國立中央大學 108 學年度碩士班考試入學試題

所別 數學系碩士班 數學組(一般生)

共之頁 第一頁

數學系碩士班 應用數學組(一般生)

數學系碩士班 應用數學組(在職生)

科目 線性代數

本科考試禁用計算器

Instructions: Show your work. The notations $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ denote the rational number, real number and complex number fields, respectively.

1. Let

$$A = \begin{pmatrix} 2 & -1 & 3 & 1 & 4 \\ 4 & 2 & 1 & 3 & 11 \\ -6 & -1 & 2 & -11 & -14 \\ 8 & 4 & 8 & -8 & 26 \\ -2 & -7 & -11 & 53 & -17 \end{pmatrix}$$

denote a 5×5 matrix over \mathbb{Q} .

(a) (15%) Find a 5×5 lower triangular matrix L with diagonal entries all 1 and a 5×5 upper triangular matrix U such that

 $A = L \cdot U$.

(b) (5%) Solve

$$A \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} -25 \\ -20 \\ 12 \\ -90 \\ 138 \end{pmatrix}$$

for x_1, x_2, x_3, x_4, x_5 .

2. (15%) Let n denote a non-negative integer. Let c_0, c_1, \ldots, c_n denote n+1 mutually distinct scalars taken from \mathbb{Q} . Show that given any $d_0, d_1, \ldots, d_n \in \mathbb{Q}$, there exists a unique polynomial f(x) of degree $\leq n$ with coefficients in \mathbb{Q} such that

$$f(c_i) = d_i$$
 for all $i = 0, 1, \ldots, n$.

3. (15%) Given an infinite sequence a_1, a_2, a_3, \ldots in \mathbb{R} , we simply write the sequence by $\{a_n\}_{n\geq 1}$. Let \mathbb{R}^{∞} denote the set of all sequences $\{a_n\}_{n\geq 1}$ in \mathbb{R} . Note that \mathbb{R}^{∞} is a vector space over \mathbb{R} with vector addition + and scalar multiplication \cdot defined by

$$\{a_n\}_{n\geq 1} + \{b_n\}_{n\geq 1} = \{a_n + b_n\}_{n\geq 1}$$
 for all $\{a_n\}_{n\geq 1}$, $\{b_n\}_{n\geq 1} \in \mathbb{R}^{\infty}$, $\lambda \cdot \{a_n\}_{n\geq 1} = \{\lambda \cdot a_n\}_{n\geq 1}$ for all $\lambda \in \mathbb{R}$ and $\{a_n\}_{n\geq 1} \in \mathbb{R}^{\infty}$.

Show that \mathbb{R}^{∞} is an infinite-dimensional vector space over \mathbb{R} .

4. (15%) Let

$$A = \begin{pmatrix} -3 & -2 & 0 & 0 \\ -2 & 1 & 8 & 0 \\ 0 & 2 & -3 & 6 \\ 0 & 0 & -2 & 1 \end{pmatrix}$$

denote a 4×4 matrix over \mathbb{Q} . Determine if A is diagonalizable and give a proof for your answer.

5. (15%) Let V denote a finite-dimensional vector space over a field \mathbb{F} . Assume that $T:V\to V$ is a diagonalizable linear operator. Prove that if W is a T-invariant subspace of V, then the linear operator $T|_W:W\to W$ given by

$$T|_{W}(w) = T(w)$$
 for all $w \in W$

is diagonalizable.

注意:背面有試題

國立中央大學 108 學年度碩士班考試入學試題

所別: 數學系碩士班 數學組(一般生)

共2頁 第2頁

數學系碩士班 應用數學組(一般生)

數學系碩士班 應用數學組(在職生)

科目: 線性代數

本科考試禁用計算器

6. (20%) Let V denote a vector space over the complex number field $\mathbb C$ endowed with an inner product $\langle \, , \, \rangle$. Recall that the norm of a vector $v \in V$ is defined as

$$||v|| = \sqrt{\langle v, v \rangle}.$$

Let W denote a finite-dimensional subspace of V. Prove that there exists a unique linear operator $P:V\to W$ such that

 $||v - P(v)|| \le ||v - w||$ for all $v \in V$ and $w \in W$.

注意:背面有試題