. "Chemical Looping for Pre-combustion CO2 Capture — Performance and Cost Analysis", Energy Procedia, 2013, 37, 618–625.
[78] Dezeen, "The World′s First Commercial Carbon-capture Plant Opens in Switzerland", de zeen magazine, 2017. https://www.dezeen.com/2017/06/06/world-first-commercial-carbon-capture-plant-switzerland-pollution-technology-news/
[79] D. Kramer, "Scientists Poke Holes in Carbon Dioxide Sequestration", Physics Today, 2012, 65, 22–25.
[80] S. Bachu, "Sequestration of CO2 in Geological Media: Criteria and Approach for Site Selection in Response to Climate Change", Energy Conversion and Management, 2000, 41, 953–970.
[81] L. Chiaramonte,M. Zoback,J Friedmann,V. Stamp, C. Zahm, "Fracture Characterization and Fluid Flow Simulation with Geomechanical Constraints for a CO2–EOR and Sequestration Project Teapot Dome Oil Field, Wyoming, USA", Energy Procedia, 2011, 4, 3973–3980.
[82] D. White, "Monitoring CO2 Storage during EOR at the Weyburn-Midale Field", Lead Edge, 2009, 28, 838–842
[83] C.M. White, B.R. Strazisar, E.J. Granite, J.S. Hoffman, H.W. Pennline, "Separation and Capture of CO2 from Large Stationary Sources and Sequestration in Geological Formations—Coal Beds and Deep Saline Aquifers", Journal of the Air & Waste Management Association, 2003, 53, 645–715.
[84] H. Kongsjorden, O. Karstad, T.A. Torp, "Saline Aquifer Storage of Carbon Dioxide in the Sleipner Project", Waste Management 1997, 17, 303–308.
[85] S.A. Rackley, "Carbon Capture and Storage", Butterworth-Heinemann, Elsevier, Burlington, USA, 2010.
[86] K.Z. House, D.P. Schrag, C.F. Harvey, K.S. Lackner, "Permanent Carbon Dioxide Storage in Deep-sea Sediments", Proceedings of the National Academy of Sciences, 2006, 103, 12291–12295.
[87] J.M. Hall-Spencer, R. Rodolfo-Metalpa, S. Martin, E. Ransome, M. Fine, S.M. Turner, "Volcanic Carbon Dioxide Vents Show Ecosystem Effects of Ocean Acidification", Nature, 2008, 45, 96–99.
[88] J.M. Matter, P.B. Kelemen, "Permanent Storage of Carbon Dioxide in Geologic Reservoirs by Mineral Carbonation", National Geosciences, 2009, 2,837–841.
[89] D. Milani, R. Khalilpour, G. Zahedi, A. Abbas. "A Model-based Analysis of CO2 Utilization in Methanol Synthesis Plant", Journal of CO2 Utilization, 2015, 10, 12–22.
[90] E. Alper, O.Y. Orhan, "CO2 Utilization: Developments in Conversion Processes", Petroleum, 2017, 3(1), 109–126.
[91] M. Aresta, "Carbon Dioxide as Chemical Feedstock", Wiley-VCH, Weinheim, Germany, 2010.
[92] I Ganesh, "Conversion of Carbon Dioxide into Methanol – a Potential Liquid Fuel: Fundamental Challenges and Opportunities (a Review)", Renewable and Sustainable Energy Reviews, 2014, 31, 221–257.
[93] I. Omae, "Recent Developments in Carbon Dioxide Utilization for the Production of Organic Chemicals", Coordination Chemistry Reviews, 2012, 256, 1384–1405.
[94] N. von der Assen, P. Voll, M. Peters, A Bardow, "Life Cycle Assessment of CO2 Capture and Utilization: a Tutorial Review", Chemical Society Reviews, 2014, 43, 7982–7994.
[95] E.V. Slivinskii, Y.P. Voitsekhovskii, "Development of Ideas Concerning the Mechanism of the Fischer–Tropsch Synthesis", Russian Chemical Reviews, 1989, 58, 57–72.
[96] D. Leckel, "Diesel Production from Fischer−Tropsch: The Past, the Present, and New Concepts", Energu Fuels, 2009, 23(5), 2342–2358.
[97] W. Chen, T. Lin, Y. Dai, Y.L. An, F. Yu, L.S. Zhong, S.G. Li, Y.H. Sun, "Recent Advances in the Investigation of Nanoeffects of Fischer-Tropsch Catalysts", Catalysis Today, 2017, (In press).
[98] R.Y. Yang, L.P. Zhou, J.H. Gao, X. Hao, B.S. Wu, Y. Yang, Y.W. Li, "Effects of Experimental Operations on the Fischer-Tropsch Product Distribution", Catalysis Today, 2017, 298, 77–88
[99] E.I. Ohimain, S.C. Izah, "A Review of Biogas Production from Palm Oil Mill Effluents Using Different Configurations of Bioreactors", Renewable and Sustainable Energy Reviews, 2017, 70, 242–253.
[100] Naskeo Environment, "Biogas Renewable Energy: Information Website on Biogas", Malakoff, France, 2009.
[101] X.L. Zhang, "Essential Scientific Mapping of the Value Chain of Thermochemically Converted Second-generation Bio-fuels", Green Chemistry, 2016, 18, 5086–5117.
[102] J.B. Holm-Nielsen, T. Al Seadi, P. Oleskowicz-Popiel, "The Future of Anaerobic Digestion and Biogas Utilization", Bioresource Technology, 2009, 100(22), 5478–5484.
[103] World Bioenergy Association, "WBA Global Bioenergy Statistics 2017", Stockholm, Sweden, 2017.
[104] S.Y. Mao, Z.X. Tan, L.M. Zhang, Q.Y. Huang, "Plasma-assisted Biogas Reforming to Syngas at Room Temperature Condition", Journal of the Energy Institute, 2018, 91(2), 172–183.
[105] X.J. Chen, J.G. Jiang, K.M. Li, S.C. Tian, F Yan, "Energy-efficient Biogas Reforming Process to Produce Syngas: The Enhanced Methane Conversion by O2", Applied Energy, 2017, 185, 687–697.
[106] A. Fujishima, K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode", Nature, 1972, 238, 37–38.
[107] P.Y. Dong, G.H. Hou, X.G. Xi, R. Shao, F. Dong, "WO3-based Photocatalysts: Morphology Control, Activity Enhancement and Multifunctional Applications", Environmental Science: Nano, 2017, 4, 539–557.
[108] K. Nakata, A. Fujishima, "TiO2 Photocatalysis: Design and Applications", Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13(3), 169–189.
[109] R. Beranek, "(Photo)electrochemical Methods for the Determination of the Band Edge Positions of TiO2-Based Nanomaterials", Advances in Physical Chemistry, 2011, 2011, 786759.
[110] R. Ren, Z.H. Wen, S.M. Cui, Y. Hou, X.R. Guo, J.H. Chen, "Controllable Synthesis and Tunable Photocatalytic Properties of Ti3+-doped TiO2", Scientific Reports, 2015, 5, 10714.
[111] F.M. Pesci, G.M. Wang, D.R. Klug, Y. Li, A.J. Cowan, "Efficient Suppression of Electron–Hole Recombination in Oxygen-Deficient Hydrogen-Treated TiO2 Nanowires for Photoelectrochemical Water Splitting", Journal of Physical Chemistry C: Nanomaterial Interfaces, 2013, 117(48), 25837–25844.
[112] S.Y. Murakami, H. Kominami, Y. Kera, S. Ikeda, H. Noguchi, L. Uosaki, B. Ohtani, "Evaluation of Electron-hole Recombination Properties of Titanium (IV) Oxide Particles with High Photocatalytic Activity", Research on Chemical Intermediates, 2007, 33(3–5), 285–296,
[113] T. Jafari, E. Moharreri, A.S. Amin, R. Miao, W.Q. Song, S.L. Suib, "Photocatalytic Water Splitting—The Untamed Dream: A Review of Recent Advances", Molecules, 2016, 21, 900.
[114] H. Cheng, J.Y. Wang, Y.Z. Zhao, X.J. Han, "Effect of Phase Composition, Morphology, and Specific Surface Area on the Photocatalytic Activity of TiO2 Nanomaterials", RSC Advances, 2014, 87, 47031–47038.
[115] S.N. Basahel, T.T. Ali, M. Mokhtar, K. Narasimharao, "Influence of Crystal Structure of Nanosized ZrO2 on Photocatalytic Degradation of Methyl Orange", Nanoscale Research Letters, 2015, 10, 73–85.
[116] D.E. McLain, A.C. Rea, M.B. Widegren, T.M. Dore, "Photoactivatable, Biologically-relevant Phenols with Sensitivity toward 2-photon Excitation", Photochemical & Photobiological Sciences, 2015, 14, 2151–2158.
[117] Y.N. Tan, C.L. Wong, A.R. Mohamed, "An Overview on the Photocatalytic Activity of Nano-Doped-TiO2 in the Degradation of Organic Pollutants", ISRN Materials Science, 2011, 2011, 261219.
[118] S.Y. Tee, K.Y. Win, W.S. Teo, L.D. Koh, S.H. Liu, C.P. Teng, M.Y. Han, "Recent Progress in Energy-Driven Water Splitting", Advanced Science, 2017, 4(5), 1600337.
[119] Q.P. Lu, Y.F. Lu, Q.L. Ma, B. Chen, H. Zhang, "2D Transition-metal-dichalcogenide-nanosheet-based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions", Advance Materials, 2015, 28(10), 1917–1933.
[120] A.O. Ibhadon, P. Fitzpatrick, "Heterogeneous Photocatalysis: Recent Advances and Applications", Catalysts, 2013, 3, 189–218.
[121] C. Zhang, U. Chaudhary, D. Lahiri, A. Godavarty, A. Agarwal, "Photocatalytic Activity of Spark Plasma Sintered TiO2–graphene Nanoplatelet Composite", Scripta Materialia, 2013, 68(9), 719–722.
[122] A.K. Singh, U.T. Nakate, "Photocatalytic Properties of Microwave-Synthesized TiO2 and ZnO Nanoparticles Using Malachite Green Dye", Journal of Nanoparticles, 2013, 2013, 310809.
[123] H. Park, H.I. Kim, G.H. Moon, W.Y. Choi, "Photoinduced Charge Transfer Processes in Solar Photocatalysis Based on modified TiO2", Energy & Environmental Science, 2016, 9, 411–433.
[124] K.F. Li, X.Q. An, K.H. Park, M. Khraisheh, J.W. Tang, "A Critical Review of CO2 Photoconversion: Catalysts and Reactors", Catalysis Today, 2014, 224, 3–12.
[125] Q. Zhang, C.F. Lin, Y.H. Jing, C.T. Chang, "Photocatalytic Reduction of Carbon Dioxide to Methanol and Formic Acid by Graphene-TiO2", Journal of the Air & Waste Association, 2014, 64, 578–585.
[126] S. Sato, T. Morikawa, S. Seaki, T. Kajino, T. Motohiro, "Visible-light-induced selective CO2 Reduction Utilizing a Ruthenium Complex Electrocatalyst Linked to a p-Type Nitrogen-Doped Ta2O5 Semiconductor", Angewandte Chemie International Edition, 2010, 49, 5101–5105.
[127] J. Qin, L.H. Lin, X.C. Wang, "A Perovskite Oxide LaCoO3 Cocatalyst for Efficient Photocatalytic Reduction of CO2 with Visible Light", Chemical Communications, 2018, 54, 2272–2275.
[128] S.R. Lingapall, M.M. Ayyub, C.N.R. Rao, "Recent Progress in the Photocatalytic Reduction of Carbon Dioxide", ACS Omega, 2017, 2, 2740–2748.
[129] K. Niu, Y. Xu, H.C. Wang, R. Ye, H.L. Xin, F. Lin, C.X. Tian, Y.W. Lum, K.C. Bustillo, M.M. Doeff, M.T.M. Koper, J. Ager, R. Xu, H.M. Zheng, "A Spongy Nickel-organic CO2 Reduction Photocatalyst for Nearly 100% Selective CO Production", Science Advances, 2017, 3, 1700921.
[130] K. Teramura, T. Tanaka, H. Ishikawa, Y. Kohno, T. Funabiki, "Photocatalytic Reduction of CO2 to CO in the Presence of H2 or CH4 as a Reductant over MgO", Journal of Physical Chemistry B, 2004, 108, 346–354.
[131] B. Han, W. Wei, L. Chang, P.F. Cheng, Y.H. Hu, "Efficient Visible Light Photocatalytic CO2 Reforming of CH4", ACS Catalysis, 2016, 6, 494–497.
[132] P. Kumar, R.K. Chauhan, B. Sain, S. L. Jain, "Photo-induced Reduction of CO2 Using a Magnetically Separable Ru-CoPc@TiO2@SiO2@Fe3O4 Catalyst under Visible Light Irradiation", Dalton Transactions, 2015, 44, 4546−4553.
[133] X. Li, J. Chen, H. Li, J. Li, Y. Xu, Y. Liu, J. Zhou, "Photoreduction of CO2 to Methanol over Bi2S3/CdS Photocatalyst under Visible Light Irradiation", Journal of Natural Gas Chemistry, 2011, 20, 413–417.
[134] A. Corma, H. Garcia, "Photocatalytic Reduction of CO2 for Fuel Production: Possibilities and Challenges", Journal of Catalysis, 2013, 308, 168–175.
[135] Q. Liu, Y. Zhou, J. Kou, X. Chen, Z. Tian, J. Gao, S. Yan, Z. Zou, "High-yield Synthesis of Ultralong and Ultrathin Zn2GeO4 Nanoribbons toward Improved Photocatalytic Reduction of CO2 into Renewable Hydrocarbon Fuel", Journal of American Chemical Society, 2010, 132(41), 14385−14387.
[136] F. Taccogna, G. Dilecce, "Non-equilibrium in Low-temperature Plasmas", The European Physical Journal D, 2016, 70, 251.
[137] M. Boccadoro, P. Pileri, "Plasma Cell Dyscrasias: Classification, Clinical and Laboratory Characteristics, and Differential Diagnosis", Baillieres’s Clinical Haematology, 1995, 8(4), 705−719.
[138] P.R. Taylor, S.A. Pirzada, "Thermal Plasma Processing of Materials: A Review", Advanced Performance Matetials, 1994, 1(1), 35−50.
[139] M. Schiavon, V. Torretta, A. Casazza, M. Ragazzi, "Non-thermal Plasma as an Innovative Option for the Abatement of Volatile Organic Compounds: A Review", Water, Air, & Soil Pollution, 2017, 228, 388.
[140] V. Scholtz, J. Pazlarova, H. Souskova, J. Khun, J. Julak, "Nonthermal Plasma--A Tool for Decontamination and Disinfection", Biotechnology Advances, 2015, 33(6), 1108−1119.
[141] B. Jiang, J.T. Zheng, S. Qiu, M.B. Wu, Q.H. Zhang, Z.F. Yan, Q.Z. Xue, "Review on Electrical Discharge Plasma Technology for Wastewater Remediation", Chemical Engineering Journal, 2014, 236, 348−368.
[142] T. Adachi, Introduction to Serial Reviews: "Biomedical Application of Non-thermal Atmospheric Pressure Plasma and its Usefulness", Journal of Clinical Biochemistry and Nutrition, 2017, 60(1), 1−2.
[143] C.M. Du, J.M. Mo, H.X. Li, "Renewable Hydrogen Production by Alcohols Reforming Using Plasma and Plasma-catalytic Technologies: Challenges and Opportunities", Chemical Reviews, 2015, 115, 1503–1542.
[144] J. Schäfer, F. Sigeneger, R Foest, D. Loffhagen K.D. Weltmann, "On Plasma Parameters of a Self-organized Plasma Jet at Atmospheric Pressure", The European Physical Journal D, 2010, 60, 531–538.
[145] Z.H. Chang, G.J. Zhang, X.J. Shao, Z.H. Zhang, "Diagnosis of Gas Temperature, Electron Temperature, and Electron Density in Helium Atmospheric Pressure Plasma Jet", Physics of Plasma, 2012, 19, 073513.
[146] Y.E. Krasik, S. Gleizer, K. Chirko, J.Z. Glerzer, J. Felsteiner, "Characterization of a Channel Spark Discharge and the Generated Electron Beam", Joural of Applied Physics, 2006, 99, 063303.
[147] R. Ono, M. Nifuku, S. Fujwara, S. Horiguchi, "Gas Temperature of Capacitance Spark Discharge in Air", Journal of Applied Physics, 2005, 97, 123307.
[148] M.U. Siddiqui, J.S. McKee, J. Mcllvain, Z.D. Short, DB. Elliott, G. Lusk, E.E. Scime, "Electron Heating and Density Production in Microwave-assisted Helicon Plasmas", Plasma Sources Science and Technology, 2015, 24, 034016.
[149] C.J. Chen, S.Z. Li, "Spectroscopic Measurement of Plasma Gas Temperature of the Atmospheric-pressure Microwave Induced Nitrogen Plasma Torch", Plasma Sources Science and Technology, 2015, 24, 035017.
[150] A. Schutze, J.Y. Jeong, S.E. Babayan, J. Park, G.S. Selwyn, R.F. Hicks, "The Atmospheric-Pressure Plasma Jet: A Review and Comparison to Other Plasma Source", IEEE Transactions on Plasma Science, 1999, 2(6), 1685–1694.
[151] Advanced Plasma Solutions, "Plasma Discharges", https://www.advancedplasmasolutions.com/
[152] A.S.A. Ould, O. Rouand, M. Havet, "Electrohydrodynamic Enhancement of Heat and Mass Transfer in Food Processes", Conference Paper of 2007 CIGR Section VI International Symposium on Food and Agricultural Products: Processing and Innovations.
[153] J.S. Chang, P.A. Lawless, T. Yamamoto, "Corona Discharge Processes", IEEE Transactions on Plasma Science, 1991, 19(6), 1152–1166.
[154] H.I. Milde, "Pulse Corona Discharge in Electrostatic Precipitators", IEEE Transactions on Electrical Insulation, 1982, E1-17(2), 179–186.
[155] A. Fridman, "Plasma Chemistry", Cambridge University Press, Cambridge, 2012.
[156] W.P. Allis, "Review of Glow Discharge Instabilities", Physica B+C, 1976, 82(1), 43–51.
[157] O. Sakai, K. Tachibana, "Generations and Applications of Atmospheric Pressure Glow Discharge by Integration of Microplasmas", Journal of Physics: Conference Series, 2007, 86, 012015.
[158] A. Fridman, S. Nester, L.A. Kennedy, A. Saveliev, O. Mutaf-Yardimci, "Gliding Arc Gas Discharge", Progress in Energy and Combustion Science, 1999, 25(2), 211–231.
[159] A. Fridman, A. Gutsol, S. Gangoli, "Characteristics of Gliding Arc and Its Application in Combustion Enhancement", Journal of Propulsion and Power, 2008, 24(6), 1216–1228.
[160] N.A.H. Ramli, S.K. Zaaba, M. T. Mustaffa, A. Zakaria, AB. Shahriman, "Review on the Development of Plasma Discharge in Liquid Solution", AIP Conference Proceedings, 2017, 1824, 030015.
[161] O.Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Rathel, M. Herrmann, "Field-Assisted Sintering Technology/Spark Plasma Sintering: Mechanisms, Materials, and Technology Developments", Advanced Engineering Materials, 2014, 16(7), 830–849.
[162] R. Brandenburg, "Dielectric Barrier Discharges: Progress on Plasma Sources and on the Understanding of Regimes and Single Filaments", Plasma Sources Science and Technology, 2017, 26(5), 053001.
[163] X. Lu, M. Laroussi, V. Puech, "On Atmospheric-pressure Non-equilibrium Plasma Jets and Plasma Bullets", Plasma Sources Science and Technology, 2012, 21(3), 034005.
[164] X. Yang, M. Moravej, G.R. Nowling, S.E. Babayan, J. Panelon, J.P. Chang, R.F. Hicks, "Comparison of an Atmospheric Pressure, Radio-frequency Discharge Operating in the α and γ Modes", Plasma Sources Science and Technology, 2005, 14(2), 314.
[165] T.P. Huu, S. Gil, P.D. Costa, A. Giroir-Fendler, A Khacef, "Plasma-catalytic Hybrid Reactor: Application to Methane Removal", Catalysis Today, 2015, 257(1), 86–92.
[166] E.C. Neyts, A. Bogaerts, "Understanding Plasma Catalysis through Modelling and Simulation—A Review", Journal of Physics D: Applied Physics, 2014, 47, 224010.
[167] B. Jang, M. Helleson, C.K. Shi, A. Rondinone, V. Schwartz, C.D. Liang, S. Overbury, "Characterization of Al2O3 Supported Nickel Catalysts Derived from RF Non-thermal Plasma Technology", Top Catalysis, 2008, 49, 145–152.
[168] X.L. Tang, F.Y. Gao, Y. Xiang, H.H. Yi, S.Z. Zhao, "Low Temperature Catalytic Oxidation of Nitric Oxide over the Mn–CoOx Catalyst Modified by Nonthermal Plasma", Catalysis Communication, 2015, 64, 12–17.
[169] T. Hammer, T. Kappes, M. Baldauf, "Plasma Catalytic Hybrid Processes: Gas Discharge Initiation and Plasma Activation of Catalytic Processes", Catalysis Today, 2004, 89, 5–14.
[170] H.H. Kim, A. Ogata, S. Futamura, "Effect of Different Catalysts on the Decomposition of VOCs Using Flow-type Plasma-driven Catalysis", IEEE Transactions on Plasma Science, 2006, 34, 984–995.
[171] K.C. Sabat, P. Rajput, R.K. Raramguru, B. Bhoi, B.K. Mishra, "Reduction of Oxide Minerals by Hydrogen Plasma: An Overview", Plasma Chemistry and Plasma Processing, 2014, 34, 1–23.
[172] X.L. Zhu, P.P. Huo, Y.P. Zhang, C.J. Liu, "Characterization of Argon Glow Discharge Plasma Reduced Pt/Al2O3 Catalyst", Industrial Engineering & Chemistry Research, 2006, 45, 8604–8609.
[173] Y.F. Guo, D.Q. Yea, K.F. Chen, J.C. He, W.L. Chen, "Toluene Decomposition Using a Wire-plate Dielectric Barrier Discharge Reactor with Manganese Oxide Catalyst in situ", Journal of Molecular Catalysis A, 2006, 45, 93–100.
[174] V. Demidyuk, J.C. Whitehead, "Influence of Temperature on Gas-phase Toluene Decomposition in Plasma-catalytic System", Plasma Chemistry and Plasma Processing, 2007, 27, 85–94.
[175] C.T. Herschleb, Ph.D. Thesis, Casimir Ph.D. series, Delft-Leiden, Netherlands, 2011.
[176] K. Takaki, J.S. Chang, "Atmospheric Pressure of Nitrogen Plasmas in a Ferro-electric Packed Bed Barrier Discharge Reactor", IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 11, 481–490.
[177] W. Chen, B. Gutmann, C.O. Kappe, "Characterization of Microwave-induced Electric Discharge Phenomena in Metal–solvent Mixtures", ChemistryOpen, 2012, 1, 39–48.
[178] K. Hensel, Y. Matsui, S. Katsura, A. Mizuno, "Generation of Microdischarges in Porous Materials", Czechoslovak Journal of Physics, 2004, 54, C683.
[179] Y.C. Hong, W.S. Kang, Y.B. Hong, W.J. Yi, H.S. Uhm, "Atmospheric Pressure Air-plasma Jet Evolved from Microdischarges: Eradication of E. coli with the Jet", Physics of Plasmas, 2016, 16, 123502.
[180] Y.R. Zhang, K.V. Laer, E.C. Neyts, A. Bogaerts, "Can Plasma Be Formed in Catalyst Pores? A Modeling Investigation", Applied Catalysis B: Environmental, 2016, 185, 56–67.
[181] Y.R. Zhang, E.C. Neyts, A. Bogaerts, "Influence of the Material Dielectric Constant on Plasma Generation inside Catalyst Pores", Journal of Physical Chemistry C, 2016, 120, 25923–25934.
[182] W.C. Chung, D.H. Mei, X. Tu, M.B. Chang, "Removal of VOCs from Gas Streams via Plasma and Catalysis", Catalysis Reviews, 2018 (In press)
[183] R.B. Sun, Z.G. Xi, F.H. Chao, W. Zhang, H.S. Zhang, D.F. Yang, "Decomposition of Low-concentration Gas-phase Toluene Using Plasma-driven Photocatalyst Reactor", Atmospheric Environment, 2007, 41, 6853–6859.
[184] W.J. Liang, A.H. Wang, L. Ma, J. Li, J, "Combination of Spontaneous Polarization Plasma and Photocatalyst for Toluene Oxidation", Journal of Electrostatics, 2015, 75, 27–34.
[185] D.H. Mei, X.B. Zhu, C.F. Wu, B. Ashford, P.T. Williams, X. Tu, "Plasma-photocatalytic Conversion of CO2 at Low Temperatures: Understanding the Synergistic Effect of Plasma-catalysis", Applied Catalysis B: Environmental, 2016, 182, 525–532.
[186] M.V. Iyer, L.P. Norcio, E.L. Kugler, D.B. Dadyburjor, "Kinetic Modeling for Methane Reforming with Carbon Dioxide over a Mixed-Metal Carbide Catalyst", Industrial & Engineering Chemistry Research, 2003, 42(12), 2712–2721.
[187] Y.A Zhu, D. Chen, X.G. Zhou, W.K. Yuan, "DFT Studies of Dry Reforming of Methane on Ni Catalyst", Catalysis Today, 2009, 148(3–4), 260–267.
[188] O. Muraza, A. Galadima, "A Review on Coke Management during Dry Reforming of Methane", International Journal of Energy Research, 2015, 39(9), 1196–1216.
[189] N. Yazdanpour, S. Sharifnia, "Photocatalytic Conversion of Greenhouse Gases (CO2 and CH4) Using Copper Phthalocyanine Modified TiO2", Solar Energy Materials & Solar Cells, 2013, 118, 1–8
[190] L. Palmisano, E.I. García-López, G. Marcì, "Inorganic Materials Acting as Heterogeneous Photocatalysts and Catalysts in the Same Reactions", Dalton Transactions, 2016, 45, 11596–11605.
[191] S.Y. Mao, Z.X. Tan, L.M. Zhang, Q.Y. Huang, "Plasma-assisted Biogas Reforming to Syngas at Room Temperature Condition", Journal of the Energy Institute, 2018, 91(2), 172–183.
[192] C.J. Liu, R. Mallison, L. Lobban, "Comparative Investigations on Plasma Catalytic Methane Conversion to Higher Hydrocarbons over Zeolites", Applied Catalysis A: General, 1999, 178(1), 17–27.
[193] T. Kozák, A. Bogaerts, "Splitting of CO2 by Vibrational Excitation in Non-equilibrium Plasmas: a Reaction Kinetics Model", Plasma Sources Science and Technology, 2014, 23, 045004.
[194] E. Grabowska, "Selected Perovskite Oxides: Characterization, Preparation and Photocatalytic Properties—A review", Applied Catalysis B: Environmental, 2016, 186, 97–126.
[195] W.C. Chung, I.Y. Tsao, M.B. Chang, "Novel Plasma Photocatalysis Process for Syngas Generation via Dry Reforming of Methane", Energy Conversion and Management, 2018, 164, 417-428.
[196] X.B. Chen, L. Liu, F.G. Huang, "Black Titanium Dioxide (TiO2) Nanomaterials", Chemical Society Reviews, 2015, 44, 1861–1885.
[197] A. Bogaerts, C. de Bie, R. Snoeckx, T. Kozák, "Plasma Based CO2 and CH4 Conversion: A Modeling Perspective", Plasma Processes and Polymers, 2017, 14(6), 1600070.
[198] M. Capitelli, G. Colonna, G. D′Ammando, L.D. Pietanza, Self-consistent "Time Dependent Vibrational and Free Electron Kinetics for CO2 Dissociation and Ionization in Cold Plasmas", Plasma Sources Science and Technology, 2017, 26(5), 055009.
[199] W.C. Chung, M.B. Chang, "Review of Catalysis and Plasma Performance on Dry Reforming of CH4 and Possible Synergistic Effects", Renewable and Sustainable Energy Reviews, 2016, 62, 13–31
[200] X.X. Feng, H.X. Liu, C. He, Z.X. Shen, T.B. Wang, "Synergistic Effects and Mechanism of a Non-thermal Plasma Catalysis System in Volatile Organic Compound Removal: a Review", Catalysis Science & Technology, 2018, 8, 936–954.
[201] G. Dixon-Lewis, M.M. Sutton, A. Williams, "The Kinetics of Hydrogen Atom Recombination", Discussions of the Faraday Society, 1962, 33, 205–212.
[202] X. Tu, J.C. Whitehead, "Plasma Dry Reforming of Methane in an Atmospheric Pressure AC Gliding Arc Discharge: Co-generation of Syngas and Carbon Nanomaterials", International Journal of Hydrogen Energy, 2014, 39(18), 9658–9669.
[203] J.-M. Lavoie, "Review on Dry Reforming of Methane, a potentially more Environmentally-friendly Approach to the Increasing Natural Gas Exploitation", Frontiers in Chemistry, 2014, 2, 81.
[204] R. Snoeckx, Y.X. Zeng, X. Tu, A. Bogaerts, "Plasma-based Dry Reforming: Improving the Conversion and Energy Efficiency in a Dielectric Barrier Discharge", RSC Advances, 2015, 38, 29799–29808.
[205] D.K. Dinh, S. Choi, D.H. Lee, S. Jo, K.T. Kim, Y.H. Song, "Energy Efficient Dry Reforming Process using Low Temperature Arcs", Plasma Processes and Polymers, 2018, e1700203.
[206] S. Arora, R. Prasad, "An Overview on Dry Reforming of Methane: Strategies to Reduce Carbonaceous Deactivation of Catalysts", RSC Advances, 2016, 6, 108668.
[207] X.C. Li, S.G. Li, Y.F, Yang, M. Wu, F. He, "Studies on Coke Formation and Coke Species of Nickel-based Catalysts in CO2 Reforming of CH4", Catalysis Letters, 2007, 118, 59–63
[208] S. Sokolov, E. Kondratenko, M.-M. Pohl, A. Barkschat, U. Rodemerck, "Stable Low-temperature Dry Reforming of Methane over Mesoporous La2O3-ZrO2 Supported Ni Catalyst", Applied Catalysis B: Environmental, 2012, 113–114, 19–30.
[209] Z.Y. Liu, D.C. Grinter, P.G. Lustemberg, T.‐D. Nguyen‐Phan, Y.H. Zhou, S. Luo, I. Waluyo, E.J. Crumlin, D.J. Stacchiola, J. Zhou, J. Carrasco, H.F. Busnengo, M.V. Ganduglia‐Pirovano, S.D. Senanayake, J.A. Rodriguez, "Dry Reforming of Methane on a Highly‐active Ni‐CeO2 Catalyst: Effects of Metal‐support Interactions on C−H Bond Breaking", Angewandte, 2016, 55(26), 7455–7459.
[210] T.P. Braga, R.C.R. Santos, B.M.C. Sales, B.R. da Silva, A.N. Pinheiro, E.R. Leite, A. Valentini, "CO2 Mitigation by Carbon Nanotube Formation during Dry Reforming of Methane Analyzed by Factorial Design Combined with Response Surface Methodology", Chinese Journal of Catalysis, 2014, 35(4), 514–523.
[211] W.C. Chung, M.B. Chang, "Simultaneous Generation of Syngas and Multiwalled Carbon Nanotube via CH4/CO2 Reforming with Spark Discharge", ACS Sustainable Chemistry & Engineering, 2017, 5, 206–212.
[212] P. Fazekas, A.M. Keszler, E. Bódis, E. Drotár, S. Klébert, Z. Károly, J. Szépvölgyi, "Optical Emission Spectra Analysis of Thermal Plasma Treatment of Poly(vinyl chloride)", Open Chemistry, 2015, 13, 549–556.
[213] J.L. Walsh, C.C. Rose, M.S. Smith, S.R. Harper, "Utilization of biogas", Biomass, 1989, 20(3–4), 277–290.
[214] U. Izquierdo, I. García-García, Á.M. Gutierrez, J.R. Arraibi, V.L. Barrio, J.F. Cambra, P.L. Arias, "Catalyst Deactivation and Regeneration Processes in Biogas Tri-Reforming Process. The Effect of Hydrogen Sulfide Addition", Catalysis, 2018, 8, 12.
[215] V. Pawar, S. Appari, D.S. Monder, V.M. Janardhanan, "Study of the Combined Deactivation Due to Sulfur Poisoning and Carbon Deposition during Biogas Dry Reforming on Supported Ni Catalyst", Industrial Engineering & Engineering Research, 207, 56(30), 8448–8455.
[216] M.V.V.S. Rao, S.K. Srivastava, "Electron Impact Ionization and Attachment Cross Sections for H2S", Journal of Geophysical Research, 1993, 98(E7), 137–145.
[217] I. Gallimberti, "Breakdown Mechanisms in Electronegative Gases", Gaseous Dielectrics V, 1987, 61–80.
[218] D. Griller, J.A.M. Simões, "Reaction Kinetics of Sulfur-Centered Radicals", Sulfur-Centered Reactive Intermediates in Chemistry and Biology, NATO ASI Series, Springer, Boston, U.S., 1990.
[219] K.T.C. Roseno, R. Brackmann, M.A. da Silva, M. Schmal, "Investigation of LaCoO3, LaFeO3 and LaCo0.5Fe0.5O3 Perovskites as Catalyst Precursors for Syngas Production by Partial Oxidation of Methane", International Journal of Hydrogen Energy, 2016, 41, 18178–18192.
[220] B.Z. Gao, J.g. Deng, Y.X. Liu, Z.X. Zhao, X.W. Li, Y. Wang, H.X. Dai, "Mesoporous LaFeO3 Catalysts for the Oxidation of Toluene and Carbon Monoxide", Chinese Journal of Catalysts, 2013, 34(12), 2223–2229.
[221] E.J. Park, S.W. Lee, I.C. Bang, H.W. Park, "Optimal Synthesis and Characterization of Ag Nanofluids by Electrical Explosion of Wires in Liquids", Nanoscale Research Letters, 2011, 6, 223.
[222] Y.F. Wang, L.P. Li, X.S. Huang, Q. Li, G.S. Li, "New Insights into Fluorinated TiO2 (Brookite, Anatase and Rutile) Nanoparticles as Efficient Photocatalytic Redox Catalysts", RSC Advances, 2015, 5, 34302–34313.
[223] A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, "The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation", APL Materials, 2013, 1(1), 011002.
[224] N.J. Kramer, R.J. Anthony, M. Mamunuru, E.S. Aydil, U.R. Kortshagen, "Plasma-induced Crystallization of Silicon Nanoparticles", Journal of Physics D: Applied Physics, 2014, 47(7), 075202.
[225] H. Taghvaei, M. Heravi, M.R. Rahimpour, "Synthesis of Supported Nanocatalysts via Novel Non-thermal Plasma Methods and its Application in Catalytic Processes", Plasma Processes and Polymers, 2017, 14(6), 1600204.
[226] S.B. Hammouda, F. Zhao, Z. Safaei, I. Babu, D.L. Ramasamy, M. Sillanpää, "Reactivity of Novel Ceria–Perovskite Composites CeO2- LaMO3 (MCu,Fe) in the Catalytic Wet Peroxidative Oxidation of the New Emergent Pollutant ‘Bisphenol F’: Characterization, Kinetic and Mechanism Studies", Applied Catalysis B: Environmental, 2017, 218, 119–136.
[227] S. Thirumalairajan, K. Girija, V.R. Mastelaro, P. Nagamny, "Photocatalytic Degradation of Organic Dyes under Visible Light Irradiation by Floral-like LaFeO3 Nanostructures Composed of Nanosheet Petals", New Journal of Chemistry, 2014, 38, 5480–5490.
[228] C.C. Shen, Q. Zhu, Z.W. Zhao, T. Wen, X.K. Wang, A.W. Xu, "Plasmon Enhanced Visible Light Photocatalytic Activity of Ternary Ag2Mo2O7@AgBr–Ag rod-like Heterostructures", Journal of Materials Chemistry A, 2015, 3, 1466–14668.
[229] B. Bharti, S. Kumar, H.N. Lee, R. Kumar, "Formation of Oxygen Vacancies and Ti3+ State in TiO2 Thin Film and Enhanced Optical Properties by Air Plasma Treatment", Scientific Reports, 2016, 6, 32355.
[230] N.N. Vu, C.C. Nguyen, S. Kaliaguine, T.O. Do, "Reduced Cu/Pt–HCa2Ta3O10 Perovskite Nanosheets for Sunlight-Driven Conversion of CO2 into Valuable Fuels", Advanced Sustainable Systems, 2017, 1(9), 1700048.
[231] R.D. Sánchez, R.E. Carbonio, M.T. Causa, "EPR Study of LaNil-xFexO3", Journal of Magnetism and Magnetic Materials, 1995, 140–144, 2147–2148.
[232] H. Rager, "EPR Study of Fe3+ Centers in Cristobalite and Tridymite", American Mineralogis, 1986, 71, 105–110.
[233] N. Salam, S.K. Kundu, R.A. Molla, P. Mondal, A. Bhaumik, Sk.M. Islam, "Ag-grafted Covalent Imine Network Material for One-pot Three-component Coupling and Hydration of Nitriles to Amides in Aqueous Medium", RSC Advances, 2014, 4, 47593–47604.
[234] M. Chiesa, M.C. Paganini, S. Livraghi, E. Giamello, "Charge Trapping in TiO2 Polymorphs as Seen by Electron Paramagnetic Resonance Spectroscopy", Physical Chemistry Chemical Physics, 2013, 15, 9435–9447.
[235] L. Mokoena, G. Pattrick, M.S. Scurrell, "Catalytic Activity of Gold-perovskite Catalysts in the Oxidation of Carbon Monoxide", Gold Bull, 2016, 49(1–2), 35–44.
[236] X.X. Xue, W. Ji, Z. Mao, H.J. Mao, Y. Wang, X. Wang, W.D. Ruan, B. Zhao, J.R. Lombardi, "Raman Investigation of Nanosized TiO2: Effect of Crystallite Size and Quantum Confinement", The Journal of Physical Chemistry C Article, 2012, 116, 8792–8797.
[237] X. Zhang, Y.Y. Tang, S.Q. Qu, J.W. Da, Z.P. Hao, "H2S-Selective Catalytic Oxidation: Catalysts and Processes", ACS Catalysis, 2015, 5(2), 1053–1067.
[238] P. Chen, Z. Hou, X. Zheng, T. Yashima, "Carbon Deposition on Meso-porous Al2O3 Supported Ni Catalysts in Methane Reforming with CO2", Reaction Kinetics and Catalysis Letters, 2005, 86, 51–58.
[239] J.Q. Wang, S.Y. Su, B. Liu, M.H. Cao, C.W. Hu, "One-pot, Low-temperature Synthesis of Self-doped NaTaO3 Nanoclusters for Visible-light-driven Photocatalysis", Chemical Communications, 2013, 49, 7830–7832.
[240] C. Zhou, Y.F. Zhao, L. Sheng, Y.H. Cao, L.Z. Wu, C.H. Tung, T.R. Zhang, "Facile Preparation of Black Nb4+ Self-doped K4Nb6O17 Microspheres with High Solar Absorption and Enhanced Photocatalytic Activity", Chemical Communications, 2014, 50, 9554–9556.
[241] A. Behroozsarand, A.N. Pour, "Modeling of Microreactor for Methane Dry Reforming: Comparison of Langmuir–Hinshelwood Kinetic and Microkinetic Models", Journal of Natural Gas Science and Engineering, 2014, 20, 99–108.
[242] K.J. Castle, K.M. Kleissás, J.M. Rhinehart, E.S. Hwang, J.A. Dodd, "Vibrational Relaxation of CO2(v2) by Atomic Oxygen", Journal of Geophysical Research, 2006, 111, A09303.
[243] X. Lu, S. Wu, Y. Pan, "An Atmospheric-pressure, High-aspect-ratio, Cold Micro-plasma", Scientific Reports, 2014, 4, 7488.
指導教授 張木彬(Moo-Been Chang) 審核日期 2018-12-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明