國立中央大學 108 學年度碩士班考試入學試題

所別: 電機工程學系碩士班 固態組(一般生)

共3頁 第1頁

電機工程學系碩士班 系統與生醫組(一般生)

電機工程學系碩士班 電波組(一般生)

科目: 電子學

本科考試禁用計算器

*計算題需計算過程,無計算過程者不予計分

1. 計算題(10分)

For the circuit given in Figure P1, an operational amplifier with limited differential gain A_d = 100 is used. If R_I = 1 k Ω , R_2 = 4 k Ω , R_3 = 1 k Ω , R_4 = 4 k Ω , V $_I$ = 1 V and V $_2$ = 4 V, find the output voltage V $_o$.

2. 計算題(15分)

For the circuit given in Figure P2, the device parameters of the NMOSFET are V_t = 1 V, λ = 0 V⁻¹, γ = 0 V⁻¹, $\mu_n C_{ox}$ = 200 μ A/V², W/L = 10 μ m /1 μ m and drain current I_D = 1 mA. If R_I = 2 k Ω , R_2 = 4 k Ω , Find the following,

2-1 (5 分) the value of the output resistance R_o .

2-2 (10 分) the voltage gain v_0/v_i .

3. 計算題(10分)

For the circuit shown in Figure P3, the current equation of the diodes are $I_D = I_S \times \exp(V_D/2V_T)$ and $V_T = 0.025 \text{ V}$. Using the diode small-signal model to find the voltage gain V_0/V_L [Hint: Find the location of the nodes V_0 and V_0]

國立中央大學 108 學年度碩士班考試入學試題

所別: 電機工程學系碩士班 固態組(一般生)

共3頁 第2頁

電機工程學系碩士班 系統與生醫組(一般生)

電機工程學系 碩士班 電波組(一般生)

科目: 電子學

本科考試禁用計算器

4. 計算題(15分)

Figure P4 shows a npn BJT amplifier. The transconductance of the npn transistor $g_m = 20 \text{m A/V}$, $\beta = 100$ and $v_{BE} = 0.7 \text{ V}$. If $R_I = 10 \text{ k}\Omega$, $R_2 = 10 \text{ k}\Omega$, $R_3 = 3 \text{ k}\Omega$, $R_4 = 4 \text{ k}\Omega$, Neglect the Early effect, please find the following:

- 4-1 (5分) Calculate the value of the amplifier input resistance R_{in} .
- 4-2 (5分) Find the voltage gain V_{o1}/V_{i} .
- 4-3 (5分) Find the voltage gain V_{o2}/V_i .

Fig. P4

5. 計算題(14分)

Figure P5 shows a common source amplifier with a current-source load implemented with a p-channel MOSFET Q_2 . Both Q_1 and Q_2 operate in saturation. The amplifier is fabricated in a process for which $\mu_n C_{ox} = 2\mu_p C_{ox} = 0.2 \text{ mA/V}^2$, $V'_{An} = |V'_{Ap}| = 20 \text{ V/}\mu\text{m}$, $V_{tn} = -V_{tp} = 0.5 \text{ V}$, and $V_{DD} = 2.5 \text{ V}$. The two transistors have $L = 0.5 \mu\text{m}$ and are to be operated at a current I_D of 0.1 mA with two transistors operating at overdrive voltage $|V_{OV}| = 0.2 \text{ V}$. Please find the required values of the following.

5-1 (4分) V_G.

5-2 (4 分) (W/L)₁, and (W/L)₂. (每子題 2 分)

5-3 (6 分) Voltage gain A_V .

注意:背面有試題

國立中央大學 108 學年度碩士班考試入學試題

所別: 電機工程學系碩士班 固態組(一般生)

共三頁 第三頁

電機工程學系 碩士班 系統與生醫組(一般生)

電機工程學系 碩士班 電波組(一般生)

科目: 電子學

本科考試禁用計算器

6. 計算題(16分)

Figure P6 shows a PMOS differential amplifier and both Q_1 and Q_2 operate in saturation. Let V_{tp} = -0.8 V, and $k'_p(W/L)$ = 12.5 mA/V². Neglect channel-length modulation.

6-1 (4 分) For $v_{GI} = v_{G2} = 0$ V, find V_{SG} for each of Q_1 and Q_2 .

6-2 (4 分) If the current source requires a minimum voltage of 0.4 V, find the input common mode range, $V_{CM \, min}$. (每子題 2 分)

6-3 (4 分) The current source has an output resistance R_{SS} = 40 k Ω . If the output is taken single-endedly, find $|A_d|$ and $|A_{cm}|$. (每子題 2 分)

6-4 (4 %) Following 6-3, if the output is taken differentially and there is a 1% mismatch between the drain resistances, find $|A_d|$ and $|A_{cm}|$. (每子題 2 %)

7. 計算題(20分)

Figure P7 shows a feedback transconductance amplifier. For the case of $g_{m1} = g_{m2} = 5$ mA/V, $R_D = 1$ k Ω , $r_{O2} = 20$ k Ω , $R_F = 100$ Ω , and $R_L = 1$ k Ω . For simplicity, neglect r_{O1} and take r_{O2} into account only when calculating output resistance.

7-1 (10 分) Find the value of close-loop gain $A_f = I_O/V_S$.

7-2 (10 分) Find the value of output resistance R_{of} .